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THE FOCUS-CENTER-LIMIT CYCLE BIFURCATION IN
SYMMETRIC 3D PIECEWISE LINEAR SYSTEMS∗

EMILIO FREIRE† , ENRIQUE PONCE† , AND JAVIER ROS†

Abstract. The birth of limit cycles in 3D (three-dimensional) piecewise linear systems for the
relevant case of symmetrical oscillators is considered. A technique already used by the authors in
planar systems is extended to cope with 3D systems, where a greater complexity is involved.

Under some given nondegeneracy conditions, the corresponding theorem characterizing the bi-
furcation is stated. In terms of the deviation from the critical value of the bifurcation parameter,
expressions in the form of power series for the period, amplitude, and the characteristic multipliers
of the bifurcating limit cycle are also obtained.

The results are applied to accurately predict the birth of symmetrical periodic oscillations in a
3D electronic circuit genealogically related to the classical Van der Pol oscillator.
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1. Introduction and main results. Piecewise linear modeling of nonlinear
dynamical systems is especially successful in some engineering problems, such as the
analysis and design of electronic oscillators or control systems (see, e.g., [CFPT02]).
However, in the framework of piecewise linear systems, there are no general bifurcation
results explaining the appearance or disappearance of self-sustained oscillations, as is
the case for the Hopf bifurcation theorem in the context of differentiable systems.
Thus, the authors gave in [FPR99] a complete characterization of the focus-center-
limit cycle bifurcation for symmetric planar piecewise linear systems. Now we show
how the corresponding result can be extended to the 3D case.

We consider a common situation in applications, namely, dynamical systems de-
fined by piecewise continuous vector fields with three linear zones and two parallel
frontiers. Furthermore, it is assumed that such systems show symmetry with respect
to the origin; that is, if we put them in the form dx/dτ = f(x) with x ∈ R

3, they
satisfy f(−x) = −f(x). In particular, f(0) = 0, and so the origin is an equilibrium
point for all values of the parameters. By means of a linear change of variables, it is
always possible to suppose that the frontiers are the planes Σ1 = {x ∈ R

3 : x1 = 1}
and Σ−1 = {x ∈ R

3 : x1 = −1}. We denote by L (left), C (central), and R (right)
the regions of R

3 at which x1 < −1, |x1| ≤ 1, and x1 > 1, respectively, hold.
To be more precise, we consider systems expressed as follows:

ẋ =

⎧⎨⎩
ALx − b if x1 < −1,
ACx if |x1| ≤ 1,
ALx + b if x1 > 1,

(1.1)
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1934 EMILIO FREIRE, ENRIQUE PONCE, AND JAVIER ROS

T>TT<Tc T=Tc c

Fig. 1. The focus-center-limit cycle bifurcation in the case D > 0, γ > 0. The focal plane and
the complementary one-dimensional invariant manifold at the origin are shown, along with the two
parallel planes which separate the three linear regions. In the situation sketched, as deduced from
Theorem 1.1, the bifurcating limit cycle is of saddle type.

where we have taken advantage of the continuity and symmetry of the vector field
involved; in particular, the matrices AL and AC differ only in their first columns.

From Proposition 16 of [CFPT02], under the generic condition of observability,
every system (1.1) can be written in the generalized Liénard form

d

dτ

⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ t −1 0
m 0 −1
d 0 0

⎤⎦⎡⎣ x1

x2

x3

⎤⎦+

⎡⎣ T − t
M −m
D − d

⎤⎦ sat(x1),(1.2)

where sat(x1) is the normalized saturation

sat(x1) =

⎧⎨⎩
−1, x1 ≤ −1,
x1, |x1| < 1,
1, x1 ≥ 1,

so that, regarding system (1.1), we have

AL =

⎡⎣ t −1 0
m 0 −1
d 0 0

⎤⎦ , AC =

⎡⎣ T −1 0
M 0 −1
D 0 0

⎤⎦ , b =

⎡⎣ T − t
M −m
D − d

⎤⎦ .

Note that system (1.2) is a particular instance of the more general Lur’e form

dx

dτ
= Ax + b sat(cTx)

for the case A = AL and c = e1, where e1 stands for the first vector of the canonical
basis.

Clearly, the parameters t, m, d and T , M , D stand for the trace, the sum of prin-
cipal minors of order two, and the determinant of each matrix, and they completely
determine the dynamics of the system.

Choosing T as the bifurcation parameter, for the critical value Tc = D/M with
M > 0, system (1.2) has a linear center in the zone C (see Figure 1); that is, the
matrix AC has a pair of pure imaginary eigenvalues. We want to analyze whether a
limit cycle bifurcates from this configuration as the bifurcation parameter T varies.
Note the similarities with the classical Hopf bifurcation scenario.
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3D FOCUS-CENTER-LIMIT CYCLE BIFURCATION 1935

It will be useful, in order to know the stability of such a limit cycle, to estimate the
characteristic multipliers of the limit cycle, that is, the eigenvalues of the derivative
of a Poincaré return map defined in an adequate section of the phase space. We will
denote the logarithms of these characteristic multipliers by μr and μa, from radial
and axial, respectively. Our main result is the following.

Theorem 1.1. Let us consider system (1.2) with M > 0, Tc = D/M , and
γ = DM −Dm + dM − tM2 �= 0. For T = Tc the system undergoes a focus-center-
limit cycle bifurcation; that is, from the lineal center configuration in the central zone,
which exists for T = Tc, one limit cycle appears for γ(T − Tc) > 0 and T − Tc

sufficiently small.
The amplitude “a” (measured as the maximum of |x1|), the period Per, and the

logarithms of characteristic multipliers μr and μa of the periodic orbit are analytic

functions at 0, in the variable (T − Tc)
1/3

; namely,

a = 1 +
(6π)2/3M4/3

8γ2/3
(T − Tc)

2/3
+

(6π4)1/3a4

960M1/3γ7/3
(T − Tc)

4/3
+ O (T − Tc)

5/3
,

Per =
2π√
M

+
π(M −m)

√
M

γ
(T − Tc) −

62/3π5/3M5/6P5

20γ8/3
(T − Tc)

5/3
+ O (T − Tc)

2
,

μr = − (48π)
1/3

M7/6γ2/3

D2 + M3
(T − Tc)

1/3
+ O (T − Tc)

2/3
,

μa =
2πD

M3/2
+

(48π)
1/3

M5/6

(
Mt−D

γ1/3
+

M2γ2/3

D2 + M3

)
(T − Tc)

1/3
+ O (T − Tc)

2/3
,

where

a4 = −120tM5 +
(
120D + 2t3 + 21mt + 72d

)
M4

+
[
−
(
93m + 27t2

)
D +

(
27m− 2t2

)
d
]
M3 +

(
2t2m + 25dt− 27m2

)
DM2

+
[
25D3 + 23 (mt− d)D2

]
M − 25mD3,

P5 = [M (M −m)
2

+ (Mt− d)
2
] (Mt−D) .

In particular, if γ > 0 and D < 0, then the limit cycle bifurcates for T > Tc and is
orbitally asymptotically stable.

This theorem describes a codimension-one bifurcation, similar to the Hopf bifur-
cation of differentiable dynamics (see [CH82]), but some differences should be noted.
In particular, the expressions characterizing the bifurcation are in terms of the pa-
rameter to the one third power instead of the one half power, and, more important,
the limit cycle amplitude’s leading order is O(1). Thus, the stability change of the
origin is accompanied by the abrupt appearance of a limit cycle of significant size.
This comment also applies to the planar case, as appeared in [Kr87] and [FPR99].

When the coefficient γ is not equal to zero, it allows a complete characterization
of the bifurcation criticality. Its role is analogous to the coefficient of the cubic term in
the Poincaré–Andronov–Hopf normal form. When γ = 0, the bifurcation is of higher
codimension, requiring a specific treatment that will appear elsewhere.

We want to remark that it is possible, with the same techniques, to obtain sim-
ilar bifurcation results for the asymmetric case of single-sided saturation. Thus, the
proposed methodology is able to cope with a wider class of piecewise linear systems.

The rest of the paper is structured as follows. In section 2, we show how the
above result can be useful for accurately predicting the birth of symmetrical periodic
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1936 EMILIO FREIRE, ENRIQUE PONCE, AND JAVIER ROS

oscillations in a tridimensional electronic circuit, which can be built by taking a Van
der Pol oscillator as starting point. The proof of Theorem 1.1 is given in section 3.

2. Predicting the onset of symmetrical periodic oscillations in a 3D
electronic circuit. In this section, we consider the electronic circuit of Figure 2(a),
genealogically related with the classical Van der Pol oscillator, in order to show the
applicability of our results. Regarding this circuit, the nonlinear conductance NL is its
active element, implemented by means of an operational amplifier with the feedback
structure of Figure 2(b), and the current-voltage characteristic is shown in Figure
2(c). Note that we are dealing with a nonlinearity characteristic qualitatively similar
to the cubic one appearing in the classical Rayleigh–Van der Pol oscillator. In fact, if
we eliminate the capacitor C2 and make R = R0 = 0, then the resulting planar circuit
could be thought of as a modern electronic realization of such classical oscillators; see
[Kr87] and [FPR99].

Thus, the 3D circuit of Figure 2 can be built by adding the capacitance C2 to
a bidimensional oscillator circuit. In the context of chaotic circuits, such topology
was originally proposed in [SYM81], and was studied afterwards in [FGA84] and
[FRGP93] in the case R0 = 0 and assuming a nonlinear positive conductance for the
resistor R. With slight modifications, this circuit has been extensively studied in the
last two decades; see [GK92] or [HBCJM91]. Taking R0 = 0 and substituting the
nonlinear element by the so-called Chua diode, many papers have also been written;
see [CWHZ93], [Ma93], and references therein. Anyway, the onset of symmetrical
periodic oscillations was never accurately predicted, since in most cases the circuit
was analyzed by taking polynomial approximations. Thus, the rapid bifurcation for
the limit cycle observed in practice was never justified.

It should be remarked that the characteristic of Chua’s diode is qualitatively sim-
ilar to the one presented in Figure 2(c) but the zone of negative slope is made up by
three pieces with two different slopes. For that, at least two subcircuits with opera-
tional amplifiers like those shown in Figure 2(b) are needed. Thus, the Chua circuit
characteristic has five linear segments instead of only three, as in our case. However,
in modeling Chua’s circuit, usually only the three innermost pieces are represented,
since the two outermost pieces of positive slope are not physically used; see [Ke93].

As stated in [Kr87] and [FPR99], there exists an excellent agreement between the
actual response of the nonlinear device NL in the circuit and its symmetric piecewise

C2

R

L

R0

NL

R3

R1

R2

i

v

(b) (c)

C1

(a)

iLi

Fig. 2. (a) The 3D electronic circuit. (b) Implementation of the nonlinear conductance NL.
(c) Piecewise linear current-voltage characteristic of NL.
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3D FOCUS-CENTER-LIMIT CYCLE BIFURCATION 1937

linear mathematical model. Therefore, we are led to consider the piecewise linear
dynamical system

C1
dv1

dτ
=

v2 − v1

R
− i(v1),

C2
dv2

dτ
=

v1 − v2

R
− iL,(2.1)

L
diL
dτ

= v2 −R0iL,

where v1 and v2 are the voltages across the capacitors C1 and C2, respectively, while
iL is the current through the inductance. The nonlinear current-voltage characteristic
is

i(v1) =
v1 − f (v1)

R1
with f (v1) =

{
E sign (v1) , |v1| > E/σ,
σv1, |v1| ≤ E/σ,

where

σ = 1 +
R2

R3

is the gain of the operational amplifier configured (using feedback) as a noninverting
amplifier and E is its saturation voltage.

With the following linear change of variables and time rescaling,

v1 =
E

σ
y1, v2 =

E

σ
y2, iL =

E

σ

√
C2

L
y3, τ = RC1τ̄ ,(2.2)

and defining the following five nonnegative dimensionless parameters,

r =
R

R1
, c =

C1

C2
, μ = (σ − 1)

R

R1
=

RR2

R1R3
, ρ =

R2C2
1

LC2
, κ =

RR0C1

L
,(2.3)

we can express system (2.1) as follows:

d

dτ̄

⎡⎣ y1

y2

y3

⎤⎦ =

⎡⎣ −r − 1 1 0
c −c −√

ρ
0

√
ρ −κ

⎤⎦⎡⎣ y1

y2

y3

⎤⎦+

⎡⎣ μ + r
0
0

⎤⎦ sat (y1) .(2.4)

For the subsequent analysis, we will choose μ and ρ as the main bifurcation parame-
ters. In practice, to detect the bifurcation in a experimental way, it is better to tune
the parameter μ by means of a variable resistor R2, which is equivalent to varying the
gain σ.

The observability matrix for system (2.1) is

O =

⎡⎣ eT1
eT1 A
eT1 A

2

⎤⎦ =

⎡⎣ 1 0 0
−r − 1 1 0

(r + 1)2 + c −c− r − 1 −√
ρ

⎤⎦ ,

which has full rank for all the values of components of the circuit. From Proposition
16 of [CFPT02], system (2.1) can be expressed in Liénard’s generalized form (1.2)
with the following values:

T = μ− c− κ− 1, t = −r − c− κ− 1 < 0,
M = (c + 1)κ− (c + κ)μ + ρ, m = (c + 1)κ + (c + κ)r + ρ > 0,
D = (cκ + ρ)μ− ρ, d = − (cκ + ρ) r − ρ < 0.

(2.5)D
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1938 EMILIO FREIRE, ENRIQUE PONCE, AND JAVIER ROS

M = 0

D = 0

MT = D

–0.05

0

0.05

0.1

0.15

0.2

0.25

ρ

0.2 0.4 0.6 0.8 1

μ

Fig. 3. The parabolic arc (thick line) in the plane (μ, ρ) corresponding to the bifurcation locus
of Proposition 2.1 for c = 0.2 and κ = 0.05. The horizontal line indicates the path followed as μ
varies for a fixed value of ρ. The dashed line represents points with D = 0, so that above it we have
D < 0. At the dotted straight line we have M = 0, and above this line we have M > 0. The vertical
line corresponds to μ = μ∗.

Note that these coefficients are the linear invariants of the two matrices involved, so
that their computation is straightforward, and that it is not necessary to explicitly
compute the linear change of variables required to get the Liénard form for applying
Theorem 1.1.

The equation MT −D = 0 leads to

(c + κ)μ2 −
[
(c + κ)2 + c + 2κ

]
μ + ρ(c + κ) + κ (c + 1) (c + κ + 1) = 0,(2.6)

which can be rewritten as (μ− μ∗)
2 + ρ− ρ∗ = 0, where

μ∗ = 1 +
(c + κ)2 − c

2(c + κ)
,

ρ∗ = μ∗
2 − κ(c + 1)

(
1 +

1

c + κ

)(2.7)

represent the coordinates in the (μ, ρ)-plane of the vertex of the quadratic (2.6); see
Figure 3. Now the application of Theorem 1.1 allows us to state the following result.

Proposition 2.1. Let us consider system (2.4) and assume that c > 0 and the
parameter κ satisfies

0 < κ < κmax(c) =

√
c2 + c− c

2
.(2.8)

Then the system undergoes the focus-center-limit cycle bifurcation described in Theo-
rem 1.1 at the points of the (μ, ρ)-plane belonging to the parabolic arc defined by the
quadratic equation

(μ− μ∗)
2 + ρ− ρ∗ = 0(2.9)

D
ow

nl
oa

de
d 

04
/1

8/
17

 to
 1

50
.2

14
.1

82
.2

08
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



3D FOCUS-CENTER-LIMIT CYCLE BIFURCATION 1939

1

κ

κ

MAX

κ

=0.25κ

0

0.1

0.2

0.3

0.5 1 1.5 2

c

Fig. 4. The graphs of the functions κmax(c) and κ1(c), which determine different regions in the
plane (c, κ) as described in statements (a) and (b) of Proposition 2.1. Note the horizontal asymptote
at κ = 1/4.

and satisfying

ρ > (c + κ)μ− (c + 1)κ.(2.10)

The endpoints of the above parabolic arc are

(μ1, ρ1) =

(
1 − c + c

2(c + κ)
,
c(1 − 2κ) − c

2

)
, (μ2, ρ2) =

(
1 − c− c

2(c + κ)
,
c(1 − 2κ) + c

2

)
,

where

c =
√
c2(1 − 2κ)2 − 4c(c + 1)κ2.

In the points of the above parabolic arc, the inequality D < 0 holds, and the following
cases arise:
(a) If 0 < c < 1 and 0 < κ < κ1, where κ1 = κ1(c) is the only positive root of the

quartic

(c + κ)4 + 4cκ(c + κ) − c2 = 0,(2.11)

then μ1 < μ∗ < μ2 and two subcases appear; see Figure 4.
(a.1) If μ1 < μ < μ∗, then at the bifurcation points of the parabolic arc given by

(2.9)–(2.10) one has γ > 0. Consequently, when ρ varies, the bifurcation is
supercritical and the limit cycle is orbitally asymptotically stable.

(a.2) If μ∗ < μ < μ2, then γ < 0 at the bifurcation points of the parabolic arc. Here,
when ρ varies, the bifurcation is subcritical and the limit cycle is unstable.

(b) If 0 < c < 1 and κ ≥ κ1, or c ≥ 1, then all the bifurcation points of the parabolic
arc (2.9)–(2.10) satisfy γ > 0. Therefore, the bifurcation is supercritical and
the bifurcating limit cycle is orbitally asymptotically stable.
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1940 EMILIO FREIRE, ENRIQUE PONCE, AND JAVIER ROS

Table 2.1

List of components for the circuit.

C = C1 = C2 100 nF
L 220 mH
R1 10 kΩ
R3 2200 Ω
R 1 kΩ
R0 220 Ω

Proof. Conditions T = Tc and M > 0 of Theorem 1.1 lead to MT −D = 0, which
is equivalent to (2.9), and to (2.10). After some manipulations, we get the inequality

(c + κ)μ2 − (c + 2κ)μ + (c + 1)κ < 0,

whose discriminant, namely c2 − 4c2κ − 4cκ2, is positive due to (2.8). In fact, this
expression coincides with c2. The endpoints of the parabolic arc can be obtained by
solving the equation M = 0 and (2.9).

To show that D < 0 at the bifurcation values, as we are working at points where
MT −D = 0 along with M > 0, it suffices to show that T < 0, which is a trivial task.

To prove statements (a) and (b), it is enough to study the sign of the coefficient
γ in Theorem 1. Using the condition MT −D = 0, we have

γ = MT (M −m) + M(d− tM) = M [T (M −m) + d− tM ],

and with M > 0 we get sign (γ) = sign [T (M −m) + d− tM ]. Thus, using (2.5),
(2.6), and canceling a factor r + μ > 0, we conclude that

sign (γ) = sign
[
(c + κ)2 + c + 2κ− 2(c + κ)μ

]
= sign (μ∗ − μ) .(2.12)

Assume now that 0 < c < 1 and 0 < κ < κ1. Thus, the left-hand side of (2.11) is
negative, which implies (c + κ)2 < c. Then μ1 < μ∗ < μ2, and statement (a) follows.

When c ≤ 1 and κ ≥ κ1, we have (c + κ)2 ≥ c. If c > 1, then we have (c + κ)2 >
c > c. In both cases, we conclude that μ∗ ≥ μ2, and statement (b) follows.

For the sake of completeness, if we define, for 0 < c < 1, the constants

q1 =
3

√
27c + 26 + 3

√
81c2 + 156c + 75 > 0, q2 = q1 +

1

q1
− 4 > 0,

we obtain

κ1(c) =

√
c

6
q2 +

√
c

√
6c

q2
− cq2

6
− 2c− c,

which is represented for 0 < c < 1 in Figure 4.
The above proposition enables us to design the electronic oscillator by choosing

adequately the component values of the circuit. In particular, in order to minimize
the signal distortion from the sinusoidal wave form, one must select parameters not far
from the bifurcation curve where the onset of periodic oscillations has been predicted.

To assess the accuracy of piecewise linear modeling for this circuit, a SPICE
implementation of the circuit was made; see [QNPS93]. The values chosen for the
components are in Table 2.1, while the operational amplifier used was an LM324,
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3D FOCUS-CENTER-LIMIT CYCLE BIFURCATION 1941

M = 0

MT-D = 0

D = 0

0

0.2

0.4

0.6

0.8

1

ρ

0.2 0.4 0.6 0.8 1

μ

Fig. 5. The parabolic arc (thick line) in plane (μ, ρ) predicted by Proposition 2.1 for κ = 0.1.
The horizontal line indicates the path followed as μ varies for the fixed value of ρ used in the
simulations. The dashed line represents points with D = 0, so that above it we have D < 0. The
dotted straight line indicates points with M = 0, and above it we have M > 0.

with a supply voltage of 9V and a measured saturation voltage of 8.5V (with slight
variations around).

For these values, we have

c =
C1

C2
= 1, κ =

RR0C

L
= 0.1 <

√
2 − 1

2
≈ 0.2071,

so that we can apply Proposition 2.1 and, in particular, its statement (b). Note that

μ =
RR2

R1R3
≈ R2

22000
, ρ =

R2C

L
≈ 0.4545,

so that by varying R2 we move μ, describing a horizontal path that crosses the curve
corresponding to the locus of bifurcation points, as shown in Figure 5. For the above
value of ρ, the bifurcation takes place for the value μ̄ ≈ 0.4924, in accordance with
(2.6), that corresponds with the value R2 ≈ 10833Ω, and oscillations will appear by
increasing R2 above this critical value.

In Figures 6 and 7, we show the comparison between some experimental results
taken from a SPICE simulation, once put into dimensionless form, and the predictions
of Theorem 1.1 for the amplitude and the period of the bifurcating limit cycle. The
excellent agreement achieved validates the piecewise linear model assumed for the
operational amplifier nonlinear characteristic.

3. Proof of Theorem 1.1. In this section we provide the results necessary to
prove Theorem 1.1.

For the critical value of the bifurcation parameter Tc = D/M , the matrix AC has
a pair of imaginary eigenvalues, so that for T in a neighborhood of Tc the eigenvalues
of AC will be α± iβ and δ ∈ R. The characteristic polynomial of AC is

p(λ) = det (AC − λI) = −λ3 + Tλ2 −Mλ + D,
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0.49 0.492 0.494 0.496 0.498 0.5 0.502 0.504 0.506 0.508 0.51
1

1.01

1.02
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1.04
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1.06

1.07

1.08

μ

a=
m

ax
 |x

1|

Fig. 6. Comparison for amplitude between SPICE simulation data (× × ×), the expression
corresponding to the two first non-null terms of Theorem 1.1 (—), and three non-null terms (-·-).

0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57
3

3.5

4

4.5

5

5.5

6

6.5

μ

P
er

io
d

Fig. 7. Comparison for period between SPICE simulation data (× × ×), the expression cor-
responding to the two first non-null terms of Theorem 1.1 (—), and three non-null terms (-·-).

and thus

T = δ + 2α,

M = 2αδ + α2 + β2,(3.1)

D = δ(α2 + β2).

When α = 0 and β > 0, or equivalently D = MT and M > 0, system (1.2)
has a linear center contained in an invariant plane given by δ2x1 − δx2 + x3 = 0.
Additionally, the outermost periodic orbit of the center is tangent to the planes Σ1

and Σ−1 at the points [1, δ, 0]
T

and [−1,−δ, 0]
T
, respectively. Consequently, the time
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τC

τC

τL

τL

x1
x1

xx
x

xx2 3

1

0

=−1 =1

Fig. 8. Sketch of a symmetrical periodic orbit which uses the three linear zones of system (1.2).

spent by this orbit in going from x0 to x1 is τC = π/β in the zone C, and obviously
τL = 0 in the zone L.

We want to analyze the possible bifurcation of a limit cycle from the linear center
in the zone C. (Obviously, it should be born from the outermost periodic orbit of the
center.) As system (1.2) is linear in every zone, it is possible to obtain its solutions
explicitly, and to identify symmetrical periodic solutions of the system living in the
three zones with the solutions of the equations

eACτCx0 − x1 = 0,

eALτLx1 −
∫ τL

0

eAL(τL−s)b ds + x0 = 0,
(3.2)

where τC and τL are the times spent by the semiorbit in each zone, and

x0 =

⎡⎣ 1
x0

2

x0
3

⎤⎦ , x1 =

⎡⎣ −1
x1

2

x1
3

⎤⎦ ,

are two intersection points of the orbit with the planes Σ1 and Σ−1, respectively (from
the symmetry, there will be two more, x2 = −x0 and x3 = −x1); see Figure 8. We
will refer to the system formed by (3.2) as the closing equations. The use of these
equations goes back to Andronov and coworkers [AVK66], and it was exploited by
Kriegsmann [Kr87] in the context of limit cycle bifurcations. This author studied the
rapid bifurcation in the Wien bridge oscillator, later revisited in [FPR99].

Starting from the critical value T = Tc and considering the outermost periodic
orbit of the corresponding center configuration, we want to use the closing equations
to analyze what happens with such periodic orbit as T varies, keeping M and D
constant and always assuming M > 0. To achieve this goal, it is more convenient to
vary the eigenvalues of AC in a neighborhood of (α, β, δ) = (0,

√
M,D/M), adding to

the closing equations (3.2) the last two equations of (3.1), to impose that M and D
are fixed.
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The sorted set formed by (3.2) and the last two equations of (3.1) will be denoted
by

F(z) = 0,(3.3)

where z = (α, β, δ, τC , τL, x
0
2, x

0
3, x

1
2, x

1
3), which constitutes a nonlinear system of eight

equations and nine unknowns, to be studied in a neighborhood of the point

z̄ =

(
0,
√
M,

D

M
,

π√
M

, 0,
D

M
, 0,−D

M
, 0

)
.

Obviously, we are interested in a branch of solutions of (3.3) passing through z̄, and
leading to positive values of τL. It turns out that system (3.3) has a trivial branch of
solutions that passes through z̄ and can be parameterized as

z(μ) =

(
0,
√
M,

D

M
,

π√
M

, 0,
D

M
+ μ, μ

D

M
,−D

M
− μ,−μ

D

M

)
(3.4)

for every real μ. This trivial branch will be called the spurious branch because, for
μ �= 0, these solutions do not correspond to periodic orbits of the system (1.2). The
Jacobian matrix of F in z̄ does not have full rank; in fact, as the following result shows,
the point z̄ is a branch point where two branches intersect each other. Moreover, we
obtain a new set of equations for which z̄ is nonsingular.

Lemma 3.1. For the closing equations (3.3) with M > 0, the following statements
hold:

(a) The fourth equation of (3.3), namely

F4(z) = 0,

is satisfied for every z with τL = 0.
(b) The function F̃4(z) such that F4(z) = τLF̃4(z) is an analytic function in a

neighborhood of z̄.
(c) If we define the modified closing equations

G(z) = 0,(3.5)

where G4 = F̃4 and Gi = Fi for i �= 4, then the solution set of (3.5) in a
neighborhood of z̄ is the solution set of (3.3) excepting the spurious branch
(3.4).

(d) For system (3.5) the point z̄ is a nonsingular point. Moreover, the solutions of
(3.5) are analytic functions of τL at 0, and their corresponding Taylor series
are

α =
M5/2γ

12π(D2 + M3)
τ3
L +

M1/2ξ1
720 pi(D2 + M3)

τ5
L + O

(
τ6
L

)
,(3.6)

β =
√
M − DMγ

12π(D2 + M3)
τ3
L − Dξ1

720πM(D2 + M3)
τ5
L + O

(
τ6
L

)
,(3.7)

δ =
D

M
+

D2γ

6πM1/2(D2 + M3)
τ3
L +

D2ξ1
360πM5/2(D2 + M3)

τ5
L + O

(
τ6
L

)
,(3.8)

τC =
π√
M

− τL +
M −m

12
τ3
L +

ξ2
720πM2

τ5
L + O

(
τ6
L

)
,(3.9)
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x0
2 =

D

M
+

M

2
τL +

Mt−D

12
τ2
L +

4Mγ + π
√
Mξ3

24πM3/2
τ3
L − ξ4

720M2
τ4
L

+

[
Dξ3 −M3d

24M2
(
eπD/M3/2 + 1

) − DM3/2γ

12π(D2 + M3)

]
τ4
L + O

(
τ5
L

)
,(3.10)

x1
2 = −D

M
+

M

2
τL − Mt−D

12
τ2
L − 4Mγ − π

√
Mξ3

24πM3/2
τ3
L +

ξ4
720M2

τ4
L

−
[
eπD/M3/2

(Dξ3 −M3d)

24M2
(
eπD/M3/2 + 1

) +
DM3/2γ

12π(D2 + M3)

]
τ4
L + O

(
τ5
L

)
,(3.11)

x0
3 =

D

2
τL +

(Mt−D)D

12M
τ2
L +

[
DM3/2γ

6π(D2 + M3)
+

Dξ3
24M2

]
τ3
L

− Dξ3 −M3d

12M2
(
eπD/M3/2 + 1

)τ3
L − Dξ4

720M3
τ4
L + O

(
τ5
L

)
,(3.12)

x1
3 =

D

2
τL − (Mt−D)D

12M
τ2
L −

[
DM3/2γ

6π(D2 + M3)
+

Dξ3
24M2

]
τ3
L

+
Dξ3 + eπD/M3/2

M3d

12M2
(
eπD/M3/2 + 1

)τ3
L +

Dξ4
720M3

τ4
L + O

(
τ5
L

)
,(3.13)

where

γ = DM −Dm + dM − tM2,(3.14)

ξ1 = 5D3M − 5D3m− 15D2M2t + 11D2Md + 4D2Mmt− 15DM4

+ 21DM3m + 9DM3t2 − 10DM2dt− 6DM2m2 + DM2mt2 + 15M5t

− 9M4d− 12M4mt + M4t3 + 6M3dm−M3dt2,

ξ2 = 5D2M − 5D2m− 10DM2t + 6DMd + 4DMmt− 9M4

+ 15M3m + 5M3t2 − 6M2dt− 6M2m2 + M2mt2,

ξ3 = D (D −Mt) + M2m,

ξ4 = 15D3 − 20D2Mt + 16DM2m + 4DM2t2 − 9M3d− 7M3mt + M3t3.

Proof. Statements (a) and (b) come from a direct inspection of (3.3).
Recalling (3.2), from statement (b) and (3.3) we conclude that

F̃4(z)
∣∣∣
τL=0

= lim
τL→0

1

τL
F4(z) = eT1 AL

⎡⎣ −1
x1

2

x1
3

⎤⎦+ eT1

⎡⎣ t− 2α− δ
m−M
d−D

⎤⎦ = −x1
2 − 2α− δ.

The above computation shows that F̃4 (z(μ)) = μ, so that the spurious branch (3.4)

does not belong to the solution set of F̃4 (z) = 0. Besides, every solution z of (3.3)
with τL �= 0 is a solution of (3.5), and statement (c) is proven.

For the computation of the Jacobian matrix ∂G/∂z|z=z̄ and the series (3.6)–
(3.13), we have used the following approach. For the first three rows of the closing
equations, we work with the equivalent expression

μ0e
δτCv + eατC cos (βτC) v̂+eατC

sin (βτC)

β
(AC − αI) v̂ − x1 = 0,
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where v =
[
1, 2α, α2 + β2

]T
is a right eigenvector of AC associated with the real

eigenvalue δ, and

v̂ = x0 − μ0v

is the projection (following the direction of v) of the vector x0 onto the invariant
plane associated with the complex eigenvalues of AC . Consequently, the coefficient
μ0 is

μ0 =
wTx0

wTv
=

δ2 − δx0
2 + x0

3

(δ − α)
2

+ β2
,

where wT =
[
δ2,−δ, 1

]
is a left eigenvector of AC associated with the eigenvalue δ.

Regarding the next three rows of the closing equations, it is useful to write the
matrix exponentials in series of τL. Then, in computing partial derivatives with
respect to the variables other from τL, one only needs to consider the terms of degree
zero in τL. This comment is also useful for obtaining F̃4 from F4.

Thus, the Jacobian matrix ∂G/∂z|z=z̄ is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− π√
M

0 DMK 0 0 −DMK M2K 0 0

− πD
M3/2 −π 0 −M 0 −1 0 −1 0

0 −πD
M DM2K −D 0 −DM2K M3K − 1 0 −1

−2 0 −1 0 M
2 0 0 −1 0

0 0 0 0 −M 1 0 1 0
0 0 0 0 −D 0 1 0 1

2D
M 2

√
M 0 0 0 0 0 0 0

0 2D√
M

M 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

K =
eπD/M3/2

+ 1

D2 + M3
.(3.15)

If we remove the fifth column (corresponding to τL), the determinant of the resulting
matrix is equal to

−2πM2
(
eπD/M3/2

+ 1
)
�= 0,

and hence the matrix has full rank. From the implicit function theorem for ana-
lytic functions (see [CH82]) we obtain statement (d). All the computations of the
above series expansions have been checked with the symbolic manipulator Maple; see
[MGHLVM03].

In what follows, we give an auxiliary result to analyze the stability of the bifurcat-
ing limit cycle. First, we must study the behavior of the return map near a periodic
orbit of three zones. Due to the symmetry, we need to use only the semiorbit that
starts from x0 ∈ Σ1, crosses Σ−1 at the point x1, and returns to this section at the
point x2 = −x0 ∈ Σ−1. We denote by p0, p1 ∈ R

2, the coordinates of x0 and x1

restricted to their respective sections. From the transition maps associated with the
flow, locally defined at the points x0 and x1, it is possible in adequate neighborhoods
at the sections to define the functions providing the corresponding restricted coordi-
nates. Let us denote by πC , πL such functions, satisfying πC(p0)=p1, πL(p1) = −p0,
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and let πLC = πL ◦ πC . We will let τC(p0) and τL(p1) denote the times spent by the
semiorbit in passing from x0 to x1 and from x1 to x2, respectively, and write Dp(·)
to indicate the derivative with respect to the restricted coordinates. The next result
shows how to compute the derivative DpπLC , intimately related to the monodromy
matrix associated with the periodic orbit.

Proposition 3.2. Consider a symmetrical periodic orbit of system (1.2) that
uses the three zones, starting from x0 ∈ Σ1 with coordinates p0 ∈ R

2, passing through
x1 ∈ Σ−1 with coordinates p1 ∈ R

2, and transversal to both sections. Then, the
product of the two matrices[

1 DpτL(p1)
0 DpπL(p1)

] [
−1 DpτC(p0)
0 DpπC(p0)

]
=

[
−1 DpτC(p0) + DpτL(p1)DpπC(p0)
0 DpπLC(p0)

]
is similar to

eALτL(p1)eACτC(p0).(3.16)

Proof. It is enough to use the explicit expressions of the solutions of system (1.2)
at every zone and the continuity of the vector field; see [Ro03] for more details.

The following lemma deals with a technical result that allows us to invert certain
power series; see [FPR99] for a proof.

Lemma 3.3. Let be η = ξnρ(ξ) with n odd, where ρ is a real function analytic at
0 and such that ρ(0) = ρ0 �= 0. Then there exists a real function χ analytic at 0, with

χ(0) �= 0 and such that ξ = η
1
nχ(η

1
n ).

If we select only the solutions of the closing equations with τL > 0 but sufficiently
small, and 0 < τC < π/

√
M but sufficiently close to π/

√
M , then we can assure that

such solutions correspond to symmetrical and transversal periodic orbits; see [Ro03]
for more details. Reciprocally, if we take a symmetrical periodic orbit that uses the
three zones and is sufficiently close to the outermost periodic orbit of the center that
exists for the critical values of parameters, then its corresponding values τC > 0,
τL > 0, x0, x1, and remaining parameters determine a point z satisfying the closing
equations. Therefore, we can establish with the above restrictions a correspondence
between solutions z of closing equations and symmetrical periodic orbits. This corre-
spondence, along with the uniqueness of the solution obtained in Lemma 3.1, ensures
that the corresponding bifurcating periodic is an isolated periodic orbit, that is, a
limit cycle.

Coming back to the statements of Theorem 1.1, we begin by using statement (d)
of Lemma 3.1. We can compute T (τL) using that T = 2α + δ and the corresponding
expansions (3.6) and (3.8) for α and δ, obtaining

T =
D

M
+

γ

6πM1/2
τ3
L +

ξ1
360πM5/2

τ5
L + O

(
τ6
L

)
,(3.17)

where γ and ξ1 are given in the statement of Lemma 3.1. From (3.17) and taking into
consideration that τL must be positive, it is obvious that MT − D and γ have the
same sign, and so the condition γ(MT −D) > 0 holds.

Now, if we apply Lemma 3.3 to (3.17), taking n = 3, η = MT −D, and ξ = τL,

we conclude that τL is an analytic function at the origin in the variable (MT −D)
1/3

.
A standard computation leads to the expansion

τL =
(6π)

1/3
(MT −D)

1/3

M1/6γ1/3
+

πξ1
30M5/2γ2

(MT −D) + O (MT −D)
4/3

.(3.18)
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Due to the symmetry of the orbit, its period is equal to 2(τC + τL). Substituting
expansion (3.18) into (3.9), and computing the above expression for the period, we
get the expansion given for Per.

We will now determine the amplitude of the periodic orbit. By using the variation
of parameters formula, the solution of system (1.2) in zone R is

x(τ) = eALτx3(τL) +

∫ τ

0

eAL(τ−s)b(τL) ds,(3.19)

so that its first component is

x1(τ) = eT1

⎧⎨⎩eALτ

⎡⎣ 1
−x1

2 (τL)
−x1

3 (τL)

⎤⎦+

( ∞∑
i=0

Ai
L

τ i+1

(i + 1)!

)
b(τL)

⎫⎬⎭ .(3.20)

Let τ∗ be the time when |x1| attains its maximum value in zone R. Taking
derivatives with respect to τ in (3.20), and imposing that it must vanish at τ∗, we get

G(τL, τ
∗) =

dx1(τ)

dτ

∣∣∣∣
τ=τ∗

= eT1 e
ALτ∗

⎡⎣ x1
2 (τL) + T (τL)
x1

3 (τL) + M
D

⎤⎦ = 0.(3.21)

Now using expressions (3.11) and (3.13) and computing the power series of G in
(τL, τ

∗) at (0, 0), we obtain

G(τL, τ
∗) =

M

2
τL −Mτ∗ +

D −Mt

12
τ2
L +

Mt−D

2
τLτ

∗ +
D −Mt

2
τ∗2 + O(τL, τ

∗)3.

Hence, (3.21) defines implicitly in a neighborhood of (0, 0) a function τ∗ = ψ(τL) such
that G(τL, ψ(τL)) = 0, namely,

τ∗ =
1

2
τL +

Mt−D

24M
τ2
L + O(τ4

L).

Substituting the above expansion together with (3.11), (3.13), and (3.17) into the
expression (3.20), we get

a = x1(τ
∗) = 1 +

M

8
τ2
L +

1

1152M
(13D2 − 11DMt + 15M2m− 2M2t2)τ4

L + O(τ5
L).

Using expression (3.18) for τL, we obtain the final expression for the amplitude a.
Let us now compute the characteristic multipliers of the bifurcating limit cycle.

Due to the similarity relationship established in Proposition 3.2, we conclude that the
product exp(ALτL) ·exp(ACτC) corresponding to a solution of (3.5) has an eigenvalue
equal to −1. We will denote by λr and λa the other two eigenvalues that correspond
to the eigenvalues of the derivative DpπLC(p0) of the transition map associated with
the semiorbit. The product of the three eigenvalues is then equal to

−λrλa = det
(
eALτL

)
det
(
eACτC

)
.

Using that det(eAτ ) = exp(τ trace(A)), we get

−λrλa = eτLt+τCT .(3.22)
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3D FOCUS-CENTER-LIMIT CYCLE BIFURCATION 1949

The expansion of the product of exponentials in (3.16) leads to an expression of
the form

eALτLeAC(τL)τC(τL) = H0 + τLH1 + τ2
LH2 + · · · .(3.23)

To compute the above matrices Hi, we write(
I + ALτL + A2

L

τ2
L

2!
+ · · ·

)
×
(
eAC(0)τC(0) + τL

d

dτL
eAC(τL)τC(τL)

∣∣∣∣
τL=0

+
τ2
L

2!

d2

dτ2
L

eAC(τL)τC(τL)

∣∣∣∣
τL=0

+ · · ·
)
.

From expansions (3.6)–(3.13), we obtain τC(0) = π/M1/2, τ ′C(0) = −1, τ ′′C(0) = 0,
A′

C(0) = A′′
C(0) = 0, and using these values in the above expression, we finally get

H0 = eAC(0)τC(0) =

⎡⎣ D2K − 1 −DMK M2K
0 −1 0

D2MK −DM2K M3K − 1

⎤⎦ ,

H1 =

⎡⎣ t−D/M
m−M
d−D

⎤⎦ [ D2K − 1 −DMK M2K
]

and

H2 =
Mt−D

2M
H1,

where K has been defined in (3.15), and it is emphasized that H1 and H2 are rank-one
matrices.

The matrix H0 has eigenvalues −1 (double) and λ0 = exp(πD/M3/2). For the
single eigenvalue λ0, we select a right eigenvector v0 = [1, 0,M ]T and a left eigenvector
wT

0 = [D2/M2,−D/M, 1]. We will denote by λa the eigenvalue of DπLC(p0) that
for τL = 0 is equal to λ0. Since the eigenvalue λ0 of H0 is simple, we can apply
perturbation theory (see section 2.8 of [Wi65]) to assure that the equality(

H0 + τLH1 + τ2
LH2 + · · ·

) (
v0 + τLv1 + τ2

Lv2 + · · ·
)

= (λ0 + τLλ1 + τ2
Lλ2 + · · · )

(
v0 + τLv1 + τ2

Lv2 + · · ·
)

holds for certain vectors v1, v2 . . . . As a consequence of Proposition 3.2 and (3.23),
we get

λa = λ0 + τLλ1 + τ2
Lλ2 + · · · .

After some computations, we arrive at

λ1 =
wT

0 H1v0

wT
0 v0

=

(
Mt−D

M
+

γM

D2 + M3

)
λ0,

λ2 =
wT

0 (H2v0 + (H1 − λ1I)v1)

wT
0 v0

=
(Mt−D)

(
D2 + M3

)
+ γ

2M2 (D2 + M3)
2
(λ0 + 1)

×
[
(Mt−D)

[(
D2 + M3

)
λ0 + D2 −M3

]
+ 2M2 (dM −Dm)

]
λ0.
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The logarithms μr and μa of characteristic multipliers of the complete periodic
orbit must satisfy

eμr = λ2
r, eμa = λ2

a,(3.24)

while from (3.22) we get the relationship

μr + μa = 2tτL + 2TτC .(3.25)

From (3.24) and using the computed simple eigenvalue λa, we obtain

μa = 2 log
[
λ0 + λ1τL + λ2τ

2
L + O(τ3

L)
]

= 2 log λ0 + 2 log

[
1 +

λ1

λ0
τL +

λ2

λ0
τ2
L + O(τ3

L)

]
= 2λ0 + 2

λ1

λ0
τL +

[
2
λ2

λ0
− λ2

1

λ2
0

]
τ2
L + O(τ3

L).

Substituting here λ1 and λ2, and using expansion (3.18) of τL, we finally get the
expression for μa that appears in Theorem 1.1. Using in (3.25) the expansions (3.9)
for τC and (3.18) for τL, we compute μr.

Since the last assertion of Theorem 1.1 is a direct consequence of previous state-
ments, its proof is now completed.
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