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The superscaling analysis using the scaling function obtained within the coherent density fluctuation model is
extended to calculate charge-changing neutrino and antineutrino scattering on 12C at energies from 1 to 2 GeV
not only in the quasielastic but also in the � excitation region. The results are compared with those obtained
using the scaling functions from the relativistic Fermi gas model and from the superscaling analysis of inclusive
scattering of electrons from nuclei.
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I. INTRODUCTION

The analyses of scaling (e.g., Refs. [1–10]) and superscaling
(e.g., [10–21]) phenomena observed in electron scattering
from nuclei and the consideration on the same basis of
neutrino (antineutrino)-nucleus scattering have been among
the important tasks of nuclear physics in the past few decades.
Scalings of the first and the second kind (a very weak
dependence of the reduced cross section on the momentum
transfer q and on the mass number, respectively) at excitation
energies below the quasielastic (QE) peak turn out to be related
to the high-momentum components of the nucleon momentum
distribution n(k) at k > 2 fm−1 that are similar for all nuclei
and are due to the short-range and tensor correlations in
the nuclei. One says that the reduced cross sections exhibit
superscaling when both types of scaling occur. The violation
of the scaling of the first kind above the QE peak is related to the
excitation of a nucleon in the nucleus to a � resonance [15,22]
and to effects of the meson exchange currents [23–27]. The first
theoretical explanations of the superscaling have been given
in Refs. [10,11] in the framework of the relativistic Fermi gas
(RFG) model. The analyses of the world data on inclusive
electron-nucleus scattering in Refs. [12,13] confirmed the
observation of this phenomenon, but simultaneously they
showed the necessity to consider it on the basis of more
complex dynamical picture of finite nuclear systems beyond
the RFG. The main reason for this is that the scaling function
in the RFG model is f

QE
RFG(ψ ′) = 0 for ψ ′ � − 1, whereas

the experimental scaling function extracted from (e, e′) data
extends to large negative values of the scaling variable ψ ′ up to
ψ ′ ≈ −2 where effects beyond the mean-field approximation
are important. A theoretical approach that correctly interprets
superscaling in the ψ ′ � 0 region is the coherent density
fluctuation model (CDFM) (e.g., Refs. [28,29]). This model
represents a natural extension of the Fermi gas model to
realistic nuclear systems and it is based on the generator
coordinate method [30]. In the CDFM the QE scaling function
f (ψ ′) is related to realistic nucleon momentum and density

distributions and it agrees with the data for negative values of
ψ ′, including ψ ′ <∼ −1 [16–20]. This is so because the CDFM
momentum distribution is not a sharp function of k as the RFG
one is. Reliable separation of inclusive electron scattering data
into their longitudinal and transverse contributions for A > 4
nuclei made it possible to obtain (see, e.g., Refs. [12,13,15,31])
from the data a “universal” phenomenological QE scaling
function f QE(ψ ′). In the present work we use the fit of
Ref. [14], which is based on the experimental analysis of
J. Jourdan [32]. A striking feature of the scaling function
f QE(ψ ′) extracted from the superscaling analysis (SuSA)
is its asymmetric shape with respect to the peak position
ψ ′ = 0 with a pronounced tail extended toward positive ψ ′
values. This is in contrast to the scaling function in the RFG
model that is symmetric with respect to ψ ′ = 0. This property
of the phenomenological SuSA scaling function imposed
further theoretical considerations. A detailed investigation of
such asymmetry has been presented in Refs. [33–35] in the
context of the relativistic mean-field (RMF) approach. These
studies have proved the crucial role played by the description
of final-state interactions (FSI), through the RMF, to reproduce
adequately the asymmetric shape shown by the data analysis.

The approach of SuSA to the QE electron scattering (at
energies from several hundred MeV to a few GeV) have
been extended to include also processes in which � excitation
dominates [31]. In the CDFM this was done in Ref. [19].

The validity of superscaling in inclusive electron scatter-
ing allowed one to start studies of neutrino (antineutrino)
scattering off nuclei on the same basis ( [31,33,36,37]).
Given the corresponding scaling functions, the cross sections
of charge-changing (CC) [33] or neutral-current (NC) [27]
neutrino (antineutrino), nucleus-scattering cross sections for
intermediate to high energies can be obtained by multiplying
the elementary single-nucleon (s.n.) CC or NC neutrino
(antineutrino) cross sections by the corresponding scaling
function. This procedure relies on some assumptions that
have recently been tested within the RMF+FSI model and
are related to the isospin degrees of freedom [38].
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A number of other theoretical studies of CC (e.g., Refs. [39–
48]) and NC (e.g., [39,40,47,49–52]) neutrino (antineutrino)-
nucleus scattering has also been developed in recent years.

In the QE region the CDFM scaling function (with
asymmetry introduced in [19]) has been applied to analyze
charge-changing neutrino (antineutrino) scattering on 12C (for
energies of the incident particles from 1 to 2 GeV) in Ref. [19]
and neutral current neutrino (antineutrino) scattering on the
same nucleus with proton and neutron knockout in Ref. [53].
The results were compared with those from the RFG model and
from the superscaling analysis (SuSA) [15,31]. These analyses
made it possible to gain information simultaneously and on
the same footing about the role of both the local density and
the momentum distribution in nuclei for the description of
superscaling and of electron- and neutrino-nucleus scattering
(e.g., Refs. [17,19]). One of the advantages of the superscaling
analysis within the CDFM was to find the relationship [17]
between the behavior of the scaling function for negative
values of ψ ′ and the slope of the nucleon momentum
distribution n(k) at higher values of the momentum (k >

1.5 fm−1) that is similar for all nuclei due to the short-range
nucleon-nucleon correlations. It became possible to show the
sensitivity of the calculated CDFM scaling function to the
peculiarities of n(k) in different regions of the momentum [17].
It was also shown that the existing data on the ψ ′ scaling are
informative for n(k) at momenta up to k � 2–2.5 fm−1.

The aim of this work is to extend the CDFM scaling
approach from the QE region to the � region for CC neutrino
and antineutrino scattering from nuclei using a constructed
realistic CDFM scaling function for the same region.

The article is organized in the following way: the theoretical
scheme is given in Sec. II. It includes the main relationships
of the CDFM scaling functions in both the QE and � regions
as well as a brief outline of the formalism for CC neutrino
scattering. The results for 12C(νµ, µ−) and 12C(ν̄µ, µ+) reac-
tion cross sections are presented and discussed in Sec. III. The
conclusions are summarized in Sec. IV.

II. THE THEORETICAL SCHEME

A. CDFM scaling function in the QE region

The QE CDFM scaling function was obtained [16–19] on
the basis of the local density distribution, ρ(r), as well as
on the basis of the nucleon momentum distribution, n(k). It
is expressed by the sum of the proton f QE

p (ψ ′) and neutron
f QE

n (ψ ′) scaling functions, which are determined by the proton
and neutron densities, ρp(r) and ρn(r) [or by corresponding
momentum distributions np(k) and nn(k)], respectively [19]:

f QE(ψ ′) = 1

A

[
Zf QE

p (ψ ′) + Nf QE
n (ψ ′)

]
. (1)

The proton and neutron scaling functions in Eq. (1) are pre-
sented as sums of scaling functions for negative [f QE

p(n),1(ψ ′)]
and positive [f QE

p(n),2(ψ ′)] values of ψ ′:

f
QE
p(n)(ψ

′) = f
QE
p(n),1(ψ ′) + f

QE
p(n),2(ψ ′), (2)

where (in the case when the scaling function is obtained on
the basis of the density distributions)

f
QE
p(n),1(ψ ′) =

∫ αp(n)/(kp(n)
F |ψ ′|)

0
dR|Fp(n)(R)|2f p(n)

RFG,1[ψ ′(R)],

ψ ′ � 0, (3)

f
QE
p(n),2(ψ ′) =

∫ c2αp(n)/(kp(n)
F ψ ′)

0
dR|Fp(n)(R)|2f p(n)

RFG,2[ψ ′(R)],

ψ ′ � 0, (4)

with

f
p(n)
RFG,1[ψ ′(R)] = c1

1 −
(

k
p(n)
F R|ψ ′|

αp(n)

)2
 , ψ ′ � 0 (5)

and with two forms of f
p(n)
RFG,2[ψ ′(R)]: a parabolic form,

f
p(n)
RFG,2[ψ ′(R)] = c1

1 −
(

k
p(n)
F Rψ ′

c2αp(n)

)2
 , ψ ′ � 0 (6)

and an exponential form,

f
p(n)
RFG,2[ψ ′(R)] = c1 exp

[
−k

p(n)
F Rψ ′

c2αp(n)

]
, ψ ′ � 0. (7)

The normalizations of the functions are:∫ ∞

0
|Fp(n)(R)|2dR = 1, (8)∫ ∞

−∞
f

QE
p(n)(ψ

′)dψ ′ = 1, (9)∫ ∞

−∞
f QE(ψ ′)dψ ′ = 1. (10)

It can be seen that due to the normalization conditions (9)
and (10) the two parameters c1 and c2 are not independent. In
the case of the parabolic form of f

p(n)
RFG,2 [Eq. (6)] c2 = 3

2c1
− 1

and in the case of the exponential form [Eq. (7)] c2 = 1−(2/3)c1

0.632c1
.

In Eqs. (3) and (4) the proton and neutron weight functions
are obtained from the proton and neutron densities, respec-
tively:

|Fp(n)(R)|2 = − 4πR3

3Z(N )

dρp(n)(r)

dr

∣∣∣∣
r=R

, (11)

αp(n) =
[

9πZ(N )

4

]1/3

, (12)

with normalization∫ ∞

0
ρp(n)(r)dr = Z(N ). (13)

In the CDFM the Fermi momentum for the protons and
neutrons can be calculated using the expression

k
p(n)
F = αp(n)

∫ ∞

0
dR

1

R
|Fp(n)(R)|2. (14)

The QE electron scattering was considered within the
CDFM in Ref. [19]. Two types of experimental data were
considered. In the first one the transferred momentum in the
position of the maximum of the QE peak extracted from data
(ωQE

exp) is qQE
exp � 450 MeV/c ≈ 2kF and thus corresponds to

the domain where scaling is fulfilled [15,31]. It was found
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by fitting to the maximum of the QE peak extracted from
data the value of c1 to be 0.72–0.73, i.e., that it is similar
to that in the RFG model case (case of symmetry of the
RFG and of the CDFM QE scaling functions with c1 = 0.75).
This leads to an almost symmetric form of the CDFM scaling
function for cases in which qQE

exp � 450 MeV/c. In the second
type of experimental data qQE

exp is not in the scaling region
(qQE

exp � 450 MeV/c ≈ 2kF ). For them it was found by fitting
to the maximum of the QE peak the value of c1 to be 0.63.
For these cases the scaling function in the CDFM is definitely
asymmetric. It was shown in Ref. [19] that the results for
the almost-symmetric CDFM scaling function f QE(ψ ′) with
c1 = 0.72 agree with the data in the region of the QE peak
in cases when qQE

exp � 450 MeV/c ≈ 2kF and overestimates
them when qQE

exp � 450 MeV/c. The results obtained when an

asymmetric scaling function f QE(ψ ′) with f
p(n)
RFG,2[ψ ′(R)] from

Eq. (6) and the value c1 = 0.63 are used agree with the data in
cases when qQE

exp � 450 MeV/c ≈ 2kF and underestimate them
when qQE

exp � 450 MeV/c in the region close to the QE peak.
So, we pointed out that the two different values of c1 (0.72
and 0.63) found by the fitting to the position of qQE

exp [and
the corresponding to them almost symmetric and definitely
asymmetric forms of the CDFM scaling function f QE(ψ ′)]
are in relation to that whether qQE

exp is in the domain of the
scaling (qQE

exp � 2kF ) or it is not (qQE
exp � 2kF ). In connection

to this consideration, in Ref. [19] we showed that the cross
section results for CC neutrino (antineutrino) scattering on
12C using the asymmetric QE CDFM scaling function f QE(ψ ′)
(c1 = 0.63) for incident energies from 1 to 2 GeV are close to
those of SuSA [15,31] and are different from the RFG model
(where c1 = 0.75) results.

B. CDFM scaling function in the � region

The CDFM scaling analysis was extended in Ref. [19] to
the �-peak region. The CDFM scaling function was written
in the form:

f �(ψ ′
�) =

∫ ∞

0
dR|F�(R)|2f �

RFG[ψ ′
�(R)], (15)

where the RFG scaling function in the � domain is given by
Ref. [31]:

f �
RFG(ψ ′

�) = 3
4

(
1 − ψ ′

�
2)

θ
(
1 − ψ ′

�
2) (16)

and the weight function |F�(R)|2 is related to the density
distribution:

|F�(R)|2 = −4πR3

3A

dρ(r)

dr

∣∣∣∣
r=R

. (17)

In Eqs. (15) and (16) the shifted scaling variable ψ ′
� is

expressed by (see, e.g., Ref. [31]):

ψ ′
� ≡

[
1

ξF

(
κ

√
ρ ′

�
2 + 1

τ ′ − λ′ρ ′
� − 1

)]
1/2

{+1, λ′ � λ′0
�

−1, λ′ � λ′0
�

,

(18)

where

ξF ≡
√

1 + η2
F − 1, ηF ≡ kF

mN

(19)

λ′ = λ − Eshift

2mN

, τ ′ = κ2 − λ′2, (20)

λ = ω

2mN

, κ = q

2mN

, τ = κ2 − λ2, (21)

λ′0
� = λ0

� − Eshift

2mN

, λ0
� = 1

2

[√
µ2

� + 4κ2 − 1
]
, (22)

µ� = m�/mN, (23)

ρ� = 1 +
(
µ2

� − 1
)

4τ
, ρ ′

� = 1 +
(
µ2

� − 1
)

4τ ′ . (24)

q and ω being the transferred momentum and energy, and
m� and mN the masses of the � resonance and the nucleon,
respectively.

In Eq (15):

ψ ′
�

2(R) =
κ

√
ρ ′

�
2 + 1

τ ′ − λ′ρ ′
� − 1√

1 + k2
F (R)
m2

N

− 1

≡ t(R)ψ ′
�

2
, (25)

where

t(R) ≡

√
1 + k2

F

m2
N

− 1√
1 + k2

F (R)
m2

N

− 1

, kF (R) = α

R
, (26)

and

α =
(

9πA

8

)1/3

. (27)

In the CDFM kF can be calculated using the density
distribution:

kF = α

∫ ∞

0
dR

1

R
|F�(R)|2, (28)

where |F�(R)| is given by Eq. (17) and α by Eq. (27). In an
equivalent formulation of the CDFM, proposed in Ref. [17],
the scaling function and the Fermi momentum can be obtained
using the nucleon momentum distribution.

It was shown in Ref. [19] that though the functional forms
of f �(ψ ′

�) [Eq. (15)], the weight function |F�(R)|2 [Eq. (17)]
and of kF [Eq. (28)] are like in the QE region (see Eqs. (3),
(4), (11), and (14), respectively), it cannot be expected that the
parameters of the densities when a � resonance is excited (e.g.
the half-radius R� and the diffuseness b� when Fermi-type
distributions have been used) will be equal to the values
of R and b in the QE case. Indeed the scaling data of
the � peak extracted from the high-quality world data for
inclusive electron scattering (given in Ref. [31]) can be fitted
by using for 12C the effective values R� = 1.565 fm and b� =
0.420 fm and a coefficient in the right-hand side of Eq. (16)
for the RFG scaling function f �

RFG(ψ ′
�) equal to 0.54 instead

of 3/4. The value of the Fermi momentum kF = 1.20 fm−1

ensures the normalization to unity of the function f �
RFG(ψ ′

�).
As can be seen, the value of R� is smaller than that in the
description of the QE superscaling function for 12C [16,17]
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FIG. 1. The CDFM scaling function in the � region f �(ψ ′
�)

(double-dot dashed line) calculated with R� = 1.565 fm, b� =
0.420 fm, kF = 1.20 fm−1, and a coefficient in the right-hand side of
Eq. (16) equal to 0.54 (instead of 3/4). By dotted, dashed, and solid
lines are presented the QE-scaling functions f QE(ψ ′

QE) in the RFG
model and in the CDFM with c1 = 0.72 and c1 = 0.63, respectively.

FIG. 2. The same as in Fig. 1 for the CDFM scaling function
f �(ψ ′

�) in the � region (solid line). Averaged experimental values
of f �(ψ ′

�) are taken from Ref. [31].

(R = 2.470 fm), whereas the value of b� is the same as b in
the QE case.

C. Scaling functions and charge-changing neutrino-nucleus
reaction cross section

Here we present applications of the CDFM QE- and
�-scaling function to the calculations of CC neutrino-nucleus
reaction cross sections. We follow the formalism given in
Ref. [31]. The CC neutrino cross section in the target laboratory
frame is given in the form(

d2σ

d�dk′

)
χ

≡ σ0F2
χ , (29)

where χ = + for neutrino-induced reactions (for exam-
ple, νl + n → �− + p, where � = e, µ, τ ) and χ = − for
antineutrino-induced reactions (for example, νl + p → �+ +
n),

σ0 ≡ (G cos θc)2

2π2

(
k′ cos θ̃/2

)2
, (30)

where G = 1.16639 × 10−5 GeV−2 is the Fermi constant and
θc is the Cabibbo angle (cos θc = 0.9741),

tan2 θ̃/2 ≡ |Q2|
v0

, (31)

v0 ≡ (ε + ε′)2 − q2 = 4εε′ − |Q2|. (32)

The function F2
χ depends on the nuclear structure and can

be written as [31]:

F2
χ = [V̂CCRCC + 2V̂CLRCL + V̂LLRLL + V̂TRT]

+χ [2V̂T′RT′] (33)

that is, as a generalized Rosenbluth decomposition having
charge-charge (CC), charge-longitudinal (CL), longitudinal-
longitudinal (LL), and two types of transverse (T , T ′)
responses (R’s) with the corresponding leptonic kinematical
factors (V ’s) presented in Ref. [31]. The nuclear response
functions in both QE and � regions are expressed in terms of

FIG. 3. The cross section of charge-changing neutrino (νµ, µ−) reaction on 12C at θµ = 30◦ and εν = 1 GeV. (a) QE contributions: the
result of CDFM with c1 = 0.63 (solid line); CDFM with c1 = 0.72 (dashed line); RFG (dotted line); SuSA result (dot-dashed line); the result
for the � contribution from the CDFM (double dot-dashed line). (b) the sum of QE and � contributions in RFG model (dotted line) and in
the CDFM with c1 = 0.63 (solid line) and c1 = 0.72 (dashed line). Here and in the following figures the range of variation of ψ ′ and ψ ′

� is
approximately (−2.0, 5.5) and (−3.5, +2.5), respectively.
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FIG. 4. The same as described in the caption to Fig. 3 for θµ = 45◦ and εν = 1 GeV.

FIG. 5. The same as described in the caption to Fig. 3 for θµ = 60◦ and εν = 1 GeV.

FIG. 6. The same as described in the caption to Fig. 3 for θµ = 45◦ and εν = 1.5 GeV.

FIG. 7. The same as described in the caption to Fig. 3 for θµ = 45◦ and εν = 2 GeV.
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FIG. 8. The cross section of charge-changing antineutrino (νµ, µ+) reaction on 12C at θµ = 45◦ and εν = 1 GeV. The notations are the
same as described in the caption to Fig. 3.

the nuclear tensor Wµν in the corresponding region, using its
relationships with the RFG model scaling functions. The basic
relationships used to calculate the s.n. cross sections are given
in Ref. [31]. This concerns the leptonic and hadronic tensors
and the response and structure functions. In our calculations
of neutrino-nucleus cross sections (following Ref. [31]) we
use for the nucleon form factors the Höhler parametrization
8.2 [54] in the vector sector and the form factors given in
Ref. [31] in the axial-vector sector.

In the present work, instead of the RFG functions in the QE
and � regions, we use those obtained in the CDFM (described
in subsections II A and II B).

III. RESULTS OF CALCULATIONS AND DISCUSSION

In this section we present first the QE and � CDFM scaling
functions f QE(ψ ′

QE) and f �(ψ ′
�) by means of which the cross

sections of CC neutrino (antineutrino) scattering on 12C are
calculated.

In this work we have not considered Coulomb distortion
of the outgoing muon. Checks made within the effective
momentum approach [31,42,55] have shown that these effects
are within a few percentages for the high-energy muon
kinematics and the light target 12C considered in this work.
Therefore, our general conclusions about scaling are not
modified.

In Fig. 1 we compare the QE and � CDFM scaling func-
tions, whereas in Fig. 2 a comparison of the �-region CDFM
scaling function f �(ψ ′

�) with the averaged experimental data
for f �(ψ ′

�) taken from Ref. [33] (see also Fig. 5 of Ref. [19])
is given.

In Figs. 3–7 [panels 3(a)–7(a)] we give the results of
calculations for cross sections (the QE and � contributions) of
neutrino (νµ, µ−) scattering on 12C at different muon angles
and incident neutrino energies from 1 to 2 GeV. In the calcu-
lations we used the CDFM scaling function in the QE region
{Eqs. (1)–(6), (11)–(10), using the parabolic form [Eq. (6)]
of f

p(n)
RFG,2[ψ ′(R)]} and in the � region [Eqs. (15)–(28)].

The results of the CDFM in the QE case are compared
with those from the RFG model and SuSA [15,31]. We
present also [in panels 3(b)–7(b)] the sum of the QE

and � contributions to the cross sections. As an example in
Figs. 8(a) and 8(b) we give the results of the calculations for
cross sections of antineutrino (νµ, µ+) scattering on 12C for
the case of muon angle θµ = 45◦ and the incident antineutrino
energy εν = 1 GeV.

First, it can be seen from Figs. 3–8 [panels 3(a)–8(a)]
that the CDFM results (with c1 = 0.72) for the cross sections
in the QE region are close to those of the RFG model, whereas
the results of CDFM (with c1 = 0.63) are between those of
RFG and SuSA. This result could be expected due to the
peculiarities of the QE CDFM scaling function f (ψ ′), namely
that when c1 = 0.72 is used it is similar to that of the RFG
model (see Fig. 1), whereas when c1 = 0.63 the CDFM scaling
function is closer to that of the SuSA. These properties of
the QE CDFM scaling function were shown in comparison
with the experimental data from the electron scattering and
with the RFG model and SuSA results in Fig. 6 of Ref. [53].
This consideration should be kept in mind also in relation to
the observations from the CDFM analyses of the QE electron
scattering (mentioned above) about the necessity to use almost
symmetric scaling function (c1 = 0.72) or asymmetric one
(c1 = 0.63) at different kinematical conditions. Second, we
find that, in general, the strength of the QE peak decreases with
increasing outgoing angle (θµ) or with increasing incoming
energy (εν). Third, the height of the � peak also decreases
with increasing θµ, but its decrease is much slower so that,
at εν = 1 GeV, the relative height of the two peaks (�/QE)
goes from about 0.5 at θµ = 30◦ to �1 at θµ = 60◦. Fourth,
something similar happens when we fix the angle and increase
the energy. The � peak decreases more slowly than the QE
peak. For instance, at θµ = 45◦ the relative height of the two
peaks goes from �/QE �1 at εν = 1 GeV to �/QE ∼ 4/3 at
εν = 2 GeV. Fifth, the overlap between both peaks is larger
with increasing incoming energy and/or increasing scattering
angle. From panels 3(b)–8(b) it can be seen for the sum of
the QE and � contributions that at fixed θµ the maximum
decreases with the increase of the energy. For θµ = 45◦ both
CDFM curves (with c1 = 0.63 and c1 = 0.72) are quite similar
for the energies εν = 1 ÷ 2 GeV. At energy εν = 1 GeV and
small angles (e.g., θµ = 30◦) there are two maxima of the cross
section, whereas at larger angles (θµ = 45◦ and θµ = 60◦) the
two peaks merge into one (e.g., for εν = 1 GeV).
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We note also that, as can be seen from Figs. 4 and 8,
similarly to the results from Ref. [31], the antineutrino-
scattering cross section (for incident energy 1 GeV and
θµ = 45◦) is about 5 times smaller than the neutrino one.

Although this is true already at the level of the RFG, the
overlap region is more extended in the present model due to the
tails of the corresponding scaling functions outside the RFG
region |ψ ′| < 1.

IV. CONCLUSIONS

In our work [19] we extended the CDFM superscaling
analysis [16–18] from the QE region to the � region of the
inclusive electron scattering. In Ref. [19] the CDFM was
applied also to charge-changing neutrino and antineutrino
reactions at energies between 1 and 2 GeV from 12C nucleus in
the quasielastic region. Later, in our work [53] we considered
neutral current neutrino and antineutrino scattering with
energies of 1 GeV from 12C with a proton and neutron knockout
using CDFM scaling functions.

In the present work we use the �-scaling functions obtained
within the CDFM in Ref. [19] to calculate charge-changing
neutrino and antineutrino scattering in the � region extending
our previous QE analysis. So in this work we obtain both
contributions (in QE and � regions) of the charge-changing
neutrino scattering thus completing the CDFM analyses of
both inclusive electron and neutrino scattering from nuclei
on the same basis, i.e., using the same CDFM QE- and
�-region scaling functions in both cases, for incident electrons
or neutrino (antineutrino). We consider the scattering of
neutrino (antineutrino) with incident energies between 1 and
2 GeV from the 12C nucleus at different muon angles. Our
results are compared with those from the RFG model and from
SuSA [15,31]. Concerning the QE contribution to the cross
section we note that the use of asymmetric CDFM scaling
function (c1 = 0.63) gives results that are close to those from
SuSA, whereas the symmetric scaling function (c1 = 0.72)
leads to results similar with the RFG model ones.

The results for the cross sections show the following
features: (i) at fixed incident energies the values of the QE- and
�-peak maxima decrease with the increase of the muon angle
θµ and the value of the �-contribution maximum becomes
closer to that of the QE contribution, (ii) at fixed angle θµ

the QE and � contributions overlap more strongly with the
increase of the neutrino energy and the maximum of the �

peak increases, and (iii) at fixed angle θµ the maximum of
the sum of both QE and � contributions to the cross section
decrease with the increase of the energy. For θµ = 45◦ both
CDFM curves (with c1 = 0.63 and c1 = 0.72) are quite similar
for the interval of neutrino energies εν = 1 ÷ 2 GeV. (iv) At
energy εν = 1 GeV and smaller angles (e.g., θµ = 30◦) there
are two maxima of the total sum of the QE and � contributions,
whereas at larger angles (θµ = 45◦ and 60◦) the two peaks
merge into one (for the energy interval εν = 1 ÷ 2 GeV), and
(v) similarly to the results from Ref. [31], the antineutrino
cross section (on the example for incident energy 1 GeV and
muon angle of 45 degrees) is about 5 times smaller than the
neutrino one.

In summary, it is pointed out that the constructed QE- and
�-region scaling functions in the CDFM can be used in a
reliable way for the description of the electron and neutrino
(antineutrino) scattering from nuclei.
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