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Computer simulations of liquid and solid systems very close to the melting-freezing transition zone
have been performed for the microcanonical, canonical, and isothermal-isobaric molecular-dynamics en-
sembles. Temperature, pressure, and density fluctuations were studied over long evolution times, and
graphical and analytical statistical-error methods were used to investigate correlations in the data. The
Nosé-Hoover (NH) method combined with the Toxvaerd algorithm is proposed as a correct method of
obtaining the true fluctuation and correlation of the thermodynamic variables in the system, because the
temperature and/or pressure constraints in the NH method do not affect the dynamical evolution of the
system, and because the fifth-order Toxvaerd algorithm gives very accurate behavior for the correlations,

as has been shown in recent studies.

I. INTRODUCTION

Interest in the statistical errors of computer experi-
ments has increased over the past few years. The first
problem was the theoretical estimate of the inherent error
when sampling averages are replaced by averages over a
finite time interval in evaluating the correlation function
of stochastic (Gaussian) processes.! The results of this
study were confirmed in the case of the velocity auto-
correlation function,? and further application was made
to the number density and kinetic-energy density auto-
correlation functions for liquid sodium,? and to a more
general analysis that does not employ the Gaussian as-
sumption.* The topic has recently been taken up again
and the predictions of the earlier work! have been com-
pared with simulation data of saturated liquid Ar in equi-
librium.®> The initial problem of the inherent error was
overcome with the generally accepted assumption of er-
godicity, when the sampling average is equal to the time
average in the limit of long times of calculation. Then
computer simulation by either Monte Carlo (MC)
(sampling-average) or by molecular-dynamics (MD)
(time-average) methods are equally capable of giving the
true thermodynamic behavior of the physical system with
a good estimate of the statistical errors.

The problem of the persistence of correlation in long
MC chains must be taken into account in estimating er-
rors.® This can be done using a correlation length as a
measure of the persistence. One also saw’ how the sam-
pling procedure in a calculation can be modified to mini-
mize the variance of the distribution of a given variable.
A treatment of the correlation comparing the efficiency
of the MC and MD methods showed® how the first two
moments of the autocorrelation function of a variable
along the chain are related to the expected variance of its
mean. In that study, the variance of the potential energy
in the canonical ensemble (T,V,N) was shown to be
larger than that in the microcanonical ensemble (E, V,N)
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by a factor which is the ratio of the system heat capacity
to that of an ideal gas.

Fluctuations of the thermodynamic parameters are re-
lated to the correlations. A theoretical study has been
made of the equilibrium values, and their fluctuations, of
some variables (temperature, pressure, and chemical po-
tential) in different ensembles and then applied to the spe-
cial case of computer experiments for the (E,V,N) and
(T,V,N) ensembles. The results showed that, because of
the finiteness of the systems, there is no unique solution
when generalizing thermodynamic formulas from macro-
scopic systems to small systems. Interpreting the pres-
sure mechanically and not just thermodynamically made
it possible to evaluate the solutions physically. The study
did not consider zones of large fluctuations such as the
phase transitions and critical points.’

Several papers, therefore, have worked towards giving
a general procedure for estimating the true variance of
the mean of partially correlated measurements having
finite'® as well as infinite range correlations!! either in
MD! or MC. "

Traditionally, MD has been restricted to the micro-
canonical ensemble MD(E, V,N), but in response to ex-
perimental necessities other ensembles have come to be
important. An example is the canonical MD(T,V,N)
since, when calculating small pressures, it is important to
use constant T because the small differences between the
required and actual temperature, unavoidable with the
conventional MD(E, ¥V, N), modify the ideal-gas contribu-
tion causing substantial systematic errors in the final re-
sults. 1

Thus, the different behavior of correlation functions
and fluctuations for different MD ensembles is a
significant problem for practical applications. In princi-
ple, the relation of fluctuation and correlations to exten-
sive and intensive thermodynamic quantities can be eval-
uated analytically.'®> The problem becomes severe if a sys-
tem shows strong fluctuations, causing dominant finite
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size effects.'® The choice of the 2D melting for study is
interesting because, among other things, the nature of the
transition is still disputed and the accuracy of the method
is crucial for this topic.

The main concern of the present paper is to investigate
near the melting zone the temperature, pressure, and den-
sity fluctuations and correlations in detail for a two-
dimensional system using the recent isothermal-isochoric
and isothermal-isobaric MD ensembles. A short account
summarizing some of the important aspects of this work
has appeared in Ref. 17. In Sec. II, we describe briefly
the two statistical error theories used in our simulations.
In Sec. III, we set up the starting conditions and the
characteristics of the systems when using the Nosé-
Hoover!®!® method (NH) to simulate the MD(E, V,N),
MD(T,V,N), and MD(T,p,N) ensembles. This leads us
to the study of the fluctuations and the correlations in
Sec. IV. The discussion of the method, conclusions and
final remarks are given in Sec. V.

II. THE STATISTICAL ERROR METHODS

A system is in equilibrium with respect to a variable x
when the mean and the variance of x (¢) are independent
of time. The uncertainty in the mean is due to the fluc-
tuation 8x (¢). These fluctuations are a real property of
the system, and the time average of (8x)? is also a ther-
modynamic quantity in which the ensemble corrections
for mean fluctuations are significant.

Let x;=1,...,n be the result of n consecutive equally
spaced measurements of some fluctuating quantity in a
MD simulation of a system in equilibrium. The only as-
sumption we make is that the correlations have a finite
range, with no other a priori knowledge of their nature.
The usual procedure is to obtain a numerical estimate by
taking the mean X, the variance o%(x), and the variance
of the mean o%(X), but there are two possibilities for the
statistical treatment: either considering a raw-data mod-
el or a block-data model. In the first method one has?

-1
Xx=- i§1Xi , (1)
Uz(xi)zvar(xi)Z% é (x;—x)?, (2)
i=1
o(x;)
oi(x)=var(X)= (1+27), (3)

where 7, termed the correlation length, is defined as

n—1 n=1 p _f cov(x;,x; _j)

=3 H=3 , )
k=1

k=1 N var(x;)

7, being the autocorrelation function at lag k. The vari-
ance and covariance are denoted by var and cov. Thus 7
is the coefficient which determines the strength of corre-
lation, with the value zero for uncorrelated values. If
correlation exists, the effective number of independent
values should be n /(1+27).” The second possibility con-
sists in dividing the series of points x; into sequential
nonoverlapping segments n,. FEach segment has m
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points, and the length of each segment is m Az, where At
is the time interval for obtaining the computer data. The
value of m will be chosen according to statistical con-
siderations, as follows. The value of the mean for each
block, the variance of the means, and the overall mean
are given, respectively, by

1
xb:.— xi ) (5)
m ;=
np
oXX,)=var(x,)=— 3 (%,—X)*, (6)
Ny p=1
1 mp 1z (
¥ = — X, — — . 7
b3 n b§1xb " i§1 x; )

where X has the same value as in Eq. (1). Now Eq. (3) can
be applied to the blocks as in the first method? (note that
the raw-data method is a particular case of the block-data
method when m =1 and n, =n, since n =n,m). But our
interest was not in obtaining another analytical meth-
od, but rather a graphical method, for which we
used the Friedberg and Cameron idea’' of plotting
mvar(X,)/var(x;) against m until a plateau is reached.
This plateau value is called the statistical inefficiency I
and fixes the appropriate block length m.??

The relationship between the statistical inefficiency and
the correlation length was found to be®?

Ig=1+2r (®)

giving an equivalence between the graphical and the
analytical methods.

III. THE ENSEMBLES AND THE SYSTEMS

We have performed long-run MD simulations near the
melting-freezing transition for the MD(E,V,N),
MD(T,V,N), and MD(T,p,N) ensembles in order to
study the fluctuations and correlations for the thermo-
dynamic variables of interest. Among the several pro-
cedures to simulate these ensembles we have chosen the
NH method because it has been previously found?* that
the constraints have no influence on the time behavior of
the system. In this method, the particles are coupled to
the corresponding reservoir by introducing isothermal §
and isobaric & thermodynamic friction coefficients which
couple the system to the reservoir at T =T,, and p =p,,,
respectively. These coefficients are related to the corre-
sponding relaxation times of the system 7, and 7,. Both
relaxation times have a Gaussian distribution and they
are related to the mean collision time.?*?> The NH equa-
tions for a D-dimensional system are described by?®

x;=p;/mv'/P 9
and
pi=f,— (=5 , (10)

where x;=r,/V"'/? are the reduced coordinates for the
particle i, f;, are the forces, and ¢'=V'/DV. The time
derivative of Eq. (10) is
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TABLE 1.
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Systems simulated in solid (S1-S3) and liquid (L1-L3) using the microcanonical
(E,V,N), canonical (T, ¥,N) and isothermal-isobaric (T, p,

N) ensembles. The final results for tempera-

ture, pressure, and density, after N, time steps, are shown with their standard deviations.

Ensemble System N kT /e pot/e pa? 10°N,
(E,V,N) S1 256 1.07+£0.02 6.71£0.17 0.9048 80
(T, V,N) S2 256 1.0001+0.0015 6.09+0.05 0.9048 90
(T,p,N) S3 256 1.0000+0.0011 6.053+0.003 0.9008+0.0009 80
(E,V,N) L1 256 0.677+0.010 2.4610.08 0.8260 114
(T,V,N) L2 400 0.7000=£0.0008 2.60+0.12 0.8260 118
(T,p,N) L3 400 0.7000=£0.0007 2.641+0.002 0.82740.008 118
p;=f;—(e"—=&")p,—(e'—&)p; , (11)  was 7,=0.005 and isobaric relaxation time 7, =0.3 (Ref.
26) (the system was in contact with a reserv01r inter-
where changing T and p).
N p}
S 2L NDkT / NDKkTr; (12)
=1 m IV. THE FLUCTUATIONS AND CORRELATIONS
and Table I shows the mean values for T, p, and p, and the
. standard deviations for the various systems (S'1,...,L3).
=(p =pex )V /(KTT}) (13) " The number of particles is N and the total number of

To integrate the equation of motion, a very accurate
fifth-order predictor-corrector algorithm, due to Tox-
vaerd,?’ was used. This algorithm calculates the position
and velocities of the particles up to fifth and third order
in & (the MD time step), respectively. That is,

r;(t +h)=2r,(t)—r,(t —h)+h%a;(2)
+ Lh*a(1)+0(h®) (14)
and
ri(t)=[r;(t +h)—r1,(t —h)]/2—Lh%al()+ O (h*) .
In our simulation the time step was

h =0.005(ma?/e)”?, where m, o, and € are the units of
mass, length, and energy for the Lennard-Jones (12-6) po-
tential. The Verlet?® criterion for the neighbors table was
applied, with spherical and cutoff distances of 74 =2.75¢
and r,, =2.50, respectively. The table was updated every
10 h and the usual periodic boundary conditions were
used.

Two-dimensional systems were studied at two points of
state: one defined by kT /e=1.0 and po*>=0.9048, which
correspond to the solid very close to the melting zone,?
and the other at kT /e=0.7 and po>=0.8260, which is a
liquid very close to the freezing zone.*® We have chosen
these points because in previous simulations we found
that the density fluctuations in the liquid®® for the
MD(T,p,N) ensembles behave physically in the same way
as the T and p fluctuations in the solid®' for the
MD(E, V,N) ensemble, twice leading to a change of state
and back. We now extend the study of the fluctuations to
the correlations and to the three ensembles. Choosing
conveniently the parameters in the NH equations one can
reproduce the desired ensemble. Thus, the MD(E, V,N)
ensemble was run with null isothermal § and isobaric €’
friction coefficients (isolated system), the MD(T,V,N)
with €' =0 and isothermal relation time 7,=0.005 (sys-
tem in contact with a thermal bath), and the MD(T,p, N)

time steps N,, the subaverages being taken every 800 h.
The relative standard deviations for T and p are very
small when the NH method is used to fix these parame-
ters. Moreover, these values are not appreciably different
in solid and liquid, being about 0.1-0.15 % for T and
0.06-0.08 % for p. For the systems where T and p are al-
lowed to fluctuate, the standard deviations are
significantly different in solid and liquid and depend on
the ensemble as well. Thus the pressure uncertainties in
S1 and S2 are about 2.5% and 0.82%, respectively,
which are about 45 and 15 times greater than in S3, while
for the liquid these values have risen to 3.3% and 4.6%
for L1 and L2, which are about 45 and 60 times greater
than for L3.

In contrast with these results is the behavior of T and p
in the MD(E, V,N) ensemble. Here the standard devia-
tion for both properties is slightly smaller in the liquid
than in the solid, thus not allowing the system to go back
and forth between two points of state as in S1,3! but per-
mitting the oscillation of the fluctuations as can be seen
in Fig. 1, where one can clearly see how the oscillations
of the fluctuations in T and p are inverted as is expected
in an isolated system such as the microcanonical ensem-
ble.

As the density fluctuation for L3 (Ref. 26) was found
to behave in the same way as T or p in S1,3! one can ex-
pect the same oscillating fluctuation for the density if the
standard deviation decreases from liquid to solid in the
same ratio as before. But the decrease is found to be
about 10 times larger, and does not permit oscillations.
The fluctuations for the other variables and ensembles are
not significant, being a fairly regular sequence of peaks
and valleys.

Because the state points chosen are very close to the
phase transition where the fluctuations are very large, the
study of correlations must be performed with great care
in order to avoid inaccurate results. This was the reason
for choosing the analytical'? and graphical?' methods de-
scribed in Sec. II which, while very different in the way
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FIG. 1. Temperature (top) and pressure (bottom) fluctuations
vs time steps, with the MD(E, V,N) ensemble in the liquid sys-
tem L1.

they obtain the correlations, must give the same results
according to Eq. (8).

The first two systems studied were S'1 and L 3 because,
although the variables which are permitted to fluctuate
are different, the resulting fluctuations are similar. In
Fig. 2, the temperature autocorrelation function 7, is
plotted versus lag k£ in S1. For At =800 h, there is a
steady fall from k£ =1 to 13, but then there is a broad
maximum at k =15 followed by a fall past zero at k =23.
This behavior is also found for the other cases with the
same height of the maxima, but occurring at smaller
values of k (about 7, 6, and 4, respectively) as a conse-
quence of the sharper fall of the autocorrelation function.
Applying the graphical method to obtain the statistical
inefficiency I, we get Fig. 3, where one can see a pseudo-
plateau at about m =12-17 (I =8) before reaching the
final plateau at m =25, giving Iy=16.
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FIG. 2. Autocorrelation function ?; vs lag k for temperature,
with the MD(E, V,N) ensemble in the solid system S1. From
top to bottom, the curves correspond to subaverages every
At =800, 1600, 2400, and 3200 h.
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FIG. 3. Statistical inefficiency for temperature, with the
MD(E, V,N) ensemble in the solid system S'1.

The maximum in the process of decay of the autocorre-
lation function (Fig. 2) and the pseudoplateau for the I
(Fig. 3) mean that stronger correlations appear in the sys-
tem, which, however, disappear after a short time. The
explanation of this behavior could be found, in principle,
in the spontaneous fluctuations which drive the system
between melting and solidifying as was shown in Ref. 31.
One should expect the same behavior for the density
correlation in L3, but as can be seen in Fig. 4, the results
are not the same. The fall for Az =800 h (upper line) is
smoother and too long in comparison with the sharper
decay and shorter period of oscillation when the number
of time steps per subaverage is larger. When the graphi-
cal method is applied, the typical behavior of the I (Fig.
5) appears, presenting only one plateau centered on I3 =6
for m >9. Thus the spontaneous fluctuations which ap-
pear in the liquid for the MD(T,p,N) ensemble are not
seen in the correlation study with either of the two
methods.
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FIG. 4. Autocorrelation function ?; vs lag k for the density,
with the MD(T,p, N) ensemble in the liquid system L3. Curves
as in Fig. 2.
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FIG. 5. Statistical inefficiency for density, with the

MD(T,p,N) ensemble in the liquid system L 3.

For the remaining systems, only L1 shows oscillation
in the fluctuations for T and p (Fig. 1), the same oscillat-
ing behavior for the decay of 7, and the plateau for the
Ig. The other systems do not manifest any special
behavior: L2 has a sharper decay of the correlation and
a smoother rise towards I, and there are no correlations
for §2 and S3.

The values for 1+27 and I for the T, p, and p for the
various systems are collected in Table II. At first sight it
seems that the 1427 values are always greater than the
I values when, in principle, the two methods should give
the same values for every case, as in Eq. (8). The reason
can be found in the intrinsic uncertainty of the methods.
On the one hand, the graphical method introduces an un-
certainty in Iy because the plateau is reached after the
onset of the fluctuations and the “noise”!! is progressive-
ly greater, as can be seen in Figs. 3 and 5. On the other
hand, the problem of the analytical method is when to
cut off the series of Eq. (4) which defines 7. This is a
widely studied problem,!”323% and we have used the
common procedure which consists of including terms up
to the order of k at which 7, takes the first nearly zero
value. The remaining terms of the series are thought to
take oscillating values very close to zero with a null
overall contribution to the correlation length. This cri-
terion is a good approximation when there are no large

TABLE II. Statistical inefficiency Is and correlation length
of the temperature, pressure, and density for the solid and liquid
systems.

Variable System 1+27 I
T S1 17.6 16.0
P S1 13.6 12.5
)4 S2 1.8 1.5
p S3 1.0 1.0
T L1 5.4 4.5
4 L1 5.8 5.0
P L2 4.6 4.0
P L3 7.2 6.0

JUAN J. MORALES, MARIA J. NUEVO, AND LUIS F. RULL 48

fluctuations of the thermodynamic variables under con-
sideration, such as in the solid or liquid far from the
phase transitions. Near these zones, however, the values
of 7, once past the first zero, can be positive and nega-
tive not very close to zero, as can be seen in Figs. 2 and 4.
It may be possible to calculate the amplitude of the noise,
when a better approximation can be made, reducing the
order in k to that where 7, takes the first value close to
that amplitude. This means that the series is cut off soon-
er than in the common procedure, lowering the value for
7. Nevertheless, it is not always easy to find an oscillat-
ing behavior for the tail of 7, and one must either guess
when the series must be cut off before the zero value is
reached, or use the common procedure as before, but
knowing in advance that the correlation length obtained
will be somewhat greater than the real value.

V. DISCUSSION AND CONCLUSIONS

In a former study!” of the fluctuations and correlations
in the MD(E, V,N) ensemble, we found a clear relation-
ship between the two magnitudes: if the fluctuations
around the mean values of the thermodynamic properties
under study were too small or too large (with standard
deviations about 0.001 and 0.1, respectively) there were
no correlations. In the former case, the system is not al-
lowed to fluctuate because of the constraints on the en-
sembles, or because the point of state of the system is so
stable that fluctuations are negligible. In the latter case,
the amplitude of the fluctuations is so large that possible
correlations between the data series are wiped out. For
intermediate values of the standard deviation (about
0.01), there were correlations because the amplitudes of
the fluctuations are at least smaller than the first value of
the correlation series in Eq. (4). In the present cases the
relationship is not so clear, and one conclusion from the
results given in Sec. IV would be that every system must
be studied separately. Thus, although the density fluctua-
tions in the MD(T,p,N) for the L3 system behave?® in
the same was as the T and p fluctuations in the
MD(E, V,N) for the S1 system,3! the correlations do not
behave the same: they are affected directly (Figs. 2 and 3)
by the fluctuations in the MD(E,¥,N) but are not
affected (Figs. 4 and 5) in the MD(T,p,N). In the
MD(T,V,N) ensemble, it is not possible to find any par-
ticular tendency in the system because the fluctuations in
solid and liquid are large but regularly distributed in time
with no special trend, so that the autocorrelation func-
tions take values around zero from the first order in k.

The equivalence of the correlation length and statisti-
cal inefficiency methods is thus confirmed, but always
while taking into account the kind of approximation used
for the series cutoff in the analytical method and the inac-
curacy introduced by the graphical method.

In general, with respect to the method used for the
computer simulation of the (7, ¥,N) and (T,p,N) ensem-
bles, in order to keep the total energy of the system con-
stant, the velocities are usually rescaled every few time
steps. Depending on the way of doing this, in some cases
this form of temperature control does not keep the total
momentum of the system zero, and for very long runs the
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random fluctuations eventually lead to an ever increasing
total momentum for the system overall. The system is
also weakly coupled to a heat bath both to keep T near
the present value and to keep the temperature from drift-
ing upward due to numerical round-off error which al-
ways begins to accumulate whenever one makes runs
longer than a few thousand time steps.>* Thus we need a
simulation method which combines the positive aspects
of these algorithms and avoids most of their negative as-
pects. That is, one needs an algorithm which is general
enough that one can incorporate constant temperature
and/or pressure methods while avoiding as far as possible
energy drift during long simulations. The method we
propose is the combination of the Nosé-Hoover method
with the Toxvaerd algorithm. We have two strong argu-
ments to defend this thesis. The first is that the NH
method reproduces both the canonical and isothermal-
isobaric probability density in the phase space of an N-
body time-reversible classical mechanical system in equi-
librium.?> This means that the NH equations obey a gen-
eralized Liouville equation and the general Langevin
equation exactly, i.e., the constraints have no influence on
the time behavior and one can perform long simulations
with no problem, checking that the time-averaged values
of the isothermal and isobaric friction coefficients are al-
ways zero. This statement has been tested by calculating
the Mori coefficients?* and verifying that the friction
coefficients have a Gaussian distribution.?*?> The second
is that, since the fluctuations are mainly caused by the
short-range interactions, one can diminish their effect by
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calculating very exactly the positions of the particles in
the highly repulsive part of the potential, avoiding a
significant drift in the energy. This can be performed by
using the Toxvaerd algorithm. In our simulations the
drifts were completely negligible (=10"7). Thus, we
have found that coupling the system to a heat bath, using
the NH method and Toxvaerd algorithm, is a physically
appealing way to reduce the effect of the numerical errors
which accumulate during the course of any long simula-
tion. The fluctuation obtained with this method gives the
true fluctuation of the system. The correlations among
the simulation data will depend on the accuracy of the al-
gorithm used, as has recently been demonstrated®® by
studying the influence of the MD algorithms on the cal-
culated values of data correlations.

The importance of this kind of study has been
confirmed with methods for implementing temperature
and pressure controls at equilibrium and nonequilibrium
to increase the efficiency of large-scale simulations in NH
dynamics,>” the inclusion of an algorithm for the simula-
tion of NH canonical molecular dynamics,®® the high
precision shear-rate dependence of the viscosity of a
Lennard-Jones liquid at the triple point using the NH
method in nonequilibrium MD,>® and the application of
these methods to Feynman’s path integral theory. *°
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