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STM-driven transition from rippled to buckled graphene in a spin-membrane model
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We consider a simple spin-membrane model for rippling in graphene. The model exhibits transitions from a
flat but rippled membrane to a buckled one. At high temperature the transition is second order, but it is first order
at low temperature for appropriate strength of the spin-spin coupling. Driving the system across the first-order
phase transition in nonequilibrium conditions that mimic interaction of the graphene membrane with a scanning
tunneling microscopy (STM) tip explains recent experiments. In particular, we observe a reversible behavior
for small values of the STM current and an irreversible transition from a flat rippled membrane to a rigid
buckled membrane when the current surpasses a critical value. This work makes it possible to test the mechanical
properties of graphene under different temperature and electrostatic conditions.
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I. INTRODUCTION

The rippling in suspended graphene [1] is one of its most
compelling mechanical properties, and it is usually linked to
the impossibility of finding a perfect crystal in two dimensions
[2]. Thus, out-of-plane displacements would make it possible
to stabilize a graphene sample. The understanding of this
rippling has triggered a great amount of theoretical work, both
starting from first principles [3–10] and using simple statistical
mechanics models [11–15].

The typical length of these graphene ripples, which do
not have a preferred direction [1,16], is in the nanometer
range. Moreover, they modify the electronic band structure
of graphene [17] and are expected to have a prominent role in
its electronic transport [18]. There have been many attempts
to characterize ripples as equilibrium phenomena, connecting
them with thermal fluctuations [3,4] and electron-phonon
coupling [5,6]. Also, some authors have tried to describe their
curvature starting from first principles [8,9].

Recently, there has been a growing interest in buckling of
suspended graphene both for theoretical reasons and for its
role in designing graphene-based devices. There are many
experimental studies of buckled graphene sheets [15,19–27],
including some very recent ones in which molecular-dynamics
(MD) simulations were also carried out [28,29]. Buckling can
be produced by the application of strong enough electrostatic
forces, as in Refs. [25,26], by the combination of heating and
an electrostatic force, as in Ref. [15], or even by only heating
the sample, as in the “mirror” buckling observed in [29] by
means of MD simulations.

Buckling upon heating a graphene sample has been system-
atically investigated in Ref. [15] by using scanning tunneling
microscopy (STM). Specifically, the tip of the microscope is
centered on a suspended sample that is initially flat on average,
although it is surely covered with ripples [1]. The application
of a voltage bias V between the STM tip and the membrane has
a twofold effect: (i) it induces a tunneling current that locally
heats the sample, and (ii) it produces an electrostatic interaction
between the tip and the sample. Experiments show that the
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suspended graphene sheet experiences a transition from a
“floppy” rippled-flat to a “rigid” buckled state. The membrane
height Z is plotted in Fig. 1 as a function of the voltage bias V

for several values of the tunneling intensity I . On the one hand,
for “small” values of I , the height Z = Z(V ) is a monotone
increasing and continuous function of V . The membrane is
rippled and its behavior is reversible: the same curve Z(V ) is
observed whether the voltage bias increases from 0 to a certain
value Vmax or decreases from Vmax to 0. On the other hand, once
the current is kept constant at a high enough value, increasing
the bias causes the sample to buckle irreversibly: once a
sufficiently large value Vmax is reached, the sample remains
buckled as the bias is decreased back from Vmax to zero.

Schoelz et al. proposed a phenomenological Ising model
to explain their experimental results [15]. In their model, each
local spin σij represents one ripple composed of ∼1000 carbon
atoms, and the value of the spin indicates the curvature of the
ripple. The energy of this Ising system has two contributions.
First, there is a nearest-neighbor spin-spin interaction, with a
coupling constant J that depends on the total magnetization
M = ∑

ij σij . The second contribution to the energy is an
interaction of the spins with an external field h = h0e

−r/ξ ,
where h0 is assimilated to the voltage bias in the experiment,
and r is the distance to the center of the sample, located just
“below” the STM tip. The spin-spin interaction is antifer-
romagnetic (J = −1) for 0 < M < M0 and ferromagnetic
(J = 2) for M > M0, where M0 is 60%–70% of the maximum
possible value of the magnetization. The correlation length ξ

may also change discontinuously and, counterintuitively, the
temperature decreases as the tunneling current increases [15].
The M versus h curve of this model is as follows [15]. At zero
field, M = 0 and thus J = −1. As h0 increases to hmax

0 = 3,
the spin-spin interaction reverses suddenly to ferromagnetic
(J = 2) at a field h0 � 2.5 for which M has reached M0.
This discontinuous increase in J at h0 = 2.5 causes a sudden
increase of the magnetization. Afterward, when the external
field is decreased back to 0, the coupling constant is left
unchanged at J = 2 and therefore the spins never go back to
the initial state. To further mimic the experimental results, a
smaller jump in the magnetization for h0 < 2.5 is induced by
an increase in the correlation length ξ ; see Fig. 3 in Ref. [15].
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FIG. 1. Height of the STM tip on the graphene sheet vs applied
voltage for different values of the tunneling current. Curves are
slightly offset from each other for clarity. From Ref. [15].

In this paper, we qualitatively explain Schoelz et al.’s
experimental findings [15] by using a spin-membrane model
that exhibits ripples on a flat membrane, buckling, and a
dynamical transition from floppy to rigid states. Thus we do not
need to (i) interpret spins as many-atom ripples, (ii) introduce
jumps in J and ξ with M , and (iii) decrease the temperature
with increasing tunneling current, as was done in Ref. [15].
Our model includes coupling between out-of-plane elastic
displacements of atoms and local pseudospins that pull atoms
off plane. The pseudospins are coupled by nearest-neighbor
interactions. In a previous publication, we analyzed a similar
model under constant, low-temperature conditions [14]. STM
experiments occur under varying temperature conditions be-
cause of Joule heating due to the tunneling current. Increasing
the temperature is akin to driving the system through a first-
order phase transition, which is the essence of our explanation
of Schoelz et al.’s experiments. Thus in the present work
we include (a) an external field that represents the STM
voltage, and, most importantly, (b) the (nonhomogeneous)
time-dependent temperature profile brought about by the
STM heating of the sample. For different values of control
parameters, first- and second-order phase transitions between
a rippled-flat membrane state and a buckled state appear.
In the parameter region where these phases coexist, it is
possible to drive the system in conditions that mimic those
in the experiment: inhomogeneous sample heating due to the
tunneling current and electrostatic tip-sample interaction [15].
We then show that the wrinkled to buckled transition appears
naturally in our model, without having to invoke ad hoc jumps
in the model parameters. Moreover, the spin-membrane model
reproduces all the key experimental observations in the STM
experiment while providing a reasonable physical picture of
the real system.

The plan of the paper is as follows. The spin-membrane
model in a hexagonal lattice is introduced in Sec. II. The
different equilibrium phases are numerically characterized
in Sec. III, in which we show that there is a first-order
phase transition between a flat but rippled membrane and a
buckled one. In Sec. IV, we drive the system through the
first-order phase transition in conditions similar to those in the
experiments. A discussion of our results is presented in Sec. V.

FIG. 2. Figure summarizing the atom indices and the parameters
of the unit cell of the hexagonal lattice. In doing this plot, we have
indexed files and rows assuming that |i − j | is even.

II. THE MODEL ON A HEXAGONAL LATTICE

Here, we briefly present our two-dimensional (2D) model
and its governing equations. Similar models include simpler
0D spin-oscillator [30,31], 1D spin-string [11], and 2D
spin-membrane [13] models. More complex models include
spin-membrane coupling as well as next-neighbor and nearest-
next-neighbor spin-spin couplings [14]. All these models
exhibit phase transitions between a flat membrane state and
a buckled state below some critical temperature. Additional
transitions occur in the model that has short-ranged spin-spin
interactions [14]. There are different phases characterized by
two order parameters: the magnetization and a domain length
parameter that gives information about the pseudospin spatial
correlations. For a hexagonal lattice, there are buckled phases
with nonvanishing global magnetization and also rippled
phases with zero magnetization [14]. The pseudospins are
partially correlated in space in these latter phases, which
comprise long-wavelength phases, analogous to those in
Refs. [1,16], stripy phases as in [32], and atomic wavelength
phases, similar to the ordered phases in Ref. [33]. Earlier
theoretical studies of buckling in membranes include the
existence of a critical temperature for buckling in polymerized
sheets [34] and buckling in graphene due to doping [6].

Carbon atoms are placed on a hexagonal lattice as shown
in Fig. 2. Let (σij ,uij ,pij ) be the values of the atom pseu-
dospin, height, and momentum, respectively, at site (i,j ). The
Hamiltonian is

H =
∑
ij

(
p2

ij

2m
− f uijσij

)

+
∑

|i−j |=even

{
k

2
[(uij − ui+1,j )2 + (uij − ui,j−1)2

+ (uij − ui,j+1)2] + Jσij (σi+1,j + σi,j−1 + σi,j+1)

}
. (1)
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This is a particular case of the Hamiltonian introduced
in Ref. [14] that had an additional next-nearest-neighbor
interaction among spins.

The dynamics of the system consists of (i) Hamilton’s
equations of motion for (uij ,pij ), and (ii) Glauber dynamics
[35] at temperature T for σij :

üij − K2
N (ui+1,j + ui,j−1 + ui,j+1 − 3uij ) = σij , (2)

ωij (σ |u) = δ

2
(1 − γijσij ), (3)

γij = tanh

[
uij

θ
− κ

θ
(σi+1,j + σi,j+1 + σi,j−1)

]
. (4)

Here ωij is the rate at which the pseudospin at site (i,j ) flips,
and δ is a parameter setting the characteristic time scale for
the pseudospin flips. In the long-time limit, the system reaches
thermodynamic equilibrium, and its probability distribution
has the canonical form P ∝ exp(−H/T ). It is convenient to
introduce the following parameters:

T0 = f 2K2
N

k
, KN = 3n − 2√

6π
, (5)

where n is the total number of rows in the lattice. The
temperature T0 is the transition temperature from a (high-
temperature) flat to a buckled string configuration for J = 0
[14]. Then, we define dimensionless displacements and time,

u∗
ij = kuij

f K2
N

, t∗ = t

KN

√
k

m
, (6)

and also the dimensionless spin-spin coupling constant and
temperature,

κ = J

T0
, θ = T

T0
= k T

f 2K2
N

. (7)

Thus we measure energy in units of the transition
temperature T0.

In the equilibrium state, the average dimensionless dis-
placements obey the discrete Poisson equation

−K2
N (ui+1,j + ui,j−1 + ui,j+1 − 3uij ) = μij , (8)

in which μij stands for the average magnetization at site
(i,j ). The asterisks have been omitted so as not to clutter

the formulas. In the continuum limit, Eq. (8) becomes

1

2π2
∇2u(x,y) = μ(x,y). (9)

Here 0 � x,y � 1, and the sample becomes the unit square
in the continuum limit with our choice of dimensionless
variables [14]. Therefore, the average magnetization gives the
curvature of the membrane. Thus we can deduce the state of
the membrane by looking at either the atoms displacements
u(x,y) or the pseudospin local value μ(x,y).

III. EQUILIBRIUM PHASE DIAGRAMS

Except for J = 0, which can be solved exactly, the
equilibrium phase diagrams have to be calculated numerically.
At J = 0, the flat solution bifurcates at T = T0 to a buckled
state, which is thermodynamically stable for T < T0 [14].
This can be appreciated in Fig. 3, which has been drawn by
down-sweeping the dimensionless temperature from a given
θ > 1 at each fixed value of κ . At the largest value of θ ,
the initial configuration is random and the simulation reaches
equilibrium after a certain time. Then, the magnetization M

and the domain length parameter DL of Ref. [33],

M =
∣∣∣∣∣∣

1

N

∑
ij

σij

∣∣∣∣∣∣, (10)

DL = 1

3N

∑
|i−j |=even

[3 + σij (σi+1,j + σi,j−1 + σi,j+1)], (11)

are registered. For the next simulation, θ is slightly lowered
and the equilibrium configuration reached at the previous
temperature is used as the initial condition. This procedure
is continued until the phase diagram is completed. The
parameter DL gives information about the difference between
the number of ferromagnetic (contributing + 1 to DL) and
antiferromagnetic (contributing −1 to DL) links, and it makes
it possible to discriminate between different phases with
zero global magnetization. Specifically, we have DL = 1/2
for random pseudospins and DL = 0 for antiferromagnetic
ordering. For ferromagnetic ordering, it is M = DL = 1. Note
that the magnetization (10) does not discriminate between the
two possible signs of the curvature in Eq. (9).

FIG. 3. (a) Magnetization and (b) domain length parameter as functions of θ and κ obtained by temperature downsweeping, as explained
in the text.

205404-3
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FIG. 4. (a) Magnetization and (b) domain length parameter as functions of θ and κ . The initial configuration for all the simulations consists
of a flat membrane and randomly oriented pseudospins. In (a), we show a heating cycle corresponding to the interaction with a STM tip;
see Sec. IV. The continuous red arrow represents the part of the cycle where the temperature is increased and the wrinkled to buckled phase
transition occurs, whereas the dashed blue arrow marks the cooling part of the cycle where no transition is found since the system remains
buckled.

The method we have just described produces the correct
phase diagram provided the phase transitions are second order,
which is the case for high critical temperatures (θ > 0.5 as seen
in Fig. 3). For first-order phase transitions, down-sweeping
yields only one part of the hysteresis loops associated with
first-order phase transitions, specifically that corresponding to
the stable phase at the higher temperatures. To visualize the
thermodynamically stable phase at first-order phase transitions
that occur for low critical temperatures, θ < 0.5, we have
redrawn the diagram, always starting simulations from a
random configuration and waiting for the system to equilibrate.
This produces Fig. 4. On the one hand, we observe that
there is a region of zero magnetization at low temperatures
(approximately 0.07 < κ < 0.2) that was absent in Fig. 3.
In this region the membrane is rippled, as shown by its
partial antiferromagnetic ordering, 0 � DL � 0.1. On the
other hand, the membrane ends up in low-temperatures states
that are similar to those in Fig. 3 both for κ � 0.07 (buckled
membrane) and κ � 0.2 (rippled flat membrane).1

IV. DRIVING GRAPHENE ACROSS THE RIPPLED
TO BUCKLED PHASE TRANSITION

In Schoelz et al.’s experiments [15], the floppy rippled
membrane undergoes a transition to a rigid buckled state when
heated by the STM current. In our model, this may correspond
to driving the system across the low-temperature first-order
phase transition seen in Fig. 4 for small values of κ and θ .
To illustrate this, we set κ = 0.1 and θ = 0.01 for all lattice
points in our numerical simulations, and we start with an
initially flat membrane and randomly oriented pseudospins.
We consider n = 35 rows in a 2D hexagonal lattice, with
N = 2100 atoms. The system reaches a stationary state, which
is typically rippled: M = 0 and DL � 0.1 < 1/2.

1In Ref. [14], we study a related model that has an extra nearest-
neighbor spin-spin coupling λ. We calculate numerically phase
diagrams as a function of κ and λ for a constant low-temperature
value θ = 0.01.

First, for the sake of simplicity and to understand the
basic physical mechanism under the first-order transition, we
analyze homogeneous heating of the membrane. Second, in
order to have a situation closer to the experiments and discuss
some more specific details thereof, we consider the case of
inhomogeneous heating.

A. Homogeneous heating

Assume that the heat bath temperature felt by the pseu-
dospins is the same at all lattice points and varied at a constant
rate. The pseudospins flip according to the Glauber dynamics
given in (3) with the instantaneous and externally controlled
value of the temperature θ (t).

Upon heating, the membrane remains rippled with zero
magnetization for θ � 0.15. At about θ2 = 0.15, the magne-
tization and the height of the central atom suddenly increase,
as shown in Fig. 5. This effect strongly resembles the STM
experiments in Ref. [15], where the increase in dissipated
power (modeled here with an increase of the temperature of the
heat bath to which the system is coupled) promotes a discrete
increase in height, that is, a buckling transition.

The temperature at which the transition occurs depends
on the heating rate. For the slowest rates, the jump is
almost vertical and takes place at θ � 0.15. For faster rates,
the transition is softer and happens for a slightly higher
temperature, up to θ � 0.20 for the values considered in
Fig. 5. The physical image is the following: a very slow,
almost quasistatic, process leads to a sharp transition at the
temperature at which the flat membrane becomes unstable.
If heating is faster, the system remains in the unstable flat
configuration for a certain time and is hindered from finding
the “path” to the true thermodynamic equilibrium.

Finally, in Fig. 6 we present simulations in which the
temperature is first increased until the membrane buckles, and
the system is subsequently cooled down to the initial low
temperature. Interestingly, we observe that the system remains
buckled when the temperature is lowered. This hysteretic
behavior is numerical proof of the metastability of the initial
wrinkled configuration for low temperatures and thus is
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FIG. 5. Magnetization and height of the central atom as a function of temperature upon heating of the system. Different lines correspond
to different heating rates. Both the magnetization and the central atom height jump around θ2 = 0.15, revealing a first-order phase transition
in the system. The slower the system is heated, the lower the temperature of the jump. In these simulations, the initial and final temperatures
are θ0 = 0.01 and θf = 0.3, respectively. The system is heated with a constant rate, θ (t) = θ0 + rt , and the different lines correspond to the
following rates (from left to right): 3×10−5, 3×10−4, 4×10−4, 6×10−4, 10−3, 3×10−3, and 6×10−3.

consistent with Fig. 3. The final state resembles the “rigid”
states that are reached in STM experiments for large enough
currents [15].

B. Inhomogeneous heating

In STM experiments, the graphene sample is locally heated.
We model this by an inhomogeneous temperature profile
of a circular membrane of radius R = 1/2 (clamped at
the boundary) inscribed in the unit square. Throughout this
section, r stands for any point in the circle, 0 � r � R, with
r = |r|. Energy is injected at the membrane center, and the
temperature is initially homogeneous throughout the sample,
θ (r,t = 0) = θ0. At t = 0, the heating process starts, and the
border of the sample is always kept at room temperature: θ0,
θ (r,t)|r=1/2 = θ0.

FIG. 6. Height of the central atom as a function of the temperature
for two heating/cooling cycles, the leftmost and rightmost lines
correspond with the slowest and fastest rates of temperature variation
in Fig. 5, respectively. The solid arrows and the dashed ones mark
the heating and cooling part of the cycle respectively, analogously
to the arrows present in Fig. 4. When cooled, the system remains
buckled for θ < 0.15, which shows that the flat rippled membrane
configuration in the low temperature region is metastable.

The space and time temperature profile obeys the heat
equation with a source term,

∂tθ − α∇2θ = q(r), q(r) = Q0 e−r2/a2
. (12)

Note that we are using dimensionless variables, so that the
thermal diffusivity α and the energy source from the STM tip
q are measured in the units introduced in the previous sections
(the dimensions of α and q are length2/time and energy/time,
respectively). The source term has radial symmetry and
exhibits a Gaussian decay from its maximum value Q0 over
a characteristic length a (in dimensional units, a is a few
angstroms [36]). Note that, for fixed values of a and α, the
total injected power is proportional to Q0. Therefore, we can
consider that Q0 ∝ IV in the STM experiments, where I is the
tunneling current and V is the voltage bias between the tip and
the sample. Interestingly, the same lateral decay of the injected
power has been used in other experimental situations; see, for
instance, Ref. [37] for the study of the thermal conductivity of
a graphene membrane excited by a laser.

We seek stationary solutions of the heat equation with radial
symmetry, θ (r,t) = θs(r), which obey

∇2θs + Q0

α
e−r2/a2 = 0, (13a)

θs(r = R) = θ0, lim
r→0

|∂rθs(r)| < ∞. (13b)

Equation (13) is solved along the same lines as in Ref. [37],
with the result

θs(r) = θ0 + θ

2

∫ R/a

r/a

dx
1 − e−x2

x
, θ = Q0a

2

α
. (14)

We plot this stationary temperature profile for several values
of θ in Fig. 7. We do not consider the transitory decay of
the temperature profile to this steady solution, since graphene
is a very good thermal conductor [37]. Thus, we expect the
time scale for the decay to this steady profile to be much
shorter than those associated with the increase or the decrease
of the voltage bias in the STM experiments. In any case, we
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FIG. 7. From bottom to top, steady temperature profiles for
θ = 0.1, 0.2, 0.3, and 0.4.

would like to stress that taking into account the transient to the
stationary state does not alter our conclusions.

The STM tip also has an electrostatic interaction with the
sample, which is included in our model by adding an external-
field term H to the Hamiltonian (1),

H = −
∑
ij

hij σij . (15)

Note that the external field breaks the up-down symmetry
of the pseudospins, which gives rise to a preferred sign of
the curvature in Eq. (9). In Ref. [15], the field hij decays
exponentially from the center of the tip over a characteristic
length of a few hundreds of the graphene lattice constant,
which is consistent with the long-range character of the
electrostatic interaction. In our work, we consider samples
with 1650 atoms inside the circle of unit diameter. For such
small samples, the field experiences almost no decay, and
therefore we simply take hij = h, independent of (i,j ). Since
the strength of the electrostatic interaction increases with the
applied bias V , we identify h with V . Thus, the current is
I = θ/V and the width of the source term, a, is three lattice
constants in our simulations. For the sake of clarity, we sum
up the key parameters of the model that control the behavior
showed in the simulations in Table I.

To mimic the experimental procedure in Ref. [15], we fix
I in each simulation, increase V at a certain constant rate, and
track the height of the central atom; see Fig. 8. In this way,
we are driving the system in the parameter region where there
is a first-order phase transition as described in the previous
section. Except for not having averaged the oscillations in
our numerical results, the behavior displayed in Fig. 8 is

FIG. 8. Central atom height vs voltage bias V . The simulations
have been conducted in a circular membrane having N = 1650 sites.
From top to bottom, the lines correspond to tunneling currents I =
θ/V = 1, 2, and 6. The voltage V increases at a constant rate from
0 to Vmax in steps Vmax/250, during a total time ttot = 250. For clarity,
we have shifted downward the two lowest curves. The curve for I = 6
exhibits a small bump around V � 0.025, which coincides with the
maximum of θs reaching 0.15. Once we have reached Vmax for I = 6,
we decrease the voltage back to 0, and then the height follows the
almost flat upper curve. This shows that the jump at V � 0.035 is
irreversible.

completely analogous to that observed in Ref. [15]; see Fig. 1.
For small I , the increase in V produces a reversible pulling
that increases the global magnetization and the height of the
central atom but does not produce overall buckling. Here,
reversible means that if the voltage is decreased back to
zero from its maximum value, the same curves are swept.
This notwithstanding, once I reaches a certain critical value,
nonreversible buckling appears (upper curve): the membrane
remains buckled when the voltage is decreased back to zero.

In the STM experiments, the buckling (when it occurs)
comprises two steps: apart from the large jump in height at a
certain value of the voltage Vc, there appears a smaller “bump”
in height at a smaller voltage V1 < Vc. Interestingly, even this
fine detail of the experimental results is reproduced by our
model without having to assume a jump in the correlation
length ξ as in Ref. [15]. As energy is injected, first the
maximum of the temperature profile (at the center r = 0)
exceeds the critical value θ2 � 0.15 at V � V1 � 0.025, and
this brings about the small height bump observed in Fig. 8
between V = 0.025 and 0.035. Second, as the voltage bias is
further increased to Vc > V1, there is a large enough region of
the system in which the temperature is above θ2, which makes
the system buckle.

TABLE I. The main parameters controlling the behavior of the system in the inhomogeneous heating process, for an applied bias V and a
tunneling current I spread over a region of characteristic length a, as expressed by Eqs. (12)–(15).

Parameter Role Controlling

κ Pseudospins’ antiferro interaction Lower critical temperature θ2, the system buckles for θ > θ2

θ ∝ IV a2 Strength of the Joule effect Temperature at the center of the sample: should be larger
than θ2 to induce buckling

h Strength of the tip-sample electrostatic interaction Sign of the curvature (breaks up-down symmetry)
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In the considered range of V , 0 � V � 0.06, heating
(I 
= 0) is absolutely necessary to produce membrane buckling
because the external field is not strong enough by itself.
However, if we further raise V , it would reach a value at which
the system buckles even without heating (I = 0). Therefore,
our model may also be useful to investigate the buckling
phenomena observed when strong electrostatic forces are
applied, as in Refs. [25,26].

It is worth stressing some additional aspects of our
numerical results in Fig. 8. First, we increase the voltage at
a specific rate, and therefore different curves are obtained
for different rates. Of course, a rate-independent equilibrium
curve is obtained if the voltage is increased slowly enough,
that is, quasistatically. Second, our numerical results show
some time oscillations. Therefore, the present model allows
us to resolve the time evolution of the membrane over a finer
scale than that of the currently available experimental results,
which are time-averaged.

V. DISCUSSION

Our spin-membrane model exhibits a first-order phase
transition from a rippled-flat to a buckled membrane for
appropriately small values of the nondimensional temperature
and spin-spin coupling. The main parameter to be fixed is
κ , that is, the strength of the antiferromagnetic pseudospin
interaction. Once κ has been chosen in the range where the
low-temperature first-order phase transition is present, it also
determines the temperature θ2 above which the membrane
buckles. The additional quantities controlling the system
behavior are I and V , which govern the strength of the Joule
effect that heats the membrane, so that the temperature θ > θ2,
and make it buckle. Conversely, the characteristic length a

(which estimates the radius of interaction between the STM
tip and the sample) does not play a key role: changing its value
only shifts the range of V and I over which driving through
the transition is observed.

Membrane buckling arises from the long-range interaction
among spins induced by the spin-membrane coupling, and
the metastable state of a flat membrane with ripples stems
from the short-range antiferromagnetic spin-spin coupling. To
model the results of Schoelz et al.’s experiments, we need
to drive the system through the first-order phase transition
by an appropriate control of temperature and the electrostatic
interaction between the STM tip and the graphene membrane.

Control of a homogeneous bath temperature induces irre-
versible buckling, but the connection between the parameters
of this process and those in the STM experiment is not
transparent. Moreover, the STM should heat the sample
inhomogeneously. Therefore, we have assumed that the bath
temperature adopts the inhomogeneous profile that solves the
heat equation with a Gaussian source term. Furthermore, we
have introduced an external field term in the spin energy that

mimics STM electrostatic force. The latter breaks the spin
up-down symmetry, which in turn (via the spin-membrane
coupling) breaks the up-down symmetry of the vertical
membrane displacements.

The combination of the above two mechanisms produces
numerical results that contain every feature of STM buckling
experiments, including the existence of a critical value of
the current. Our numerical results strongly suggest that
both the electrostatic force and heat dissipation are playing
a role in the buckling phenomenon observed in Ref. [15]. In
addition, our spin-membrane model improves upon the model
in Ref. [15] because it explicitly shows the membrane ripples,
and it does not need to change the sign of the spin-spin
coupling to induce buckling.

There are some hurdles that need to be overcome before
finding a microscopic model closer to first principles that
explains STM-induced buckling of graphene membranes.
First, as experiments become more accurate, they may allow
for a better definition of all parameters in mesoscopic models,
improving the current physical understanding of graphene rip-
pling. Second, starting from an electron-phonon Hamiltonian
for a suspended graphene sheet, it is possible to derive station-
ary saddle-point equations for vertical displacements coupled
to some auxiliary fields [8]. From these equations, critical
temperatures below which there is buckling can be found
[10]. These results are qualitatively similar to those found with
our spin-membrane model. It seems worthwhile to investigate
modeling the interaction between the graphene membrane and
the STM tip at the level of saddle-point equations. Then some
inhomogeneous heating program similar to that in the present
paper could be used to explain Schoelz et al.’s experiments
from “first principles.”

Finally, note that the buckling transition has also been
observed in experiments in which only an electrostatic force
is applied to the sample, with no energy injection. Our model
can also explain this effect, since the external field term favors
that the spins have a well-defined sign, that is, that the sign
of the membrane curvature is well-defined. In this respect, a
detailed experimental study of buckling in graphene, in which
both the temperature (via an energy injection mechanism) and
the electrostatic force can be independently changed, would
greatly improve our insight into the internal interactions that
govern buckling.
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