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The main goal of this contribution is to show that periodic arrangements of chiral scatterers can be the basis
for the development of three dimensional and isotropic negative refractive index artificial media. Three dimen-
sionality and isotropy are key issues in this context since only three dimensional structures can be properly
viewed as a “medium,” and only in isotropic media the refractive index is unambiguously defined. The
proposed arrangements are cubic lattices of chiral split ring resonators conveniently designed to yield an
isotropic behavior. The reported structures are shown to provide a significant frequency band of negative
refraction with good matching to free space.
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I. INTRODUCTION

Isotropic negative refractive index �NRI� media were first
proposed and analyzed by Veselago in 1968,1 but its practical
implementation was not envisaged until recently, after the
results of Smith et al.2 It should be pointed out that the
refraction index can only be unambiguously defined in three
dimensional isotropic media and that most reported practical
realizations of media exhibiting negative refraction fall into
the category of indefinite media3 rather than into the category
of isotropic NRI or “left-handed”1 media. Actually, the de-
velopment of an isotropic NRI medium is still a challenging
issue despite the diverse efforts in this direction.4–7 Over-
coming this challenge is of interest not only from a theoret-
ical standpoint but also from a practical one: isotropic and
bi-isotropic NRI media will be useful for designing three
dimensional planar focusing devices,1,8 subdiffraction imag-
ing devices,9 and other applications.

Chiral scatterers are an attractive alternative for the design
of NRI artificial media because of their ability for providing
simultaneously negative permittivity and permeability. To the
best of our knowledge, the first proposals in this direction
were made by Tretyakov and co-workers.10,11 Other propos-
als aimed to take advantage of chirality for NRI media de-
sign were subsequently reported.12,13 All these proposals ei-
ther neglect the issue of isotropy or propose random
arrangements to address it. However, random arrangements,
although conceptually appealing, are not easily reproducible
and do not show a well defined electromagnetic response,
mainly if the size of inclusions is not sufficiently small com-
pared to wavelength �as usual in most artificial media�. In
fact, this last feature could be one of the main reasons why
isotropic NRI artificial media made from chiral inclusions
have not been developed further, remaining only as a theo-
retical possibility. By contrast, periodic arrangements are re-
producible, and the eigenmodes of the structure can be un-
ambiguously identified by using Bloch–Floquet theorem.
Starting from these considerations, this paper proposes a way
to the experimental realization of bi-isotropic and isotropic
NRI artificial media using periodic arrangements of chiral
scatterers. The paper is organized as follows. First, the basic

structure is proposed and an approximate analytical theory
based on a generalization of Lorentz homogenization proce-
dure is developed. This analysis directly provides the appro-
priate design parameters. Then, rigorous full-wave electro-
magnetic simulations are carried out in order to identify the
eigenmodes of the structure and to validate the analytical
theory. These simulations are also useful in order to identify
the effects of spatial dispersion, which are not taken into
account by the analytical theory. As will be shown, these
effects are not relevant in the frequency band of interest.
Next, the impedance matching to free space of the proposed
structure is studied. Finally, the possibility of creating a ra-
cemic configuration is discussed.

II. BALANCED CHIRAL BI-ISOTROPIC MEDIA

Before the analysis of any specific structure, some key
properties of bi-isotropic chiral media will be recalled. Bi-
isotropic media can be described by the following linear con-
stitutive relations:14

D = �0�1 + �e�E + j��0�0�H , �1�

B = − j��0�0�E + �0�1 + �m�H , �2�

where �e, �m, and � are the electric, magnetic, and cross
susceptibilities, respectively, which are real quantities for
lossless media. Assuming an exp�j�t� time dependence, the
eigenwaves propagating through these media are right- and
left-circularly polarized plane waves whose dispersion rela-
tion is given by14

k� = k0���r�r � �� , �3�

where k0=���0�0 and �r= �1+�e�, �r= �1+�m�. In order to
reduce the forbidden bands of propagation coming from
complex values of k�, it is desirable that �e�����m��� so
that �r and �r always have the same sign. It is known11,13 that
this condition also implies that

�e��� � �m��� � ������ . �4�

The conditions for negative refraction in transparent bi-
isotropic chiral media are also known.15 In lossless bi-
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isotropic media satisfying the balance condition �Eq. �4��,
these conditions reduce to

�e � − 0.5 and �m � − 0.5 �5�

or, equivalently, �r�0.5 and �r�0.5,13 which is less restric-
tive than the usual condition for conventional isotropic me-
dia ��r�0 and �r�0�. The price to pay for this enhanced
bandwidth is that only one of the eigenwaves of Eq. �3� will
exhibit negative refraction, while the other will present a
positive refractive index.8,13

Both eigenwaves have the same wave impedance given
by14

Z = Z0��r

�r
, �6�

where Z0=��0 /�0 is the free space impedance. However,
since the refractive index is different for each eigenmode, the
refracted amplitude is not necessarily the same for both
eigenmodes. In general, both eigenmodes will be generated
at the interface between free space �or other isotropic me-
dium� and a chiral medium, even if the incident wave is
circularly polarized. The only exception to this rule is normal
incidence.

III. THEORY AND DESIGN

In a previous paper,16 some of the authors showed that a
cubic arrangement of scatterers satisfying the tetrahedral or
�in Schoenflies notation� T group of symmetry provides a
useful basis for the design of isotropic artificial media. Fig-
ure 1�a� shows a cubic arrangement of chiral split ring reso-
nators �SRRs� satisfying this symmetry. It should be noticed
that the SRRs on opposite sides of the cube of Fig. 1�a� are
identical, which allows for the realization of an artificial me-
dium by means of the periodic repetition of this structure.
This artificial medium has a simple cubic lattice of periodic-
ity a �the edge of the cube� and its primitive unit cell con-
tains three chiral SRRs. Note that the proposed chiral SRR is
a practical design, feasible to be manufactured by standard
planar-circuit fabrication techniques.20

An easy way to compute the susceptibilities of the
metamaterial can be obtained from a straightforward exten-
sion of Lorentz local field theory that takes into account the
presence of cross polarizabilities. This simple theory leads to
the following equations for the macroscopic polarizations, P
and M, of the metamaterial:

P =
1

V
�		e
�E +

P

3�0
� + �0		em
�H +

M

3
�
 , �7�

M =
1

V
��0		m
�H +

M

3
� − 		em
�E +

P

3�0
�
 , �8�

where V=a3 is the volume of the unit cell and 		e
, 		em
,
and 		m
 are the average polarizabilities of the unit cell,
which are defined as

p = 		e
El + 		em
Bl, �9�

m = − 		em
El + 		m
Bl, �10�

where p and m are the electric and magnetic dipoles induced
at each unit cell, El and Bl are the electric and magnetic local
fields, and where Onsager symmetries17 for the magneto-
electric polarizabilities are explicitly introduced �		me

=−		em
�. By using Eqs. �7� and �8�, the metamaterial sus-
ceptibilities are directly obtained from their definitions,
�0�e=�P /�E and �m=�M /�H, provided that the polarizabil-
ities are known. These polarizabilities can be obtained from
the polarizabilities of the chiral SRR. Analytical expressions
for the chiral SRR polarizabilities were already reported18

and will be here reproduced for completeness,

	zz
mm =


2r4

L

�2

�0
2 − �2 + j�R/L

, �11�

	zz
em = � j

2
r2t

�0L
��0

�
� �2

�0
2 − �2 + j�R/L

, �12�

	zz
ee =

4t2

�0
2L
��0

�
�2 �2

�0
2 − �2 + j�R/L

, �13�

	xx
ee = 	yy

ee = �0
16

3
rext

3 , �14�

where t and rext are geometrical parameters �see Fig. 1�b��
and L, R, and �0 are the chiral SRR self-inductance, resis-
tance, and frequency of resonance, respectively, which can
be analytically obtained from a general procedure already
developed by some of the authors.19 From Eqs. �11�–�14�, the
average polarizabilities in Eqs. �9� and �10� are obtained as

		e
 = 	xx
ee + 	yy

ee + 	zz
ee, �15�

		em
 = 	zz
em, �16�

		m
 = 	zz
mm. �17�

When the balance condition �Eq. �4�� is translated to the
unit cell polarizabilities, it becomes

c2		e
 = c�		em
� = 		m
 , �18�

where c is the velocity of light. This condition cannot be
exactly fulfilled at all frequencies using the polarizabilities
from Eqs. �11�–�14� due to the presence of the static electric
polarizabilities �Eq. �14��. However, if the static electric po-

FIG. 1. �a� Cubic arrangement of chiral SRRs satisfying T group
of symmetry �namely, any of the in-body diagonals is a third order
rotation symmetry axis� and �b� detail of the chiral SRR design.
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larizabilities are neglected �which is a reasonable hypothesis
near resonance�, the balance condition �Eq. �18�� is approxi-
mately satisfied provided that

t�0 = �
r�2, �19�

where �0 is the wavelength at resonance and t and r=rext
−w /2 are structural parameters of the chiral SRR �see Fig.
1�b��. Although Eq. �19� is only approximate and comes
from a simplified homogenization procedure, it will be
shown that it is a very good design rule in the frequency
band of interest.

In the following, a particular example is analyzed in order
to illustrate and validate our analytical predictions. The cho-
sen metamaterial parameters satisfy Eq. �19� and are given in
the caption of Fig. 2. The frequency band of left-handed
propagation, given by Eq. �5�, is marked in gray. It can be
seen how inside this region the balance condition �Eq. �4�� is
approximately fulfilled. However, outside this region, the
static nonresonant polarizabilities �Eq. �14�� dominate and
the balance condition is not fulfilled. The theoretical disper-
sion curves for the eigenwaves of the bi-isotropic metamate-
rial, given by Eq. �3�, are shown in Fig. 3. A frequency band
of backward-wave propagation for one of the eigenwaves
can be clearly observed �between points marked as 2 and 4�,
which corresponds to the left-handed frequency band shown
in Fig. 2. Since backward-wave propagation is the signature
of negative refraction,1 this region corresponds to a NRI for
the considered eigenmode. Inside this band, there is also a
small forbidden band gap �marked as 3; see also the inset�
that corresponds to complex values of the propagation con-
stants �Eq. �3��. This small band gap is due to the aforemen-
tioned approximations implicit in Eq. �19�. The straight hori-
zontal line at the frequency where the propagation constant
of one of the eigenwaves vanishes �corresponding to the con-
dition �r�r=�2� represents a fully degenerate longitudinal
wave with k�E=0 and k�H=0.

IV. ELECTROMAGNETIC SIMULATIONS

In this section, the previously studied structure is ana-
lyzed by means of the commercial electromagnetic simulator
CST MICROWAVE STUDIO, giving the band structure shown in
Fig. 4. A good qualitative agreement is found between Figs.
3 and 4. In both figures, a frequency band of backward-wave
propagation is observed for one of the eigenwaves. Also, a
small frequency stopband appears in Fig. 4 inside this
backward-wave passband �because of the approximate bal-
ance condition employed� in agreement with the theoretical
predictions of Fig. 3. In order to show the isotropic nature of
the structure, the dispersion curves along the 
-X, 
-M, and

-R paths are shown in Fig. 5. The isotropy of the dispersion
relation for the transverse modes becomes apparent from
these curves, except for high values of the propagation con-
stant �namely, close to the border of the Brillouin zone�,
where spatial dispersion affects the dispersion relation. The
longitudinal mode of Fig. 3 also appears in Figs. 4 and 5,
although now spatial dispersion destroys degeneracy and
isotropy.

The main differences between Figs. 4 and 5 and the the-
oretical dispersion curves shown in Fig. 3 are observed at

FIG. 2. Theoretical constitutive parameters �e, �m, and � for the
metamaterial made of the periodic repetition of the cubic arrange-
ment of Fig. 1�a�, forming a simple cubic lattice with periodicity a.
SRR parameters are a /rext=2.87, w /rext=0.4, and t /rext=0.47.

FIG. 3. Theoretical dispersion curves for the eigenwaves of the
metamaterial shown in Fig. 2. Dispersion curves are drawn inside
the first Brillouin zone of the structure.

FIG. 4. Band structure and dispersion relation for the metama-
terial of Fig. 2 obtained from full-wave simulations along the path
R-
-X-M-R �
 is the center of the k-space, X= �
 /a ,0 ,0�, M
= �
 /a ,
 /a ,0�, and R= �
 /a ,
 /a ,
 /a��.
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high values of k and also at high values of frequency �i.e., at
high values of k0a�. These differences correspond to the ef-
fect of spatial dispersion, which becomes important when the
size of the unit cell is not small in comparison with the
wavelength in free space and in the medium.17 In such re-
gions, the behavior of the structure is closer to a photonic
crystal than to an effective medium. However, inside the left-
handed band �between points marked 2� and 4� in Fig. 4�,
spatial dispersion does not produce significant deviations
from isotropy �i.e., the dispersion curves are almost equal for
any direction of propagation, as can be seen in Fig. 5�. This
effect is even more apparent in the frequency band between
the unbalanced forbidden band �marked as 3� in Fig. 4� and
the end of the left-handed band �marked as 4� in Fig. 4�.

It is illustrative to compare the band structure of the con-
sidered balanced structure with that of an unbalanced one.
Thus, Fig. 6 shows the dispersion diagrams for the eigen-
modes of two unbalanced structures �which were obtained by
varying t in Fig. 1�. It can be observed how, as t decreases,
the forbidden frequency band increases until the backward-

wave region vanishes, giving a behavior similar to that of a
negative-� split ring metamaterial. Figure 6 also shows that
the tolerance of condition �19� is high. It can be seen that
even a change of more than 30% in the particle thickness
does not strongly affect the left-handed passband.

V. PROPAGATION THROUGH A FINITE SLAB

In the practical design of a NRI medium, apart from the
obvious obtaining of some amount of negative refraction, it
should be required that the metamaterial has small reflec-
tance for the beam to be refracted with a significant ampli-
tude. Since for balanced metamaterials it is imposed that
�e��m in the frequency range of interest, it directly follows
from Eq. �6� that Z����Z0, which ensures a good matching
to free space and constitutes an additional relevant advantage
of the proposed balanced NRI metamaterials.

In order to illustrate the above feature, the normal inci-
dence of a circularly polarized plane wave on a slab of the
proposed chiral medium will be studied through electromag-
netic simulations. First, a wave with the same polarization as
the left-handed eigenmode of Figs. 4 and 5 is analyzed. The
computed transmittance is shown in Fig. 7. It can be seen
that the amplitude of the cross-polarized wave is almost neg-
ligible, which means that the circular polarization is main-
tained. The figure also shows that the medium is practically
transparent for almost all the considered frequencies, as ex-
pected from the aforementioned impedance matching. How-
ever, the small ripples observed in the transmittance in Fig. 7
shows that the impedance matching is not perfect. The re-
gions of poor transmittance, between points 1� and 2�, and
beyond 6�, exactly reproduce the corresponding band gaps in
Fig. 4. There is also a smaller dip at point 3�, which corre-
sponds to the unbalanced band gap of Fig. 4. Therefore, a
useful region of backward-wave propagation ranges from
point 3� to point 4�, which includes the most useful values of
�r and �r, as already mentioned.

Backward-wave propagation in the frequency band of in-
terest will be demonstrated by plotting the phases of the

FIG. 5. Dispersion curves along the 
-X, 
-M, and 
-R direc-
tions for the eigenwaves of the balanced metamaterial of Figs. 2 and
3. The end of the first Brillouin zone for each direction of propaga-
tion is shown in the figure �vertical lines�.

FIG. 6. Dispersion curves along the 
-X direction for the eigen-
waves of two unbalanced metamaterials. Parameters are the same as
in Fig. 2, except for t /rext, which is taken as t /rext=0.3 �dashed
lines� and t /rext=0.1 �solid lines�.

FIG. 7. Simulated transmittance through a seven unit cell thick
slab of the metamaterial analyzed in Figs. 2–5 for a left-circularly
polarized �LCP� incident wave. Transmittance is plotted for both the
co-polar �LCP wave� and the cross-polar �RCP wave� components.
Points marked 1�–6� correspond to the marks in Fig. 4.
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computed transmission coefficients for two slabs of different
thicknesses �see Fig. 8�. A zero phase shift between both
transmission coefficients was imposed at zero frequency, i.e.,
for static fields. Also, a convenient phase shift of 4
 was
imposed to the phase of the seven unit cell thick slab at the
onset of the left-handed band �i.e., at frequency point 2��.
This shift is imposed in order to obtain a zero phase shift
between both coefficients at point 4�, which corresponds to
the zero phase advance point for the backward-wave eigen-
mode of Fig. 4. As a consequence, the sign of the phase
difference between both samples changes from the
backward-wave region �between frequency points 2� and 4��
to the forward-wave bands �between zero frequency and 2�,
and beyond 4��. This result is in complete agreement with
the backward-wave propagation postulated for the left-
circularly polarized wave �LCP� between frequency points 2�
and 4�. It should be mentioned that once a zero phase shift is
imposed at zero frequency and at the frequency point 4�, the
phase jump at 2� cannot be arbitrarily imposed. Therefore,
the fact that the phase jump necessary to fulfill the aforemen-
tioned conditions equals to 4
 provides an additional confir-
mation of the proposed theory.

Finally, the simulated transmittances for the co-polar and
cross-polar componets of an incident RCP wave are shown in
Fig. 9. The obtained values for this transmittance are again
near unity, except for the band gaps shown in Fig. 4 for this
wave, i.e., around frequency point 3� and beyond 5�.

VI. RACEMIC PERIODIC MEDIUM

Next, it will be explored the possibility of designing a
racemic mixture of chiral SRRs while keeping the necessary
symmetries to ensure an isotropic behavior for the metama-
terial. For this purpose, it will be considered a simple cubic
lattice of periodicity 2a made of cubes as that shown in Fig.
1�a� and another similar cubic lattice made of the same cubes
but of opposite handedness. Both cubic lattices can be inter-
leaved, as shown in the inset of Fig. 10, to give a simple
cubic lattice whose unit cell is formed by two cubes of op-

posite handedness. Since the whole structure is symmetric
after inversion �the centers of symmetry are the corners of
the cubes�, the cross susceptibility � �which is pseudoscalar�
must vanish.17 Therefore, the whole structure is a balanced
isotropic metamaterial with �=0. Figure 10 shows the theo-
retical dispersion relation �k=k0

��r�r� of the proposed struc-
ture. A frequency band of backward-wave propagation, cor-
responding to the condition �r ,�r�0, can be observed in the
figure. Since the phase vector is now simply given by k
=����, the unbalanced band gap disappears, and the width
of the left-handed frequency band decreases in comparison
with that of Fig. 3. The wave impedance is also given by Eq.
�6�. That is, it is almost equal to the free space impedance,
which ensures good matching to free space for all angles of
incidence. From the above considerations, we feel that these

FIG. 8. Phase of the simulated transmission coefficient for the
incident LCP wave through a seven unit cell thick slab �solid line�
and a five unit cell thick slab �dashed line�. Points marked 2�–4�
correspond to the marks in Fig. 4.

FIG. 9. Simulated transmittance through a seven unit cell thick
slab of the metamaterial analyzed in Figs. 2–5 for the co-polar
�RCP wave� and the cross-polar �LCP wave� components of an
incident RCP eigenmode. Points marked 3� and 5� correspond to
the marks in Fig. 4.

FIG. 10. Theoretical dispersion relation for plane waves propa-
gating in the racemic metamaterial with the simple cubic lattice
shown in the inset. Inset: Racemic periodic structure made of two
interleaved simple cubic lattices of cubes as that of Fig. 1�a�. White
cubes are identical to that of Fig. 1�a� and gray cubes are similar
cubes made of chiral SRRs of opposite handedness. Chiral SRR
parameters are as in Fig. 3 and the periodicity of the structure is 2a.
The fully degenerate longitudinal mode is now located at �r�r=0.
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racemic isotropic mixtures can be very useful for the design
of isotropic regular left-handed metamaterials.

VII. CONCLUSIONS

Periodic NRI metamaterials based on chiral SRRs have
been proposed and demonstrated. An analytical theory has
been developed for the design of such metamaterials, which
has been validated by careful full-wave electromagnetic
simulations. It has been shown that simple cubic lattices of
chiral SRRs can provide bi-isotropic NRI metamaterials with
a well defined frequency band of backward-wave propaga-
tion for one of its plane-wave eigenstates. Transmittance
through a slab of finite thickness has been analyzed and good
matching to free space has been demonstrated. Besides, a
racemic simple cubic lattice of chiral SRRs satisfying the
appropriate symmetry has been proposed in order to provide

ordinary NRI isotropic left-handed metamaterials with a well
defined band of backward-wave propagation for all its plane-
wave eigenstates. Good matching to free space is also ex-
pected for these last designs. Besides good matching to free
space, the proposed structures have the advantage of being
made of a single kind of inclusions, a fact that substantially
simplifies their design and fabrication. Applications of the
reported concepts in the design of lenses, antennas, and other
NRI metamaterial based devices can be envisaged.
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