-

-
brought to you by . CORE

View metadata, citation and similar papers at core.ac.uk

provided by idUS. Depésito de Investigacion Universidad de Sevilla

PHYSICAL REVIEW C 80, 064606 (2009)

Theory of (d, p) and (p,d) reactions including breakup: Comparison of methods

A. M. Moro,! E. M. Nunes,?> and R. C. Johnson?*
lDepartamemto de FAMN, Universidad de Sevilla, Apartado 1065, E-41080 Sevilla, Spain
2National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
3Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
4Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
(Received 15 September 2009; published 7 December 2009)

There is an increasing interest in studying transfer reactions to probe the nuclear structure of exotic nuclei.
For these loosely bound systems, the role of the continuum needs to be well understood. In this study, we
concentrate on (p,d) and (d,p) reactions and compare two formulations for the transfer process that take
into account breakup states. Applications to !'Be(p,d)'°Be at Ey, = 38.4 MeV /nucleon and '°Be(d, p)!'Be at

E, = 12.5 MeV /nucleon are presented, as is a detailed discussion of convergence rates.
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I. INTRODUCTION

Progress in the production of rare isotope beams has opened
new avenues for detailed studies of the structure of exotic
nuclei. These studies often involve transfer reactions in inverse
kinematics as they provide a flexible tool to determine the
angular momentum and spectroscopic strength of a number
of states [1]. Reactions on light targets, such as (d, p), are of
particular experimental interest because the Coulomb barrier is
minimized. Recent measurements have mostly focused on light
nuclei [2-6], but interest in the heavier isotopes is increasing
[7.8].

Given the rising experimental programs involving transfer
reactions, focused theoretical efforts have revisited the topic,
addressing issues such as the dependence on the optical
potentials, coupling effects, and single-particle parameters
[9-14].

As one moves away from stability, the role of the con-
tinuum in low-energy nuclear reactions needs to be better
understood. Deuterons are themselves loosely bound, and
deuteron breakup was early identified as an important in-
gredient in the description of transfer reactions [15-19]. In
Ref. [15], an adiabatic theory for elastic deuteron scattering
and transfer reactions was derived that is nonperturbative and
includes the effects of coupling to deuteron breakup channels.
The modifications introduced for (d, p) and (p,d) calculations
were particularly simple and amounted to a prescription for
calculating the distorting potential in the deuteron channel
in a distorted-wave Born approximation (DWBA)-like matrix
element in terms of nucleon optical potentials. This differed
significantly from the deuteron optical potential and generated
breakup contributions, which went far beyond the Born
approximation.

Johnson and Soper’s calculation of deuteron elastic scat-
tering was a continuum discretized coupled channel (CDCC)
calculation in which the continuum of breakup channels was
represented by a single channel. The generalized CDCC
method is a powerful tool for including breakup channels
in the reaction mechanism [20,21]. It is also nonperturbative
and does not make use of the adiabatic approximation;
however, it is computationally expensive. There have been
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a few applications of CDCC to transfer reactions (e.g.,
Refs. [5,22-26]), and results demonstrate the variety of
phenomena that can be addressed within this same framework.
While new developments of the CDCC method are taking place
[27-29], here we would like to focus on a better understanding
of the transfer matrix element when breakup is included.

Starting from a given three-body Hamiltonian, there are
many ways of writing the amplitude for A(p,d)B or B(d, p)A,
including projectile excitation and breakup. Of these, a
preference exists for those methods that can be generalized
to the actual many-body case of interest and that can be used
to extract nuclear structure information with a minimal uncer-
tainty associated with the treatment of three-body dynamics.
However, numerical difficulties should also be considered. In
the present work, we compare two specific methods.

In Ref. [30], a method is developed for A(p,d)B and
B(d,p)A, where A = B + n is a weakly bound system, using
the adiabatic approximation for both the excitation of the
exotic nucleus A and the breakup of the deuteron. This leads
to a calculation of the transfer matrix element that is similar
to a DWBA calculation, but where the distorted waves are
not related to elastic scattering of the composite particle.
One important feature of the method introduced in Ref. [30]
is that the transfer operator contains only the short-range
V,,p interaction. This focuses attention on the value of the
three-body wave function at small n-p separations, where it
may be simpler to calculate the full three-body A +n + p
wave function. Natural extensions of the model [30] are
to include a CDCC wave function for the halolike system,
avoiding the adiabatic approximation, and a CDCC wave
function for the deuteron, no longer needing the Johnson and
Soper simplification [15] or its finite-range extension [19].

Another way of calculating the transfer amplitude is by con-
sidering the folding potential of the projectile’s constituents
and the target as the main distorting field [31]. This is the
natural choice in a CDCC formulation because it corresponds
to the diagonal coupling potential appearing in the those
coupled equations [20]. In this case, the operator in the transfer
matrix element can no longer be reduced to V,,,.

If the CDCC wave function is a good representation of
the full three-body wave function in the region of space

©2009 The American Physical Society
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contributing to the transfer matrix element, then the fully
converged results should provide the correct transition am-
plitude. CDCC calculations involving rearrangement channels
can become very cumbersome, and in some cases, a fully
converged solution may not be feasible (e.g., Ref. [32]).

The key questions addressed in this work are as follows:

(i) For a given three-body Hamiltonian, are there signif-
icant differences between the predictions of transfer
cross sections using different forms of the matrix
element when CDCC expansions of the three-body
wave functions are used?

(i) What are the limitations of the CDCC expansion as a
way of representing the full solution of the three-body
Schrodinger equation?

(iii) Are there any important computational advantages in
using specific forms of the transfer amplitude?

(iv) All our calculations are based on a three-body model
and hence necessarily involve a simplification of the
many-body problem that is the real interest of nuclear
structure theory. Does the necessity of linking the three-
body model to a many-body theory pick out one of the
alternative formulations as being of primary interest?

Our approach is to seek the answers to these questions
in the context of selected reactions involving a halo nu-
cleus for which there are data, namely, ''Be(p,d)'°Be at
Eip = 38.4 MeV /nucleon [2] and 10Be(d,p)“Be at Eyp =
12.5 MeV /nucleon [33].

The article is organized in the following way: The theoret-
ical background is given in Sec. II, results are presented and
discussed in Sec. III, and conclusions are drawn in Sec. IV.

II. THREE-BODY MODEL OF (p,d) AND
(d, p) REACTIONS

We consider the reaction A(p,d)B. Our starting point is a
three-body model Hamiltonian,

H=K+Vnp+VnB+UpB» (])

where K is the total kinetic energy operator, V,,, is the proton-
neutron interaction, V,,g is the neutron-B interaction, and U ,
is the proton-B interaction. We use the notation V for real
potentials and U for complex potentials. We assume that V, p is
real because we are interested in transfers from bound neutron
states in a real well, and we want all our calculations to derive
from a fixed Hamiltonian.

Because of the limitations of the CDCC approximation
for the three-body wave function, transfer amplitudes cannot
be evaluated by examining the CDCC wave function in the
appropriate asymptotic region. There are, however, various
ways of expressing the transition amplitude for the reaction
A(p,d)B as a matrix element involving the exact solution
of the three-body Schrédinger equation in finite regions of
configuration space only. An exact prior form amplitude for
this process is given by

Tprior = <\p((1_3)|vnp + UpB - U|q)(;2), (2)
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FIG. 1. Coordinates used for the entrance and exit channels of
the transfer reaction A(p,d)B.

where ‘-IJG(,}) is the exact (three-body) wave function with
incoming boundary conditions corresponding to the final
channel. The initial wave function CI>(;‘) is defined in terms
of an auxiliary potential U, which may be complex and is the
solution of

[E +ie — Ki — Kr = Vop — U1D}0(0, R)
= +1ega(r) exp(K, - R), 3)

where r and R are the n-B and p-A Jacobi coordinates defined
in Fig. 1, K, is the incident proton momentum, and ¢y is
the initial n-B bound state. It is important to emphasize that
whatever the choice of the auxiliary potential U, the three-body
Hamiltonian remains the same.

In Sec. II A, we first examine the formalism for two selected
choices of U in the prior form matrix element Eq. (2). In
Sec. I B, we extend our study to post form matrix elements.

A. Dependence of the prior form 7" matrix on U

1. The choice U = U,

If \IJ;;) and <I>(;X are exact solutions of their respective
three-body Schrodinger equations, the expression in Eq. (2)
is independent of U for a wide class of possible choices
of U. The form of the 7 matrix for specific choices of U
may suggest certain approximations to the three-body wave
functions, instead of the full solution.

Goldberger and Watson [34] introduce the choice U =
U,p(Rpp) in Eq. (2), which was also the choice of Timofeyuk
and Johnson [30]. With this choice, Eq. (2) becomes

Tovior(Vap) = (U5 | Vip | L), “)

A derivation of this matrix element from the three-body Alt,
Grassberger, and Sandhas (AGS) equations [35] can be found
in Ref. [36].

From Eq. (3), we can see that the initial wave function 535;2
in Eq. (4) is the solution of the three-body Hamiltonian with
V,.p removed:

[E +ie — Ke — Kr — Vap — Uppl®(r, R)
= +1e¢a(r)expK, - R). %)

Note that in the limit m,,/Mp — 0, when recoil effects are
negligible, @;JX becomes a product of the initial bound-state
neutron wave function in A and a proton scattering wave on
a target A but is distorted by the potential U, . Recoil effects
that excite A were discussed by Timofeyuk and Johnson [30]
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and are referred to as recoil excitation and breakup (REB)
effects.

In Ref. [30], the following advantages of using Eq. (4)
to calculate Tpior were emphasized: (i) Only nucleon-B
potentials are needed as input, unlike for the standard DWBA
amplitude, for which an optical potential that fits deuteron
elastic scattering and an optical potential for p 4+ A is required,
and (ii) V,p, the interaction that appears in the matrix element
is short ranged, which means that ‘I’fz;;) is only needed within
the range of the n-p interaction. The obvious disadvantage
is that there is no simple separation of coordinates in 595;2,
and thus the solution of Eq. (5) is not trivial, except for heavy
targets.

In Ref. [30], further simplifications were made in the
calculation of Eq. (4). As mentioned in Sec. I, the wave
function \IJ((,;,) , which contains both elastic deuteron scattering
and breakup, is treated using the adiabatic method of Johnson
and Soper [15,16] with finite-range corrections included, as
discussed by Wales and Johnson [19]. The function CTD([,J;),
which contains components describing elastic, inelastic, and
breakup of A by the incident proton, was also calculated
within an adiabatic approximation [17,37]. Under these two
approximations, the transfer amplitude has a structure similar
to a DWBA matrix element, tremendously simplifying the
calculations, but the distorted waves are not the usual elastic
scattering wave functions, as in DWBA. It is important to
realize that despite this formal similarity to DWBA, no
Born approximation is involved in the derivation of those
expressions. In the present work, we use Eq. (4) without
making the preceding approximations. Instead, we replace the
three-body wave functions, \Ilfl;; and i;t‘), by their CDCC
approximations, which we discuss in Sec. II C.

2. The choice U = Uy

Another possible choice for the auxiliary potential is the
folded potential, defined by

U (R) = (¢up|Vip + Uppldus). (6)

This is the diagonal coupling in the CDCC equations [20] for
Cb(;;‘) and thus is a natural choice when the CDCC method is
used. As this potential depends only on R, the wave function
CIDSX has the factorized form

', R) = 1) (R)pa(r) (7

and describes elastic scattering of an incident proton on the
target A, distorted by a folding potential U™,

The exact 7" matrix in this case is

Totot = (V5 \Vap + Ups = Uiyl bun). - ®)

Itis important to notice that the use of U fold {4 calculate X;tx) (R)
does not imply an approximation: In fact, Eq. (8) is exact if
\Il;;) is the exact three-body wave function. In our applications,
we take the CDCC approximation to this wave function, as in
Sec. ITAL.

Here, again, no additional potentials are introduced, and
thus the problem is fully determined by the initial three-
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body Hamiltonian. The main advantage of this method over
Tprior(Vip) s the simplification in CIJ(;‘). The disadvantage re-
sides in the complicated operator U ,p — U ;‘ﬂd , which enhances
the nonlocality of this matrix element.

B. Dependence of the post form 7 matrix on U
The three-body Schrodinger equation can be used to
transform the transition matrix element Eq. (2) into its post
form, which also involves an auxiliary potential U. This will
be referred to as Tpos and is given by

Toost = (945 |Vap + Ups — UL, )

where \IJ;;) is the exact solution of the three-body Schrodinger
equation corresponding to a plane wave proton incident on A
and outgoing waves in all other channels, and where CI>£[B)
satisfies

[E —ie — Ky — Kp — Vyp — U*105)(r, R')
= —1e¢y(r)exp(iKy - R). (10)

As in Sec. IT A, we test the dependence in the calculation
of the transition amplitude in Eq. (9) on the auxiliary potential
by comparing results for two choices of U.

1. The choice U = U

This case is the analog of the Timofeyuk-Johnson
Torior(Vip ). Here the binding potential in the initial state appears
as the transition operator in the matrix element. The 7' matrix
is

Toost(Va) = (B3 | Vs | W1). (11)

The potential V, 5 does not appear in the equation satisfied by
final-state wave function

[E — i€ — Ky — K — Vi — Up] 95, (', R)
= —1egy(r)expK, - R). (12)

The state @;;) describes a nonphysical situation in which the
neutron and proton in the outgoing deuteron interact with each
other, but only the proton interacts with B. Nevertheless, if
\IJI(,Z) is represented by an accurate solution of the three-body
Schrodinger equation, the results obtained with Eq. (11) should
be the same as those from Eq. (4).

2. The choice U = UM

Similarly to the prior case, one can choose the folding
potential U,p as the auxiliary potential:

USSR = (§alVas + Upslda)- (13)

This is the diagonal coupling in the CDCC equations [20]
for d>£;g and therefore corresponds to a standard choice when
CDCC is used in the post form of the transition amplitude.
Because UM does not depend on v, W', factorizes in a
distorted wave and the deuteron ground state. The post form
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T matrix is then given by

fold - fold [, (+
T = (45 bup| Vas + Ups — USRI IWSY), (14)
where X;;) is the deuteron distorted wave associated with the
potential U ;‘gd(R’). This matrix element is exact if the initial

three-body wave function \I/;:) is exact. In our applications,

we use the CDCC approximation to calculate \I/(:).

Even though there are formal similarities between Eq. (8)
and Eq. (14), the difference in the operator produces a
tremendous difference in the model space needed for con-
vergence. First, the binding potential appearing in the prior
form (V,,,) has a much shorter range than that appearing in

the post form (V, ). Second, the operator U,p — U;‘;{d in

Tyior(fold) is rather different from U,z — U in Tpox(fold).
The difference between deuteron and proton potentials is much
more significant than the difference between proton potentials
of neighboring nuclei (even if A is a halo). For these two
reasons, we can expect nonlocality effects in the transfer matrix
elements to be more important in 7},o5(fold) than in Ty, (fold).

C. Using CDCC for the three-body wave function

All the T matrices in this article are calculated using the
CDCC method [20]. More specifically, in the case of the prior
form matrix elements introduced earlier, both \I/c(z;e) and i;t‘)
in Eq. (4) are obtained using the CDCC expansion and by
solving the CDCC coupled channel equation, and the same
CDCC solution for ‘lfg(,;) is used in Eq. (8). For the post form
matrix elements, CDCC expansions are used for &D;;) and \Ilf;g)
in Eq. (11) and W' in Eq. (14).

In the CDCC method, the exact wave function \I!‘(,;)
appearing in both Egs. (4) and (8) is replaced by an expansion
in terms of a truncated and discretized set of eigenstates of
the n-p Hamiltonian Ky + V,,(r"). The coefficients in the
expansion are determined from a coupled-channel version of
the equation

[E — Ky — Kr = Vip — Vi — Usp W0/, R) =0, (I5)

with the boundary condition that there be a plane wave in the
deuteron channel and incoming scattered waves in all other
channels. <I>f,;; is obtained in a similar way, but with V,,
removed from Eq. (15).

Similarly, in Eqgs. (11) and (14), the exact initial-state wave
function ‘-IJ;;) is replaced by an expansion in eigenstates of
the n- B system, with Hamiltonian K, + V,5(r). The solutions
approximately satisfy

[E — Kr — Kr = Vip — Vg — Upp] ¥, R) =0, (16)

with the boundary condition that there be a plane wave in the
incoming proton channel and outgoing scattered waves in all
other channels. Again, &);JX is calculated using the preceding
equation with V, g removed.

The CDCC functions for the initial p + A state and final
d + A state involve expansions in different complete sets and
depend on different Jacobi coordinates; therefore we expect
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TABLE I. Optical potentials used in our applications.

Ebeam Vo To ao W, Wy Ti a;
MeV) MeV) (fm) (fm) (MeV) (MeV) (fm) (fm)

p-""Be 384 51.2
p-"Be 12.5 68.461 1.183 0.469 0
n-"Be 51.639 1.39 0.52
n-p 72.15 1.484

1.114 0.57 19.5 0 1.114 0.50
15.629 1.043 0.328

the sizes of the model spaces to be different in the various
methods: Tprior(Vip) and Tpost(Viig), Torior(fold) and Tpos(fold).

Regarding the methods described by Eq. (4) and Eq. (11),
one might naively think that there is double counting of the
three-body continuum because there are CDCC discretizations
for both initial and final states. This is not the case. The
two states involve different three-body Hamiltonians in a
matrix element, which emphasizes a particular subspace of
the six-dimensional coordinate space. The full three-body
Schrédinger equation guarantees that the overlaps of these
functions, when evaluated as in Eq. (4) and Eq. (11), produce
the correct transition amplitude.

III. RESULTS

We first consider the reaction ''Be(p,d)!Be at Ep, =
38.4 MeV/nucleon. Table I contains the parameters for
all interactions used in this application, where Vj, ry, and
ap are the depth, radius, and diffuseness of the real part,
respectively; W,, Wy, r;, and a; are the depth of the vol-
ume and surface imaginary potentials and their radius and
diffuseness, respectively. For p + !°Be, we use an optical
potential of Woods-Saxon shape, which reproduces elastic
scattering at Ej,/A = 39.1 MeV [38]. (In our formulation, the
Hamiltonian is energy-independent; thus this is a reasonable
choice for the reactions under study, although not unique.) The
n + 1°Be interaction is obtained fixing the diffuseness and
the radius and adjusting the depth to reproduce a 2s state
with the correct neutron separation energy (S, = 0.504 MeV).
For the deuteron, we use a central Gaussian interaction,
reproducing the binding energy and the radius of the ground
state of the n-p system.

All calculations are performed using the code FRESCO [39].
For the purpose of our study, interactions need to be sensible
and qualitatively relate to the physical systems. However, as
the objective of this work is not to extract precise structure
information, but rather to compare different reaction methods,
spin dependence or tensor terms in the interactions would be
an unnecessary complication. Also, the n + '°Be interaction
(Vup) appearing in the matrix operator of Eq. (14) needs to
be real and independent of angular momentum because of the
limitations of the FRESCO implementation.

In Fig. 2, we show the results for the prior form: T (fold)
(Fig. 2, top) and Tprior(Vyp) (Fig. 2, bottom). In Tpyior(fold),
deuteron breakup is included through CDCC in the final
state. Convergence of the angular distribution up to 60° is
obtained when n-p partial waves up to /; = 4 are included. In
Torior(Vip), in addition to the CDCC wave function for the
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FIG. 2. (Color online) Transfer cross sections for ''Be(p,d)'°Be
at E, = 38.4 MeV calculated in the prior form: convergence with
respect to the number of partial waves for n-'°Be (/;) and p-n Up).
Data are taken from Ref. [2].

deuteron, we also need the CDCC wave function for the
entrance channel [see Eq. (4)]. Convergence in ; (n-'°Be
partial waves) is rapid and requires only s and p waves. We
also have to consider the sum over the projectile-target angular
momentum L. Convergence is obtained for Ly,,x = 25. As to
the radial grid, integration out to 40 fm with steps of 0.1 fm
was found sufficient.

Figure 2 shows that the converged angular distributions
obtained with Tyor(fold) and Tpyior(Vyp) are in very good
agreement. We also verified that there were no significant
differences in either the size or speed of the calculations.

We now turn our attention to the post representation. In
Fig. 3, we present the convergence study for Tpo (fold) (Fig. 3,
top) and Tpos (Vi p) (Fig. 3, bottom). Within 7. (fold), the lige
breakup is included through CDCC in the initial state; thus /; is
the relevant quantum number in the expansion. We find that the
angular distribution out to 60° reaches convergence for /; < 6.
For Toost( Vi 8), both entrance and exit channels are expressed in
terms of CDCC, so convergence withrespect to /; and [ ; should
be considered [see Eq. (11)]. Full convergence in this case was
not feasible. It is clear from Fig. 3 that /; = 6 is still not
enough for the outgoing channel, and even though it appears
that the calculation has converged with respect to /;, the model
space for the incoming channel might need to be increased if
more partial waves are included in the outgoing channel. We
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FIG. 3. (Color online) Transfer cross sections for ''Be(p,d)!°Be
at E, = 38.4 MeV calculated in the post form: convergence with
respect to the number of partial waves for n-'°Be (I;) and p-n (I;).
Data are taken from Ref. [2].

find that the angular distributions for the transfer calculated
using Tp,os(fold) are in reasonable agreement with those using
Torior(fold), particularly at forward angles, which is the region
more relevant for the extraction of spectroscopic information.
This is to be expected when starting from the same three-body
Hamiltonian. The small differences remaining test the level
of accuracy of the CDCC representation of the full three-body
wave function. The cross sections calculated with T,o5(V;,8) do
not agree with T;,,(fold). Because the calculations presented
for Toost(Vup) are not converged, we do not believe that there
is physical significance in this difference.

Computationally, the converged Tyo(fold) calculation is
somewhat more demanding than the converged Tjor(fold)
calculation, regarding both speed and memory requirements,
because of the need for a larger model space. The Tyost(Vi)
calculation, in addition to the lack of convergence, is by far
the most demanding computationally. This result shows how
important the choice of the appropriate representation of the
transition amplitude can be in practical calculations, despite
the formal equivalence between the different representations.

To better understand the characteristics of the matrix
elements in these different approaches, we present in Table 11
the range of nonlocality of the transfer kernels (RNL) required
for the four types of calculations as well as a summary
of the partial waves used. As Tprior(Vyp) involves only the
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TABLE II. Convergence parameters for the different methods,
where RNL refers to the range of nonlocality in the transfer couplings
(i.e., R-R").

l; Iy RNL (fm)
Prior(fold) - 4 14
Prior(V,,,) 1 4 5
Post(fold) 6 - 21
Post(V, ) 6 >6 20

V., interaction in the operator, we expect this range to be
small as qompared with Tpior(fold), which contains the term
Uyp — U;‘;{d. This is verified in practice (see Table II). As
mentioned in Sec. IIB, for the Tyos(V,p) and Tpoi(fold)
formalisms, instead of V,,,, the binding potential for n-''Be
is used in the operator. Consequently, the range required is
much larger than for the prior methods.

As mentioned earlier, we have chosen a central spin-
independent effective interaction for the n-'°Be system. This
interaction does not reproduce the excited 1/2~ bound state in
1Be, bound by 0.18 MeV. Using the prior representation, we
have checked that this bound state has a negligible effect in
the reaction mechanism for this reaction.

In Figs. 2 and 3, we show data along with the theoretical
predictions. This serves as an indication that our starting
three-body Hamiltonian, Eq. (1), is not too far from reality.
We emphasize, however, that we cannot expect our predicted
transfer angular distributions to be appropriate for extracting
spectroscopic factors or other nuclear structure information.
As discussed earlier, in our model, there is no imaginary
part in the n-'°Be interaction, when in reality, there should
be an imaginary component of similar magnitude to the
proton optical potential. Also, our calculations implicitly
assume a unit spectroscopic factor (norm of the n-'“Be
overlap function [1]), but it is not obvious what will be
the effect on our results if the spectroscopic factor were to
differ from this value because then the effective three-body
Hamiltonian would need to include core internal degrees of
freedom, and several overlap functions might contribute to the
process.

We have also studied the '°Be(d, p)!'Be reaction at E; =
25 MeV. All interactions apart from the proton optical potential
are kept the same. The proton optical potential taken at half
the deuteron energy (shown in Table I) is the same as that
used in Ref. [30]. For the (d, p) case, we have only performed
calculations in the post representation. Note that the post form
matrix elements for the (d, p) reaction are similar to the prior
form matrix elements for the (p,d) reaction. Here we only
show the converged results.

For the T, (fold) calculation, convergence was achieved
with /; = 0, 2, 4 partial waves for the p-n continuum, whereas
for the Tpos(Vp,) calculation, we needed, in addition, [y <
2 for the n-'"Be continuum. The odd partial waves for
the deuteron continuum were found to have a negligible
effect on the (d, p) cross section. As expected, the range of
nonlocality required for the Tpos(V,s) calculation (RNL =
5 fm) was significantly smaller than that for the T, (fold)
calculation (RNL = 15 fm). This difference may represent a
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FIG. 4. (Color online) Transfer cross sections for '°Be(d, p)!'Be
at E; = 25 MeV: comparison of T, (V,,) and T (fold). Data are
taken from Ref. [33].

significant numerical advantage of the Tyor(V,n) represen-
tation in practical calculations. In Fig. 4, we compare the
calculations using the two post representations, along with
the experimental data from Ref. [33]. The two calculations
are in good agreement, but they depart considerably from
the data.

At this stage, it is worth recalling that we have restricted
ourselves to a very simple Hamiltonian, with only one complex
interaction (U,p) and a very simplified description of the
"'Be spectrum because of our fixed n-'"Be interaction. We
have therefore performed another calculation using a complex
n-'9Be interaction for the incident (deuteron) channel (U, 5 =
U, ) and a real parity-dependent interaction for n-'°Be in the
final state, which is identical to the one in Table I, except
for the £ = 1 depth, which is adjusted to reproduce the 1pj»
bound state in 'Be. Such a combination of potentials would
have made the comparisons in Sec. II impossible. The result
of this calculation, using the Tp04(V),) formula, is displayed
in Fig. 4 with a dash-dotted line. This new calculation brings
the shape of the angular distribution in much better agreement
with the data, illustrating the dependence of the results on the
underlying three-body Hamiltonian.

There have been attempts in the past [40,41] to decide on the
relative merits of post- and prior-form DWBA matrix elements
by comparison with experiment. We emphasize that none of the
calculations reported here are DWBA calculations and that the
issues discussed here cannot be decided by comparison with
experiment. We address solely the question of accurate and
practical evaluation of the predictions of three-body models
and which methods are most simply generalized to the many-
body case, with the aim of extracting credible nuclear structure
information.

IV. CONCLUSIONS

We have found that for the 'Be(p,d)!°Be reaction, there
is very little to choose between the two T matrices Tprior(Viip)
and Tpior(fold) from the point of view of convergence and
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convenience. The same can be said about the correspond-
ing post form results for the °Be(d, p)!'Be reaction. The
agreement between converged results implies that within the
subspaces of the Jacobi-coordinate six-dimensional space
required for the two methods, the CDCC wave functions
represent the exact three-body wave functions with similar
accuracy. Our study of ''Be(p,d)'"Be using the post form
clearly shows the difficulties one might encounter when the
transition operator contains interactions with longer range.
Our study indicates that for transfer observables, it is best to
use the prior form of the matrix elements for (p,d) reactions
and the post form for (d, p) reactions.

From the point of view of linking three-body models with
the underlying many-body theory, the two matrix elements
Tprior(Vip) and Tyir(fold) have a very different significance
[17]. In the many-body generalization of Tpior(Vap), the fact
that V,,, does not depend on the internal coordinates of the core
B (in our case, '°Be) means that nuclear structure information
appears entirely through the overlap function ¢,p(,) of A
and B. The question of what nuclear structure information can
be deduced from a particular transfer experiment then reduces
to the question of what features of ¢4p (spectroscopic factor,
asymptotic normalization constant, etc.) an experiment at a
particular incident energy or angular range is sensitive to. The
same consideration applies when it is necessary to include
excitations of A and/or B in the matrix element because then,
additional overlap functions appear.

In the method in which the folding potential is used,
Tprior(fold), the transfer matrix element is not as attractive when
generalized to the many-body case. Because of the complicated
transfer operator in Eq. (8), the matrix element does not
involve a single overlap function but, in principle, can involve
a large number of overlap functions as well as matrix elements
of the many-body interaction V,p between different states
of B.
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This study is particularly relevant for light systems. As
the mass of the target increases, both formalisms Tyrior(Vyip)
and Tpior(fold) simplify, and the practical differences found
in our applications will not arise. For heavy targets, the initial
state in Tpror(Vyp) factorizes as in the CDCC approach, and
the complicated operator in Tp0(fold) reduces to V,,,. In this
limit, these two approaches become equivalent.

This same ''Be(p,d) reaction has been used for a com-
parison between CDCC and the solution of the full three-
body integral equations (known as the AGS equations) [38].
The calculations here denoted as Tpor(fold) correspond to
CDCC-TR* in Ref. [38], apart from minor differences in
the interactions. The comparison with Faddeev shows an
~15% difference between the two calculations, demonstrating
the level of accuracy of Tpo(fold). Writing the matrix
element in terms of the short-range V,,,, as in Tprior(Vi,p), held
promise in solving this disagreement because then the CDCC
representation of Wy is at its best. However, our present study
suggests that there are still inaccuracies, arising probably from
the CDCC expansion of the initial state ®,o because there is
no truncation of the matrix element with regard to the n-'Be
distance.
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