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Temperature and pressure constraints near the freezing point
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The isothermal-isobaric ensemble molecular-dynamics method MD(T,p,N) proposed by Nosé
and Hoover is used to study the fluctuations in a two-dimensional Lennard-Jones fluid, close to the
freezing point. The T and p constraints in this method do not affect the dynamical behavior of the
system, since spontaneous fluctuations in the density allow the system to freeze and melt just as do
the T and p fluctuations in the microcanonical ensemble MD(E, V, N) close to the melting zone.

I. INTRODUCTION

The dynamics of atomic systems with continuous in-
teractions between the atoms requires numerical integra-
tion of Hamilton’s equation of motion,
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where H =T (p)+ U(r) is the Hamiltonian of the N-body
system, T (p) and U(r) being the kinetic and potential
energies, respectively. Newtonian mechanics implies that
the energy and momentum are the conserved variables of
the motion. In traditional molecular-dynamics (MD) ex-
periments, the total energy E, the number of particles N,
and the volume V are conserved as the dynamics of the
systems evolves in time. The time average of any proper-
ty is an approximate measure of the microcanonical en-
semble MD(E, V,N). For certain applications, it may be
desirable to perform dynamical simulations at constant
temperature and/or pressure leading to the canonical en-
semble MD(T, V,N) and the isothermal-isobaric ensemble
MD(T,p,N). However some of these techniques need the
introduction of artificial processes in order to make this
practical. Such schemes may be classified as non-
Newtonian MD, since they are not based on Hamiltoni-
ans of motion for real systems, but use artifices of scaling
that result in fictitious forces in order to satisfy some
adopted definition for constant T and p.? However, it is
possible to show rigorously that certain of these methods
give proper equilibrium ensemble averages.

Several methods have been developed to simulate the
canonical ensemble, including the ‘“‘stochastic” method?
in which collision with an imaginary heat-bath particle is
taken into account, the “extended-system” method* in
which a degree of freedom is included which represents
the reservoir in contact with the system, and the ‘“con-
straints” method® in which the velocities are rescaled at
each time step by some factor in order to fix the kinetic
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energy of the system. Although other methods do not
generate states in the canonical ensemble, they seem very
useful for studying the changing state and systems reach-
ing equilibrium at a different temperature.® For the
constant-pressure MD simulation, in all approaches it is
inevitable that the system box must change volume as in
constant-pressure Monte Carlo (MC) simulations. The
nomenclature is the same as for the MD(T,V,N). The
stochastic method’ is a MC calculation in which the
Metropolis technique® is applied to the randomly
changed volume AV. The extended method® involves
coupling the system to an external variable V, the volume
of the system, where the coupling mimics the action of a
piston on a real system. The constraints® method makes
the instantaneous pressure a constant of the motion. In
two other particular methods, one allows the simulation
box to change shape as well as size,’ and in the other the
appropriate ensemble is not well identified.®

In a former study'® we presented some MD simulations
for a system very close to the melting zone where fluctua-
tions play an important role in the dynamic properties of
the system. The simulations were performed using the
traditional microcanonical ensemble, i.e., with no scaling
procedure, and we found fluctuations for temperature
and pressure which spontaneously make the system oscil-
late between two points of state. We conclude that simu-
lations with any constraints method, such as the
constant-temperature and/or constant-pressure methods,
are incorrect near the melting zone because there are
problems related to fluctuations with respect to space and
time and the constraints can diminish the fluctuations or
not allow them at all. Nevertheless, we now see this con-
clusion to be not completely general, because the system
behavior depends on the method used and consequently
on the way in which the constraints are applied.

Among the techniques reviewed here we chose the
combination of the extended system method due to Nosé*
and the constraints method due to Hoover,!! leading to
Nosé-Hoover (NH) formulation.!> There were two
reasons for the choice: first, because the NH scaling pro-
cedure reproduces both the canonical and the
isothermal-isobaric probability density in the phase space
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of a classical mechanical system, and second, because this
method had been used previously to show that the
dynamical behavior of the NH equations does not destroy
the long-range bond correlation in the fluid near the
freezing point.!> In the following we shall study the be-
havior of the temperature, pressure, and density fluctua-
tions in the MD(T,p, N) ensemble in the two-dimensional
(2D) system near the freezing point and the results will be
compared with those obtained by MD(E, ¥V, N) near the
melting point.'°

II. SIMULATIONS AND RESULTS

The equations of motion for the MD(T,p, N) ensemble
in the NH formulation are '3
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where x;=r,/V'/? are the reduced coordinates for the
particle i, D is the dimension of the space, f; is the force,
and £ and ¢=V /DV are the isothermal and isobaric fric-
tion coeflicients which couple the system to a reservoir at
T=T,, and p =p,,, respectively.

The dynamical equations for the friction coefficients
are

and
%Z(p —Pe)V/(KTTS) (6)
where 71 and 7, are the isothermal and isobaric relaxa-

tion times of the system respectively which give the cou-
pling strengths. Both relaxation times have a Gaussian
distribution in the NH theory and they are related to the
mean collision time.!*!?

The NH isothermal-isobaric simulations were per-
formed for a 2D Lennard-Jones system of N =400 parti-
cles with a cutoff distance of r,=2.50. The state point
was set up at kT /£ =0.7 and po?=0.83. This point is a
fluid very close to the freezing point!® with a correspond-
ing pressure of po?/e=2.64. These values for tempera-
ture and pressure were chosen as the fixed external T and
Dex Of the reservoir in Eqgs. (5) and (6). The other input
values were 7,7=0.005 and 7, =7,/V' N =0.3." To in-
tegrate the equations of motion the Toxvaerd algorithm!’
was used with a time step # =0.005(mo?/g)!/?, and the
system was allowed to evolve in time about 120 000 h tak-
ing averages values every 800 h.

In Fig. 1 the fluctuation of temperature is plotted
against the number of time steps for the MD(T,p,N) en-
semble. The fluctuations are very small throughout the
dynamic evolution of the system, in spite of the vicinity
of the freezing zone where the fluctuations are large.
This means that the isothermal friction coefficient works
well at interchanging energy between system and reser-
voir through Eq. (5), diminishing the fluctuations around
the fixed temperature as much as possible, as was to be
expected in principle. The final mean value for the tem-
perature was k7T /¢ =0.700040.0007. These fluctuations
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FIG. 1. Reduced-temperature fluctuations vs number of time steps for a two-dimensional fluid close to the freezing zone.
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FIG. 2. As Fig. 1, but for the reduced pressure.

are about 14 times smaller than those for the correspond-
ing MD(E, V, N) simulation in the melting zone.!?

Similar behavior is found for the pressure fluctuations
where the dynamical equation for the isobaric friction
coefficient Eq. (6) maintains the system at constant pres-
sure while allowing it to change its volume. These fluc-
tuations look more regular that the temperature fluctua-
tions and greater by about 3 times. The final mean value

for the pressure was po?/e=2.641%+0.002, with fluctua-
tions 40 times smaller than the pressure fluctuation for
the MD(E, V,N), as can be seen by comparison of the
standard deviation and Fig. 2 with the results given in
Ref. 18.

The time evolution of the density is very different, as
Fig. 3 shows. The fluctuation is irregular and large due
to the absence of constraints. On two occasions, after

1 1
I I
u _
§ ]
— 1
. 087k A
—
%) B -
= | -
[FN}
a | —
[==1}
t‘_)J - —
2 0.82 oS
o
== - -
0.77 -
1 L ]
50 100 x800

NUMBER OF TIME STEPS
FIG. 3. As Fig. 1, but for the reduced density.
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about 44000 and 104 000 time steps, fluctuations appear
spontaneously which allow the system to reach densities
within the freezing zone.!® The final mean value for the
density was po?=0.827+0.010, this standard deviation
being the same as that corresponding to the temperature
in the MD(E,V,N) ensemble at melting. These larger
spontaneous fluctuations disappear when the system is far
away from the freezing zone: simulation in the liquid sys-
tem at po?=0.7606 showed a standard deviation of
+0.0027, fluctuations nearly four times smaller than be-
fore.

III. DISCUSSION AND CONCLUSIONS

If we compare these results MD(T,p, N) near the freez-
ing point with those MD(E, V,N) corresponding to the
solid near the melting zone,!” we can see that the two sys-
tems behave in the same way physically. The micro-
canonical ensemble allows temperature and pressure to
fluctuate in the same way as the density in the
isothermal-isobaric ensemble. Near a phase transition,
both ensembles must undergo spontaneous fluctuations
that drive the system back and forth between two points
of state. The problem of the non-appearance of the fluc-
tuations arises when the method used to simulate the
MD(T,p,N) is incorrect, even though it yields time aver-

ages for thermodynamically interesting variables to
within the statistical accuracy of most experimental
data.? A very interesting discussion can be found in Refs.
7 and 16, where the validity of the stochastic method
used for the volume change in Ref. 7 to investigate the
melting transition is refuted in Ref. 16, since the error ob-
tained with that method not only changes the correct lo-
cation of the transition but also mistreats any density
fluctuations in its vicinity.

We can therefore conclude that the constraints for
temperature and pressure in the extended Nosé and Ho-
over method not only do not alter the natural evolution
of the system, but also give the correct dynamical behav-
ior including the zone of large fluctuations such as the
freezing transition.

During the preparation of the present paper methods
for implementing temperature and pressure controls at
equilibrium and nonequilibrium in the NH dynamics
have been published.!”” These methods increase the
efficiency of large-scale simulations but the detailed re-
sults are not yet available.
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