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Abstract. We present a complete description of the stationary and dynamical behavior of
semiconductor superlattices in the framework of a discrete drift model by means of numerical contin-
uation, singular perturbation analysis, and bifurcation techniques. The control parameters are the
applied DC voltage (φ) and the doping (ν) in nondimensional units. We show that the organizing
centers for the long time dynamics are Takens–Bogdanov bifurcation points in a broad range of pa-
rameters and we cast our results in a φ-ν phase diagram. For small values of the doping, the system
has only one uniform solution where all the variables are almost equal. For high doping we find
multistability corresponding to domain solutions and the stationary solutions may exhibit chaotic
spatial behavior. In the intermediate regime of ν the solution can be time-periodic depending on the
bias. The oscillatory regions are related to the appearance and disappearance of Hopf bifurcation
tongues which can be sub- or supercritical. These results are in good agreement with most of the
experimental observations and also predict new interesting dynamical behavior.
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1. Introduction. The term “superlattice” (SL) was proposed in 1969 by Esaki
and Tsu to refer to a man-made semiconductor structure, created by the periodic
deposition of different semiconductors [12, 13]. This results in a periodic array of
quantum wells and barriers formed by the two distinct elements where the main charge
transport mechanism is resonant tunneling (sequential or coherent). This gives rise
to a strong nonlinearity in the transport process, with several regions of negative
differential conductivity (NDC). The electronic properties can be further adjusted by
means of an externally applied voltage. The optical and transport properties of an
SL can be designed and controlled at will, by changing the composition, dimensions,
and doping concentration of the regions during the growing process.

Depending on all these conditions (number of quantum wells, doping density,
applied voltage, etc.), interesting spatiotemporal structures have been observed in
experiments. They include spatially uniform electric field, nonuniform electric field
(domains), and self-sustained oscillations due to domain motion [5, 11, 16]. The
current-voltage characteristic curve (I − φ) presents different structures in each case.
Recently, it has been shown that devices based on semiconductor SLs can be used as
tunable GHz oscillators and for higher temperatures [21] even spontaneous or driven
chaotic current oscillations have been reported [47, 26]. Thus doped semiconductor
SLs are a very interesting example of a nonlinear dynamical system with a large
number of degrees of freedom.

In principle, transport in semiconductor SLs should be investigated at the quan-
tum mechanical level. A general approach is to derive and solve quantum kinetic

∗Received by the editors April 3, 1998; accepted for publication (in revised form) December
8, 1999; published electronically June 15, 2000. This work was partially supported by Junta de
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2030 M. MOSCOSO, J. GALÁN, AND L. L. BONILLA

equations for nonequilibrium Green functions (NGF) [18]. A starting point of the
NGF approach is to use a tight-binding Hamiltonian and a basis of Wannier func-
tions localized at the different SL wells [44]. This setting implies that the spatial
coordinates are discrete numbers representing well indices. In this representation,
possible spatially nonlocal terms of the kinetic equations are replaced by sums, which
are easier to handle. However promising, the NGF approach has been worked out
only for stationary states and is subject to severe restrictions such as considering a
constant electric field throughout the SL [44]. These restrictions preclude explaining
the spatiotemporal structures mentioned above. Despite this, the NGF approach has
already scored important successes such as a better quantitative calculation of static
current-voltage characteristics of SL. Furthermore, this approach has been used to
ascertain in which cases simpler theories hold. The main simpler theories are these
(see Figure 1 of [44]):

(i) Semiclassical calculations of miniband transport using the Boltzmann trans-
port equation [30] or simplifications thereof, such as hydrodynamic [7] or drift-diffusion
[38] models. These calculations hold for strongly coupled SL at low fields. In the mini-
band transport regime, electrons traverse the whole SL miniband thereby performing
Bloch oscillations and giving rise to NDC for large enough electric fields [13]. The
latter may cause self-sustained oscillations of the current due to recycling of charge
dipole domains as in the Gunn effect of bulk n-GaAs [7].

(ii) Wannier–Stark (WS) hopping transport in which electrons move parallel to
the electric field through scattering processes including hopping transitions between
WS levels [35]. Calculations in this regime hold for intermediate fields, larger than
those corresponding to collisional broadening of WS levels, but lower than those cor-
responding to resonant tunneling.

(iii) Sequential tunneling calculations valid for weakly coupled SL (coherence
length smaller than one SL period) at basically any value of the electric field [22, 1, 43].

On the other hand, the description of electric field domains and self-sustained
oscillations in SL has been made by means of discrete drift models. These models use
simplified forms of the sequential tunneling current through SL barriers and discrete
forms of the charge continuity and Poisson equations [34, 3, 2]. Discrete drift models
yield good descriptions of nonlinear phenomena in weakly coupled SL. Recently, these
models have been derived from sequential tunneling microscopic descriptions [6]. We
shall now briefly describe the discrete drift model of [2], indicating connections to
the more detailed sequential tunneling model of [1] whenever appropriate. For a full
description of this model and the derivation of discrete drift-diffusion models, see [6].

We consider that each quantum well j of the SL may be characterized by the
local value of the electric field, Ej , and by the two-dimensional charge density, nj , at
the well. In more detailed models, it is necessary to distinguish between drops of the
electric potential at the barriers from those at the wells [1]. In the usual discrete drift
model, these potential drops (proportional to the electric field) are not distinguished.
However, we need to distinguish momentarily between potential drops at barriers and
wells in order to understand the Poisson equation written below. Let us label SL
barriers starting from the zeroth barrier separating the injecting contact from the SL.
Then the jth barrier separates wells j and j + 1. Ej is the average field at the region
comprising the jth well and the jth barrier. For weakly coupled SL, electrons take a
long time before they can escape well j by tunneling through the jth barrier to the
adjacent well, j + 1 [3, 2, 1]. Therefore at a high applied electric field, they tend to
accumulate just at the end of the well, where the barrier begins. Thus we consider
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BIFURCATION IN SUPERLATTICES 2031

that the electron density is singularly concentrated on a plane located at the end of
the jth well [1, 6]. Then the averaged Poisson equation relating the two-dimensional
charge density at well j to the electric fields at the barriers j − 1 and j (which bound
the well) is

Ej − Ej−1 = ν(nj − 1) .(1.1)

We are using the nondimensional variables defined in [21], where characteristic values
of SLs used in experiments are given. The parameter ν is the dimensionless doping
at the wells. Notice that placing the electron plane at different locations inside the
well will result in different forms of (1.1), corresponding to different discretizations of
a spatial derivative. It is well known that differencing schemes may strongly affect
the dynamics of a system described by ordinary or partial differential equations; see
[46, 39, 40] and references therein. Our discrete drift model is a model on its own,
not a numerical scheme for a continuous model of transport in weakly doped SL. To
the best of our knowledge, a time-dependent, spatially continuous, quantum model of
vertical transport in weakly coupled SL does not yet exist.

Another equation of the discrete drift model is charge continuity, which establishes
that the rate at which nj changes is proportional to the tunneling current arriving
to the well j from j − 1 minus the tunneling current from well j to well j + 1. This
equation is equivalent to Ampere’s [3, 2]: the total current density through the SL,
I, is the sum of Maxwell’s displacement current, dEj/dt, and the tunneling current
from well j to well j + 1, Jj→j+1:

dEj

dt
+ Jj→j+1 = I .(1.2)

The charge continuity equation may be obtained by differentiating (1.1) with
respect to time and then substituting (1.2) in the result. The constitutive relation
linking Jj→j+1 to Ej and nj may be obtained from quantum mechanical or phe-
nomenological considerations; see [43] for discussions. Except at low biases where a
reverse tunneling current should be included, the following constitutive relation [3]
includes all the relevant physics:

Jj→j+1 = njv(Ej) .(1.3)

Here v(Ej) has maxima at the (resonant) fields where energy levels of neighboring
quantum wells are aligned. In this paper, we only consider voltages corresponding to
fields between two successive resonances (not including the one at zero field). Then
we can use a velocity curve with a single minimum as depicted in Figure 1, where
the peak at low field values has been omitted. With the dimensionless units of [2],
v(E) has a maximum vM = v(1) = 1 and a minimum vm = v(Em) ≈ 0.32, with
Em > 1 (see Figure 2(a)). The negative slope between maximum and minimum is
the NDC mentioned above. This is a purely quantum mechanical effect (due to the
alignment or misalignment of energy levels) and it constitutes the essential quantum
effect which necessarily has to be included in our model. In our calculation, v(E) is a
phenomenological curve that reproduces the experimental current voltage curves and
is consistent with the usual expressions in the literature [22, 1]. It has been computed
with the following equation:

v(E) =
1

vo

(
A0 +

A1

(E − E1)2 + Γ2
1

+
A2

(E − E2)2 + Γ2
2

)
,(1.4)

D
ow

nl
oa

de
d 

04
/1

7/
17

 to
 1

50
.2

14
.1

82
.2

08
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p
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Fig. 1. Velocity curve (v(E)) as a function of the electric field. It has a maximum vM =
v(1) = 1, and a minimum vm = v(Em) ≈ 0.32, with Em > 1. The negative slope between maximum
and minimum is the negative differential conductivity mentioned in the text.

where E1 = 1 and E2 = 2.7 are the values of the energy levels in the well, A1 = 0.011
and A2 = 0.05 are proportional to the transmission coefficients across the barrier from
the first and second energy levels, Γ1 = 0.3 and Γ2 = 0.6 are the broadening terms
related to scattering, and A0 and v0 are normalizing factors that have been taken so
that v(0) = 0 and v(1) = 1. In [6], it has been shown that the general form of the
tunneling current density at low temperatures is

Jj→j+1 = njv(Ej) −D(Ej) (nj+1 − nj) .

Here the discrete diffusion term is due to reverse tunneling current acting at low
fields: the diffusion coefficient D(Ej) decreases rapidly to zero as Ej increases. At
the voltages we are interested in, D = 0, and we obtain (1.3).

To complete the description of the model, we add the condition that the voltage
drop across the SL is kept constant,

1

N

N∑
j=1

Ej = φ ,(1.5)

where φ is the external applied voltage and N is the total number of quantum wells
in the SL. Furthermore, we need a boundary condition for E0, the average field before
the SL,

(E1 − E0) = cν(1.6)

(equivalent to n1 = 1 + c), where c > 0 is a third parameter in our model. Equation
(1.6) is a simplified model for the contact region before the SL: the most general
boundary condition on physical grounds is a relation between n1, E1, and I [6]. The
physical origin of c is clear for an electronically doped structure (n-i-n): due to the
different electron concentrations at each side of the first barrier, some charge will be
transferred from the contact to the first quantum well. This creates a small dipole
field which cancels the electron flow. More complicated boundary conditions may be
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BIFURCATION IN SUPERLATTICES 2033

proposed based upon models of the injecting and receiving contact regions outside
the SL [1, 6]. There are wavefront solutions of (1.1)–(1.6) traveling from left to
right across the SL for appropriate doping. A wavefront has a step-like profile of
the electric field, which increases from a constant value to another one as the well
index increases. The domain wall joining regions (electric field domains) where the
field is constant contains an excess of electrons, and the wavefront is called a (charge)
monopole [5, 21]. The boundary condition at the injecting contact selects whether
self-sustained oscillations of the current are due to recycling of monopoles or dipoles
(pulses of the electric field) [36]. The condition (1.6) selects monopoles as responsible
of self-sustained current oscillations, which is consistent with the highly doped contact
regions used in the experiments reported in [21]; see [36]. A boundary condition at
the collector region (receiving contact) is not needed for the model (1.1)–(1.3). Only
at low enough electric fields does the presence of the diffusion term in the constitutive
relation require using another boundary condition in addition to (1.6) [6].

Equations (1.1)–(1.6) constitute the simplest model that retains the essential
physics of vertical sequential transport in an SL, allows a thorough analytical study
[42, 5], and successfully compares with the experiments reported in [16, 21]. Recently,
the bifurcation diagrams obtained in this paper were used to interpret experimental
observations of current self-oscillations in undoped, photoexcited SL [27]. Further-
more, B. Sun et al. observed how a transverse magnetic field induced self-sustained
oscillations of the current in a doped SL which had static current-voltage character-
istics at zero magnetic field [41]. These authors modified the velocity curve v(Ej) of
the constitutive relation (1.3) to account for the influence of the magnetic field. Then
they showed that simulations of the model (1.1)–(1.6) yield excellent agreement with
observed results [41].

Other models proposed recently include Laikhtman’s equivalent circuit model
[25], which does not use Poisson’s equation. For this model, the only coupling be-
tween wells comes from the bias condition. This produces spurious nonmonotonic
stable stationary field profiles. Prengel, Wacker, and Schöll [34] tried a rough elemen-
tary derivation of the constitutive relation for a more complicated two-level model
of transport between wells. This model (or successive elaborations thereof, including
randomness in the well doping) also explains the shape of stationary electric field pro-
files in the SL and the self-sustained oscillations (see [43]), but it is too complicated
to perform a detailed analysis. Numerical studies of the phase diagram (bifurcation
set) for this model are presented in [31, 32, 37].

In this work we undertake a complete description of the phase diagram of the
model (1.1)–(1.6) partially covered in previous works [3, 15, 21, 42]. We will show
that the dynamical behavior is very rich and the long time dynamics is governed by
Takens–Bogdanov bifurcation points in a broad range of parameters. This fact was
already noted by Patra et al. in their models [31, 33], Patra, Schwarz, and Schöll [32],
and Schöll et al. [37], although they had to include randomness in the doping to obtain
similar dynamic behavior. We have found new interesting phenomena that could be
relevant to the analysis and design of future devices: the existence of windows of
oscillatory behavior as the applied voltage is swept, subcritical as well as supercritical
Hopf bifurcations, and the possibility of spatially chaotic stationary solutions.

The rest of the paper is structured as follows. In section 2, the stationary and
periodic solutions of the model are investigated. In section 3 we present numerical
continuation results in the form of a phase diagram. In section 4 we present an
analytical study of the onset and end of the oscillatory solutions by means of an
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2034 M. MOSCOSO, J. GALÁN, AND L. L. BONILLA

amplitude equation, and we summarize our results in section 5. The details of the
calculations of section 4 are given in the appendices. In Appendix A we study the
linearization of the model and introduce some notation. The linear system with
a constraint has been solved in detail because this problem appears again in the
hierarchy of linear equations. In Appendix B we derive the solvability condition that
ensures the absence of secular terms. In Appendix C we derive the amplitude equation
with a multiple scale expansion.

2. Bifurcation diagram. In this section we study the equilibria and the time
periodic solutions of our model. It is convenient to eliminate the charge densities nj

from the Ampere equation (1.2) by means of Poisson’s equation (1.1). The result is

dEj

dt
+

(
1 +

Ej − Ej−1

ν

)
v(Ej) = I .(2.1)

The N + 2 equations, (2.1), (1.5), and (1.6), contain N + 2 unknowns (E0, E1, E2,
. . . , EN , I). Thus these equations and a set of initial conditions, Ej(0), constitute
a well-posed problem. The main parameters of our system are ν and φ. They are
proportional to the doping density in the quantum wells and to the external DC
voltage applied between the two SL ends, respectively. Note that the doping density
is fixed once the growth process has finished, while the external voltage can be easily
controlled in the laboratory.

2.1. Construction of stationary solutions and their current-voltage char-
acteristics. It is straightforward to show that the stationary solutions of the system
can be found by analyzing the following discrete map:

Ej−1 = f(Ej , ν, I)(2.2)

with

f(E, ν, I) ≡ E + ν

(
1 − I

v(E)

)
(2.3)

for j = 2, 3, . . . , N . The boundary condition implies a relation between E1 and I:

I = (1 + c)v(E1) ⇔ f(E1, ν, I) = E1 − cν .(2.4)

In the experimental situation, for a fixed ν, the current is measured as the applied
voltage is swept. To solve our stationary problem it is easier to fix I (or equivalently
E1), find the stationary electric-field profile {Ei}, i = 1, 2, . . . , N , by forward iterating
the map (2.2), and calculate the corresponding value of φ. Note that the constant
voltage condition (1.5) forces the current for each electric field profile to be

I =
1

N

N∑
i=1

(
1 +

Ej − Ej−1

ν

)
v(Ej) .(2.5)

Thus, I is a good scalar measure of the solution of the system, and therefore the I−φ
curve corresponds to a stationary bifurcation diagram.

In Figure 2 we show, in the solid lines, three different bifurcation diagrams for
ν = 0.1, 0.175, and 0.5 (N = 20 and c = 10−4 fixed). The different structures of these
diagrams are related to the properties of f(E, ν, I). This nonlinear map has been
investigated in detail in references [3, 42] and we include here a brief discussion for the
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BIFURCATION IN SUPERLATTICES 2035

Fig. 2. Stationary bifurcation diagram for three different values of ν. Figure (a) corresponds to
a value of ν for which the unique stationary solution for each φ is uniform (the stationary bifurcation
diagram coincides with the drift velocity v(E)). Figure (b) displays a Z-shape form and presents
oscillatory solutions for intermediate values of φ. The dotted lines are the maximum and minimum
of the oscillatory current. Note in the inset that there are two windows of oscillations. Figure (c)
exhibits several branches of domain solutions. In Figure (b) we have included the v(E) curve in
thick dashed lines.

sake of completeness. In the upper panel of Figure 3 we plot the map f for I = 0.6
and the same three values of the doping as in the previous figure. The stationary
solution is constructed and depicted in the lower panel. Figure 3(a) corresponds to a
uniform solution and Figures 3(b) and 3(c) to a nonuniform solution which presents
two regions where the electric field is almost constant (the domains). We call it a
domain solution. The map will not be invertible if its derivative,

∂f(E, ν, I)

∂E
= 1 + ν

I

v(E)2
dv(E)

dE
,(2.6)

changes sign on an interval of E. Due to the existence of the NDC (v(E) has a
negative slope on a subinterval of E > 1), this occurs for large enough ν. In the
case of a noninvertible f(E, ν, I) (see Figure 3(c)), multiple stationary solutions are
possible for the same value of I. Among these, there are domain solutions, and the
stationary I − φ curve oscillates with φ (Figure 2(c)).

For the lowest ν value in Figure 2, the I − φ characteristic curve coincides with
the v(E) curve (dashed line), which means a uniform stationary solution for all the
voltages φ. When the value of ν is increased (ν = 0.175 in Figure 2), the characteristic
curve develops a Z-shaped form, indicating nonuniform solutions for a wide range of φ
values. Furthermore there are time-periodic solutions for which we have depicted their
maximum and the minimum value of the current (obtained by direct simulation of the
system) as dotted lines in Figure 2. The oscillatory solution branches begin and end
via supercritical Hopf bifurcations. In the inset we show that there are two voltage
intervals for which time-dependent solutions exist. Finally, for still larger values of
the doping, ν = 0.5, the map f(E, ν, I) is noninvertible and the I−φ curve has 2N +1
branches corresponding to domain solutions. For a large enough I, their electric field
profiles consist of two regions with Ej roughly constant and approximately equal to
one of the three roots of the equation v(E) = I (the fixed points of f(E, ν, I)). Both
domains are joined by a transition layer in which the field takes on intermediate values
between the low field and the high field domains. We may define the domain boundary
as the first well after the low field domain has ended, for which the field takes values
on another branch of f(E, ν, I). If the electric field takes values only on branches of
v(E) with positive slope, the stationary state is stable [42]. The voltage (1.5) depends
on the position of the domain boundary, and this position characterizes each of the
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Fig. 3. Construction of the stationary state iterating map f equation (2.2) for I = 0.6, c =
10−4, and N = 20. The upper panel is the map and the lower panel is the electric field profile as
a function of the site for different values of ν. Column (a) corresponds to an uniform solution,
column (b) to an unstable stationary solution in the oscillatory regime, and column (c) to a domain
solution.

solution branches in Figure 2(c). The field value jumps from the first to the third
branches of v(E) for the N +1 stable solution branches of this diagram. Between two
stable branches there is a branch of unstable stationary solutions which have at least
one field value in the NDC region [42].

We have followed the solution branches bifurcating from the diverse stationary
states by numerical continuation. The resulting diagrams for large ν are not simple.
In Figure 4 we show a blow-up of a peak in the I − φ characteristic curve 2 for
1.1 < φ < 1.23 and ν = 0.5, and we have marked the bifurcation points by arrows.
The stable stationary solution (solid line) undergoes a Hopf bifurcation (HB) just
before a limit point (LP) is reached, and the stationary solution becomes unstable
(dashed line). After an additional limit point (not shown in the figure) the stationary
solution becomes stable again and heads to the next peak. Direct simulation of
the equations misses, as in the experimental situation, the unstable branch. We will
explain this behavior in section 3 in a more complete way when analyzing the structure
of the phase diagram.

2.2. Spatially chaotic stationary solutions. Note that the previous discus-
sion holds for a given value of the parameter c. We have chosen c positive and small
as an approximation for the real contact. However, these results do not depend qual-
itatively on the value of c. A more detailed characterization of the contacts would
involve a quantum mechanical microscopical calculation [1].

Let us relax this boundary condition and accept any value of E1 − E0 resulting
from solving the discrete map (2.2) backward. Thus we will fix I and EN and obtain
directly EN−1, EN−2, . . . , E1 via (2.2) and the corresponding value of φ. The result
of this construction is that the stationary problem has spatially chaotic solutions if
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Fig. 4. Blow-up of the I − φ characteristic curve for 1.1 < φ < 1.23 and ν = 0.5. The stable
stationary solution (solid line) undergoes a Hopf bifurcation (HB) just before a limit point (LP)
is reached and becomes unstable (dashed line). The squares are from numerical simulation of the
system and miss the unstable solutions.

the number of quantum wells N is large enough. This could have some relevance
for the dynamics. Actually, if we increase the value of ν we reach a point where the
derivative of the map (2.6) is equal to −1 and the map undergoes a period doubling
bifurcation, and a period doubling cascade.

Figure 5 shows the possible values of Ej for each value of ν (at I = 0.6 fixed).
For a given ν, we eliminate the first 50 transient values and we depict the next 450
values of Ej . There are values of ν for which a period doubling bifurcation occurs
(note where the single line splits into two branches). The period doubling occurs
for ν = 0.716, the period 4 for ν = 0.906, and for ν > 0.956 there are spatially
chaotic stationary solutions. For the latter case, all values of Ej in a certain range
are possible.

In Figure 6 we have depicted the electric field profiles corresponding to the above-
mentioned cases for different values of ν. Before leaving this subject let us note
that these solutions could be observed for very high doping (difficult to achieve in
experiments), but a spatially chaotic electric field domain configuration would be,
presently, of doubtful interest for a device.

3. Phase diagram. In the previous section we analyzed the construction of
stationary solutions and found that there are three different qualitative regimes:

• for small values of ν we have only stable uniform solutions;
• for large values of ν we have multistability and domain solutions;
• for intermediate values of ν and appropriate values of φ we find self-sustained

oscillations.

In this section we will locate these regions more precisely and cast the results in
a φ − ν phase diagram for fixed values of c and N (c = 10−4, N = 20). We will use
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Fig. 5. Period doubling cascade of the map f(Ej , ν, I) for I = 0.6. The electric field Ej are
plotted after a transient (50 < j < 500) as a function of ν.

numerical continuation and analytical results with the help of AUTO [10]. This kind
of analysis usually gives much more information than pure simulation and leads to
a deeper understanding of the different nonlinear spatiotemporal patterns found in
the system. We will classify these solutions, find their stability and multiplicity, their
bifurcation behavior and possible transition to chaotic behavior, thereby describing
the backbone of the dynamical system.

With this method we can study the whole parameter space (phase diagram) and
locate the points (organizing centers) near which the dynamical behavior of the system
is richer. In the present case these are codimension 2 Takens–Bogdanov bifurcation
points (TB), characterized by a linearization matrix having a pair of zero eigenvalues
which are not semisimple. At a TB point, a curve of saddle-node equilibria, a curve
of homoclinic solutions, and a curve of Hopf bifurcation points meet with the same
slope [45].

The large dimension of the problem and the strong nonlinearity of the equations
give rise to a complicated bifurcation behavior. Nevertheless the solutions present
a robust planar behavior within the parameter region where oscillatory behavior is
possible. This means that we have not found evidence of attractors more complicated
than those typical of two-dimensional dynamical systems despite dealing with systems
of N equations. We have also paid special attention to the curves of homoclinic orbits.
Away from the TB points, the saddle could evolve to a saddle-focus, develop spatial
structure, and become a Šil’nikov homoclinic orbit. In this case we would expect a
rich variety of periodic and aperiodic motions in its neighborhood [14]. This does not
occur for our equations and we have not found any signature of time-chaotic solutions.
In view of the recent experimental observation of undriven chaos (under DC voltage
bias conditions) [47], we conclude that our model equations need to incorporate addi-
tional physics to capture undriven chaos in these heterostructures. In this regard, a
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Fig. 6. Stationary solutions, constructed by backward iteration, for I = 0.6 and different values
of ν. After a transient of several sites the electric field is uniform for ν = 0.6 (a), period 2 for
ν = 0.8 (b), period 4 for ν = 0.95 (c), and spatially chaotic for ν = 1.1 (d).

promising modification of the discrete model which explicitly includes the scattering
and tunneling times has been recently presented [20].

The graphical representation of the parameter space (with indication of which
regions correspond to each different attractor) contains many curves. To organize
the presentation of our results, we shall first discuss several partial phase diagrams
containing important curves separating regions of the parameter space with different
dynamics. Later on we shall present the complete phase diagram.

3.1. Partial phase diagrams: The three main curves. In Figure 7 we
show three curves in the phase diagram. The solid thick line HB is a locus of Hopf
bifurcation points. Inside this curve stable solutions are time-dependent oscillations
of electric current and field. Parameter values on the dotted line SN correspond to
saddle-node stationary solutions. The thin line HOM corresponds to saddle points
having homoclinic orbits. The latter curve starts at the Takens–Bogdanov point where
all three curves intersect tangentially. From now on, we will call these curves the main
ones, because they control the dynamical behavior in a broad parameter range. There
are other secondary curves which we shall present once the main curves have been
described.

Within each parameter region we have described important solutions by means
of the usual symbols. Stable stationary solutions are filled dots, unstable ones are
hollow dots, and saddles are represented by crosses. Stable periodic orbits are solid
circumferences and unstable ones are dashed circumferences. According to Figure
7 there is a minimum doping value νH below which the only stable solutions are
stationary. On the other hand, the curve of saddle-nodes forms a cusp at νSN . This
indicates that for values of ν > νSN the curve of stationary states in the bifurcation
diagram (I-V characteristic curve) is Z-shaped and the system presents bistability.
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 φ
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x
νSN
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Fig. 7. Partial phase diagram for N = 20 and c = 10−4. We plot the main Hopf curve
(HB), the main curve of saddle-node of equilibria (SN), and curve of homoclinic orbits (HOM).
They meet in a tangent way at a Takens–Bogdanov point (TB). The symbols refer to the different
configurations: Stable stationary solutions are filled dots, unstable ones are hollow dots, and a cross
represents a saddle. Stable periodic orbits are solid circumferences.

For ν > νH fixed, a stationary solution loses stability via a Hopf bifurcation at
φ = φα. Then there appears a branch of time-periodic solutions with amplitudes
increasing as (φ − φα)1/2. It is worth noting that φα is not a monotone function
of ν. In fact, the curve HB presents several local minima and maxima. By fixing
a convenient value of the doping, for instance ν = 0.175, we find that there are
several Hopf bifurcation points at increasing values of the bias φ. This indicates the
existence of regions (windows) where time-periodic solutions exist followed by regions
where there are no oscillations. In Figure 2(b) we depicted the windows of oscillatory
solutions for this value of ν. An analogous behavior has been observed experimentally
in SLs where photo-excitation of carriers plays a role similar to doping in the present
SL system [24, 29].

In section 2 we found by direct simulation that a branch of oscillatory solutions
may end via a supercritical Hopf bifurcation (the amplitude of a solution shrinks to
zero at a finite frequency). Our phase diagram shows that another scenario is possible:
the oscillatory solution can disappear at a homoclinic orbit (with finite amplitude and
zero frequency). In Figure 7 we show that for ν < νHOM (νHOM is the minimum of
the curve HOM of saddles with homoclinic orbits) the oscillations born at φ = φα

disappear at φ = φβ via a second Hopf bifurcation. The width of the interval (φα, φβ)
where a time-periodic solution exists increases with ν for doping values on the interval
νH < ν < νHOM . For ν > νHOM , the branch of oscillatory solutions ends at biases
on the curve HOM, so that the oscillations disappear with fixed amplitude and zero
frequency.

The curves SN and HB coincide at the codimension 2 Takens–Bogdanov bifurca-
tion point TB. At this point the curve HOM (saddle points having homoclinic orbits)

D
ow

nl
oa

de
d 

04
/1

7/
17

 to
 1

50
.2

14
.1

82
.2

08
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



BIFURCATION IN SUPERLATTICES 2041

1.0 1.2 1.4 1.6 1.8
 φ

0.10

0.15

0.20

0.25

ν TB

DH
νDH

-

Fig. 8. Partial phase diagram with the 13 Hopf curves. The voltage windows of oscillatory
behavior appear in a broad doping range. The degenerate Hopf bifurcation point (DH) splits the
main Hopf curve in subcritical (dashed line) and supercritical (solid).

is born with the same slope. In Figure 7 we see that away from the TB point, the
curve HOM presents some structure. Nevertheless, the configuration on phase space
of the homoclinic orbits along this curve is always planar. In the total phase diagram
(Figure 11) we will see that the structure of the curve HOM is related to other Hopf
curves different from HB.

In Figure 8 we show all the Hopf bifurcation curves that separate regions of
oscillatory and stationary behavior of the solutions. Note that there are 12 additional
curves of Hopf bifurcation points besides the main Hopf curve HB. It is easy to predict
oscillatory or stationary behavior for a fixed ν and variable φ. The phase diagram has
Hopf tongues within which there are no oscillations. All these Hopf curves are born
in different Takens-Bogdanov points. A curve of homoclinic orbits must leave from
each one of these points.

For higher values of ν we find curves of saddle-node stationary solutions which
correspond to the stationary electric field domain region. For even higher doping the
picture becomes more complicated, reflecting the multiplicity of solutions mentioned
in section 2.

By analyzing the direction of the bifurcating oscillatory branch for parameter
values located on the main Hopf curve HB of Figure 8, we have discovered that there
is a change in the character of the bifurcation at a doping ν = νDH . For ν < νDH

the Hopf bifurcation is supercritical (the periodic orbit exists for biases in the region
where the stationary solution is unstable), whereas for ν > νDH it is subcritical.
This behavior can be analyzed by using a multiscale method in the neighborhood
of the Hopf bifurcation point at φ = φα (see the next section). The analysis of the
degenerate Hopf bifurcation plus numerical continuation shows the following. For
ν > νDH , the branch of unstable oscillatory solutions reaches a turning point at
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Fig. 9. Schematic phase diagram around the degenerate Hopf point and the nine qualitatively
different configurations. The solid thick line are supercritical Hopf curves (HB). The dashed thick
line is a subcritical Hopf curve. The solid line is a curve of saddle-nodes of equilibria (SN). The
thin dashed line is the curve of saddle-nodes of periodic orbits (SNPO) and the solid thin line is a
curve of homoclinic orbits (HOM).

a bias smaller than φα and merges with a branch of stable time-periodic solutions
with larger amplitude. At the merging point, we have a saddle-node periodic orbit.
Bistability between stationary and oscillatory solutions is expected for these values
of ν. A way to determine the degenerate Hopf bifurcation point is to numerically
continue the curve of saddle-node periodic orbits (in the parameter space) until it
intersects tangentially the Hopf curve HB [17].

3.2. Partial phase diagram: Details of the degenerate Hopf bifurcation.
To complete our study before showing the total phase diagram, we plot in Figure 9 a
schematic partial phase diagram in the region of the plane (φ, ν) near the main Hopf
bifurcation curve HB where the oscillatory solutions first appear. We leave out the
first secondary Hopf curve which appears for biases smaller than those of the main
Hopf curve in Figure 8. Thus Figure 9 contains (i) the main Hopf bifurcation curve HB
including the degenerate Hopf point DH, (ii) the third Hopf curve (which is the first
secondary Hopf curve inside the main Hopf curve), and the lines of (iii) saddle-node
stationary solutions and (iv) homoclinic orbits which intersect the third Hopf curve
at its Takens–Bogdanov point TB. These curves delimit 10 regions of the parameter
space with 8 qualitatively different dynamic behaviors depicted in the inset of Figure
9. Notice that there are two organizing centers of the dynamical behavior of our
system: the degenerate Hopf bifurcation point DH and the Takens–Bogdanov point
TB. In the vicinity of these points we find more qualitatively different configurations.
If we fix the parameter ν and let φ increase, we find different intervals where time-
periodic oscillations of the current exist. Leaving aside the narrow first interval not
shown in Figure 9, periodic behavior first appears as a stable and unstable limit cycle
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Fig. 10. Blow-up of the actual phase diagram in the neighborhood of the degenerate Hopf
point. The solid thick line is the main Hopf curve. The solid thin line is a curve of homoclinic
orbits born a the following Takens–Bogdanov point, and the dashed line is a curve of saddle-nodes
of periodic orbits. Note that the actual position of the degenerate Hopf point is out of the plot
(φ = 1.168, ν = 0.193).

are created at the line of saddle-node periodic orbits SNPO for ν > νDH . These
orbits enclose a stable stationary solution in whose vicinity there are either two other
stationary solutions (region 3 of Figure 9) or no other stationary solution (region 4).
The stable oscillation disappears via either (i) coalescence with a homoclinic orbit at
the line HOM (transitions between regions 3 and 9 or 8 and 7) or (ii) a supercritical
Hopf bifurcation (transitions between regions 8 and 10 or 5 and 6). Meanwhile, the
unstable branch of oscillatory solutions disappears via a subcritical Hopf bifurcation.
For ν < νDH the change in the dynamics is simpler: oscillations appear and disappear
via supercritical Hopf bifurcations with the peculiarity that it is possible to have
more than one bias interval where oscillations exist depending on the value of ν. A
comparison with the actual numerical result is shown in Figure 10. Note that the
region where stable and unstable periodic orbits coexist is very narrow. On these bias
intervals, stable stationary and time-periodic solutions coexist, thereby allowing us to
find hysteresis cycles by moving the bias near the onset of such behavior. This has
been confirmed by experiments [48].

3.3. Total phase diagram. Finally, in Figure 11 we show the total phase dia-
gram with all the previous curves. Notice that the curve of homoclinic orbits which
issues forth from the TB point on the main Hopf curve surrounds the Hopf tongues
(lines of secondary Hopf bifurcation points). Thus, this line of homoclinic orbits acts
as a boundary for the oscillatory region.

At this point we can give an explanation to the bifurcation behavior shown in Fig-
ure 4. In the total phase diagram (Figure 11) the curves of Hopf bifurcation points,
the curve of homoclinic orbits, and the curves of saddle-node stationary solutions
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Fig. 11. Total phase diagram of the model for N = 20 and c = 10−4. The dotted lines
are curves of stationary saddle-nodes. For the sake of clarity, we have plotted only the main line
of homoclinic orbits which sprout from the TB point (thin solid line). We have not shown other
homoclinic orbits: There is one curve of homoclinic orbits for each Hopf curve as shown in Figure
10.

are very close to each other and all tend to infinity as the doping ν increases. This
suggests that there is a TB point at ν = ∞, at which all these curves intersect tangen-
tially. In a very narrow bias interval the stable equilibrium undergoes an HB followed
by LP. The evolution of the leading eigenvalues determining the linear stability of
the stationary state and the corresponding phase portrait is shown schematically in
Figure 12. First, two complex conjugate eigenvalues cross the imaginary axis and the
stationary solution becomes an unstable focus (HB). Very soon after the Hopf bifur-
cation the imaginary parts of the eigenvalues vanish and the stationary state changes
to an improper node (IN). That means that only one unstable eigendirection exists;
the linearization matrix corresponding to the leading eigenvalues is nondiagonaliz-
able. At this point, one of the eigenvalues heads on toward the real axis toward the
stable region and the other moves in the opposite direction. When the first eigenvalue
crosses the imaginary axis we have a limit point (LP), but the stationary state re-
mains unstable. The remaining unstable eigenvalue returns later to the stable region
with another limit point bifurcation (not shown in Figure 4 but visible in Figure 2(c))
and continues to the next peak in the I − φ bifurcation diagram. The periodic orbit
that was born at the Hopf bifurcation collides with a curve of homoclinic orbits and
disappears at a bias very close to HB and LP.

3.4. Comparison with experiments. As mentioned in section 2, our model
explains in a simple way the shape of the stationary characteristic curve for different
values of the doping. In particular, for high doping values there is a set of equidis-
tant stable branches in the experimental characteristic curve, which are related to
the existence of domain solutions. We have shown that the basic element is the pres-
ence of an NDC in the charge transport mechanism. All the proposed models in
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Fig. 12. Scheme of the evolution of the leading eigenvalues of the equilibrium around the HB
and LP in Figure 4. IN stands for improper node.

the literature include this effect either from quantum mechanical calculations or from
phenomenological considerations. On the other hand, our model has the potential
of displaying the different dynamical behavior experimentally observed. Recent mea-
surements show that the oscillatory behavior can start via a supercritical [21] or a
subcritical [48] Hopf bifurcation. In the first case, the oscillation of the current has
an amplitude increasing as (φ − φα)1/2, while the oscillation frequency is finite and
different from zero at the instability onset. In the second case, hysteresis is observed
in the time-averaged I-V characteristics. By sweeping up the voltage interval, the
current exhibits a jump at a certain voltage value, while another jump occurs at a
smaller voltage value when the direction of the sweeping is reversed.

Note that the doping cannot be changed once the sample has been grown, and
therefore all the experiments are carried out for a fixed ν. However, in our study
we can sweep in ν for fixed φ and even vary both parameters simultaneously. This
provides us a complete understanding of the whole parameter space and the knowledge
of the corresponding behavior for any values of ν and φ. Moreover, from the computed
phase diagram we predict the existence of voltage windows of self-sustained current
oscillations for values of ν around ν = 0.20. In fact, these windows have already been
observed in photoexcited1 SLs [29].

4. The onset of oscillations: Amplitude equations. In the previous section
we saw that the bifurcation on the main Hopf curve is supercritical below a certain
value of ν and subcritical above it. We computed this critical value numerically and
got νDH = 0.193 and φDH = 1.168. Our aim in this section is to describe, for ν fixed,
the solutions of (1.5)–(2.1) perturbatively when the control parameter φ exceeds a
certain critical value φc where the stationary state, calculated in section 2, loses its
stability. Close to this threshold, the time evolution is described as a product of a
slowly varying amplitude and a pattern with faster time-dependence which comes from

1It is possible to change the carrier density by illuminating the sample with a laser with frequency
larger than the semiconductor gap and creating electron-hole pairs. The laser power plays a similar
role to the doping density, but a detailed study is needed to predict theoretically the bias windows
in the photoexcited case.
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Fig. 13. Coefficients of the amplitude equation as a function of φ along the main Hopf curve.
For Re(γ) < 0 the Hopf bifurcation is subcritical, whereas for Re(γ) > 0 it is supercritical. DH
stands for degenerate Hopf bifurcation point. Note that Re(λ1) is always positive at the onset of
oscillatory solution and represents the velocity at which the eigenvalues cross the imaginary axis.

the linear analysis of the equations. This leads to a multiple time scales expansion,
and to the determination of an equation of motion for the amplitude that describes
slow modulations in time of the variables {Ei}, i = 1, 2, . . ., and I [9, 4]. We will
derive this amplitude equation for the oscillatory solution that bifurcates from the
equilibrium and will precisely locate the position of the degenerate Hopf bifurcation
point.

This approach is equivalent to the reduction to the center manifold and the com-
putation of the Hopf bifurcation equation [45, 28]. In our case, the latter would be a
formidable task due to the dimension and structure of the equations. An additional
advantage of our approach is that it provides an approximation for the periodic orbit
that can be used to predict new bifurcations (local or global) and can be extended
to higher orders in a systematic way. The details of the calculation are given in the
appendices. We just rewrite the final result.

The time evolution for the Ej and the current I for a voltage close to the threshold
(φ = φc +ϕε2) shows two times scales: a slow modulation of the amplitude (ε2t) and
a fast oscillation (t) associated with the eigenvalue involved in the Hopf bifurcation.
The parameter ϕ is +1 at the onset (φc = φα) of the oscillatory solution and −1 at
the end (φc = φβ). The ansatz in the calculation is,

E∗
i (t; ε) = E∗

i,c + εE
(1)
i (t, T ) + ε2[E

(2)
i (t, T ) + E∗

i,2] + ε3E
(3)
i (t, T ) + O(ε4) ,

I∗(t; ε) = I∗c + εI(1)(t, T ) + ε2[I(2)(t, T ) + I∗2 ] + ε3I(3)(t, T ) + O(ε4) ,

t = t , T = ε2t ,(4.1)
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Fig. 14. Comparison of the oscillation frequency from the simulation (thick line) with the
prediction of the amplitude equation (thin line) for ν = 0.1819. The distance in voltage to the Hopf
bifurcation is measured by ε2.
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Fig. 15. Time evolution of the electric field at site 1 (E1(t)) close after the onset of the Hopf
bifurcation (ν = 0.1819, φ = 1.18). The two time scales are clearly visible. The upper inset shows
the evolution of the module of the amplitude and the lower inset is the phase θT .D
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2048 M. MOSCOSO, J. GALÁN, AND L. L. BONILLA

with

E
(1)
i (t, T ) = A(T )eiwtξi + c.c. , i = 1, . . . , N ,

I(1)(t, T ) = A(T )eiwt + c.c.(4.2)

In these expressions, c.c. means complex conjugate of the previous term, ε2 is the
distance in voltage to the bifurcation, A(T ) is the amplitude of the oscillation, w is
the imaginary part of the eigenvalue that crosses the imaginary axis at φ = φc, ξi is
the corresponding eigenvector, and the E∗

i,j are stationary solutions of the perturbed
system (Appendix C).

The amplitude equation obtained imposing a solvability condition is

dA

dT
= ϕλ1A− γA|A|2 ,(4.3)

where λ1 and γ are complex numbers given by (C.17) in Appendix C. Note that
it is nothing but the complex form of the equation we get for the Hopf bifurcation
with the normal form technique. Equation (4.3) describes the time evolution of the
amplitude of the solution close to the bifurcation in the slow time scale. It has a
periodic solution of the form

A(T ) = Reiϕθ(T−T0) , T0 constant,

R =

√
ϕRe(λ1)

Re(γ)
, θ = Im(λ1) − Im(γ)Re(λ1)

Re(γ)
.(4.4)

In Appendix C it is shown that ϕRe(λ1 > 0) at the onset and at the end of the
oscillations. Therefore, the stability of the oscillatory solution depends only on the
sign of Re(γ). Let φc = φα; if Re(γ) > 0 at φ = φc, then the system bifurcates
toward a stable periodic solution with amplitude R (the stationary solution is stable
for φ < φc and unstable if φ > φc). This is a supercritical Hopf bifurcation. On the
other hand, if Re(γ) < 0 at φ = φc, then the branch of oscillatory solutions bifurcates
to φ < φc and the Hopf bifurcation is subcritical. The case φc = φβ is similar. The
point where Re(γ) = 0 is the degenerate or generalized Hopf bifurcation point. The
divergence in the expression of R indicates that we should calculate higher order in
the amplitude equation to analyze the oscillatory behavior, in a similar way as we
would do in normal form theory.

Following the previous scheme we have computed λ1 and γ for the main Hopf
curve of the phase diagram. In Figure 13 we plot Re(γ) and Re(λ1) as a function of
φ in the neighborhood of the degenerate Hopf point (which is highlighted by a small
circle). The numerical prediction is in very good agreement with the crossing point
[(φ, ν) = (1.1682, 0.1928)].

In summary, the previous analysis tells us that along the main Hopf curve the Hopf
bifurcation is supercritical for ν < 0.1928, whereas it is subcritical for ν > 0.1928. Also,
it provides the first correction to the frequency of the oscillation as we depart from
the bifurcation point and the curvature of the square root behavior of the amplitude
as a function of the bias. In Figure 14 we show the comparison of the numerically
computed frequency and the one given by w+ ε2θ as a function of the bias for a fixed
value of ν.

The interpretation of the two time scales is clear. If the bifurcation is supercritical,
above the critical value, any perturbation will take the system from the unstable
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BIFURCATION IN SUPERLATTICES 2049

equilibrium point to the limit cycle. The amplitude of the oscillation will slowly
increase as the variable describes a spiral around the stationary solution. The final
stable periodic solution is given by (4.4). This is depicted in Figure 15 for our system,
where we plot the electric field at the first site [E1(t)] as a function of time for
ν = 0.1819 and φ = 1.18. The insets are the time evolution of the modulus of the
amplitude |A(T )| and its phase θT , obtained by solving (4.3).

5. Conclusions. In this work we have studied in detail the bifurcation behav-
ior of a drift model for a semiconductor SL. Our results can be used for a better
understanding of the experimental data. In fact, the information contained in the
bifurcation set (Figure 11) can be used to design new samples and predict bifurcation
scenarios [27]. We have shown that qualitatively different behavior can be reached
depending on the values of φ and ν, which are proportional to the external DC voltage
applied and the doping density in the quantum wells. The former can be easily con-
trolled in the laboratory, but the latter is fixed once the SL has been grown. Therefore,
it is necessary to know a priori an appropriate value of the doping density depending
on the purpose of the device. The possibility of building a tunable room temperature
GHz oscillator is of particular technological interest.

The stationary solutions are controlled by a nonlinear map and explain the quali-
tative behavior found in the experiments. The dynamical behavior presents oscillatory
solutions for certain parameter ranges and the bifurcation to the oscillatory solution
can be sub- or supercritical. The interplay between Hopf, homoclinics, and saddle-
node bifurcations gives rise to a rich phase diagram whose details have been thoroughly
investigated. The presence of domain solutions is crucial for the disappearance of the
oscillatory behavior. The organizing centers for the long time dynamics in a broad
range of parameters are multiple Takens–Bogdanov bifurcation points and degener-
ate Hopf bifurcation points. The system shows a robust planar behavior typical of
a two-dimensional dynamical system; although the system is high dimensional and
strongly nonlinear the bifurcations that take place are those that can be found in a
planar system. For instance, we have not found any signature of Šil’nikov behavior
for the curves of homoclinic orbits that emanate from the Takens–Bogdanov points
[8]. The calculations have been restricted for computational reasons to a number of
sites N = 20, but we have checked that our results do not change qualitatively as
the number of sites is increased. We have also shown that the boundary condition
imposed in the model has nontrivial consequences. In fact, the system may exhibit
stationary spatially chaotic solutions for high values of ν, but, on the other hand, we
have not found any signatures of temporal chaotic solutions. In conclusion, we have
obtained a fairly complete understanding of the dynamics of the model and predicted
new interesting dynamical phenomena that could be relevant for the design of new
semiconductor devices. Possible homoclinic bifurcations and the role in the dynamics
of the spatially chaotic stationary solutions found in section 2.2 are still under study.

Appendix A. Linearization. We linearize (2.1)–(1.6) around a stationary so-
lution, {E∗

i }, i = 1, . . . , N , at φ = φc. Substituting

Ei(t) = E∗
i + εẽi(t) , I(t) = I∗ + εj̃(t) , 0 < ε � 1 ,(A.1)

in (2.1), we obtain

dẽi
dt

+
I∗v′(E∗

i )

v(E∗
i )

ẽi +
ẽi − ẽi−1

ν
v(E∗

i ) − j̃ = 0,
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2050 M. MOSCOSO, J. GALÁN, AND L. L. BONILLA

ẽ1 − ẽ0 = 0 ;

N∑
i=1

ẽi = 0.(A.2)

This system can be solved by separation of variables

j̃ = ĵ eλt , ẽi = êi e
λt .(A.3)

Insertion of (A.3) into (A.2) yields

[λ + b
(0)
i + a

(0)
i ]êi − a

(0)
i êi−1 − ĵ = 0,

ê1 − ê0 = 0 ;

N∑
i=1

êi = 0,(A.4)

where we have defined the following quantities that depend only on the stationary
electric field profile:

b
(k)
i =

I∗v(k)(E∗
i )

k!v(E∗
i )

, a
(k)
i =

v(k)(E∗
i )

ν
, k = 0, 1, 2, . . . .(A.5)

In these expressions v(k) is the order k derivative of the nonlinear function v(E).
In order to compute λ as an eigenvalue of a matrix, we have to eliminate ĵ and

one of the êi. Taking êN =
∑N−1

i=1 êi and summing (A.4) over i we get

ĵ =
1

N

[
(b

(1)
1 − a

(0)
2 − b

(1)
N − a

(0)
N )ê1(A.6)

+

N−1∑
k=2

(b
(1)
k + a

(0)
k − a

(0)
k+1 − b

(1)
N − a

(0)
N )êk

]

and the eigenvalue equation

Aê = −λê ,(A.7)

where A is an (N−1)×(N−1) real matrix and ê is a (N−1)-dimensional eigenvector

associated to the eigenvalue +λ of (A.4). Defining c1 = b
(1)
1 − a

(0)
2 − b

(1)
N − a

(0)
N and

ck = b
(1)
k + a

(0)
k − a

(0)
k+1 − b

(1)
N (2 ≤ k ≤ N − 1) for the coefficients in expression (A.7),

A has the following form:

A = − 1

N




c1 c2 . . . cN−1

c1 c2 . . . cN−1

...
...

...
c1 c2 . . . cN−1


(A.8)

+




b
(1)
1 0 0 . . . 0

−a
(0)
2 b

(1)
2 + a

(0)
2 0 . . . 0

0 −a
(0)
3 b

(1)
3 + a

(0)
3 0 . . . 0

...
...

. . .
. . .

...

0 0 . . . −a
(0)
N−1 b

(1)
N−1 + a

(0)
N−1.




.
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BIFURCATION IN SUPERLATTICES 2051

Appendix B. Solvability condition. As we are interested in studying the onset
and end of oscillatory solutions let us consider the case in which a pair of eigenvalues
λ = ±iw crosses the imaginary axis for a critical value of the voltage φc.

In the perturbative expansion we will get a hierarchy of linear equations and we
must impose a solvability condition to avoid secular terms. These would give rise to
terms proportional to teiwt which become unbounded for t → ∞ and we are looking
for a solution of the nonhomogeneous linear problem bounded and periodic in time.

The nonlinear homogeneous problem is

dẽi
dt

+ [b
(1)
i + a

(0)
i ] ẽi − a

(0)
i ẽi−1 = h̃ + fi e

iwt ,

ẽ1 − ẽ0 = g eiwt ;

N∑
i=1

ẽi = 0(B.1)

for i = 1, . . . , N . Using separation of variables as in (A.3) we get

[iw + b
(1)
i + a

(0)
i ] êi − a

(0)
i êi−1 = ĥ + fi ,

ê0 = ê1 − g ;

N∑
i=1

êi = 0.(B.2)

This can be expressed in matrix form as

(M + iwI))e = )h + )f + )g ,(B.3)
N∑
i=1

êi = 0 ,(B.4)

where )h = (ĥ, ĥ, . . . , ĥ)t, )f = (f1, f2, . . . , fN )t, )g = (−a
(0)
1 g, 0, . . . , 0)t, I is the N ×N

identity matrix and equals


b
(1)
1 0 0 . . . 0

−a
(0)
2 b

(1)
2 + a

(0)
2 0 . . . 0

0 −a
(0)
3 b

(1)
3 + a

(0)
3 . . . 0

0 0 −a
(0)
4 b

(1)
4 + a

(0)
4 0

...
...

. . .
. . .

...

0 0 . . . −a
(0)
N b

(1)
N + a

(0)
N




.(B.5)

The determinant of the matrix (M + iwI) is the product of the diagonal elements, and
therefore it is always invertible because M is real and λ is complex by hypothesis in
a Hopf bifurcation point. Then, the solution of (B.3) is )e = (M + iwI)−1 ()h+ )f + )g),
which has to fulfill (B.4).

Let us first consider the term proportional to )h. If we solve (A.4) for λ = iω in
matrix form we get

)e = [M + iwI]−1)j(B.6)

with )j = ĵ (1, 1, . . . , 1)t. Taking into account that
∑N

i=1 êi = 0 we conclude that the
sum of all the elements of the matrix [M + iwI]−1 must vanish, i.e.,

N∑
j

N∑
k

〈[M + iwI]−1〉jk = 0 .(B.7)
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2052 M. MOSCOSO, J. GALÁN, AND L. L. BONILLA

We can use expression (B.7) to show that the term proportional to )h = ĥ(1, 1, . . . , 1)t

already fulfills the bias condition. Therefore, to avoid secular terms in the solution of
(B.1), fi and g should satisfy the following solvability condition:

N∑
i=1

N∑
j=1

〈(M + iwI)−1〉ij(fj + gj) = 0 .(B.8)

We will use (B.8) to get the amplitude equation in the next section.

Appendix C. Derivation of the amplitude equation. We want to construct
a periodic solution that bifurcates from φ = φc by means of a multiple scale expansion.
Let ε � 1 be a small parameter that measures the separation from the critical voltage
φc:

φ = φc + ε2ϕ ,(C.1)

where ϕ = +1 or ϕ = −1 if φc corresponds to the value of the voltage where the
oscillatory branch begins or ends, respectively. The stationary electric field profile
and the current for this value of φ is

E∗
i (ε) = E∗

i,c + ε2ϕE∗
i,2 + O(ε4) , i = 1, . . . , N ,

I∗(ε) = I∗c + ε2ϕI∗2 + O(ε4) .(C.2)

The terms of order O(1) are known, and those of order O(ε2) satisfy the following
equations:

[b
(1)
i + a

(0)
i ]E∗

i,2 − a
(0)
i E∗

i−1,2 − I∗2 = 0 ,

E∗
1,2 − E∗

0,2 = 0 ;
1

N

N∑
i=1

E∗
i,2 = 1 ,(C.3)

which can be solved numerically. To compute the solution that bifurcates at φc we
assume the usual Hopf multiscale ansatz [23, 4].

E∗
i (t; ε) = E∗

i,c + εE
(1)
i (t, T ) + ε2[E

(2)
i (t, T ) + ϕE∗

i,2] + ε3E
(3)
i (t, T ) + O(ε4) ,

I∗(t; ε) = I∗c + εI(1)(t, T ) + ε2[I(2)(t, T ) + ϕI∗2 ] + ε3I(3)(t, T ) + O(ε4) ,

t = t , T = ε2t ,(C.4)

where i = 1, . . . , N . The slow scale has been chosen so that the secular terms that
first appear at order O(ε3) can be removed. In reference [19] it is shown that for the
Hopf bifurcation the power series of the bifurcation parameter (φ) and the slow time
scale (T ) has to be even in ε.

Substituting (C.4) in (2.1)–(1.6) and comparing powers of ε we get the following
hierarchy of equations:
O(ε):

∂E
(1)
i

∂t
+ [b

(1)
i + a

(0)
i ]E

(1)
i − a

(0)
i E

(1)
i−1 − I(1) = 0 ,

E
(1)
1 − E

(1)
0 = 0 ;

N∑
i=1

E
(1)
i = 0 .(C.5)
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BIFURCATION IN SUPERLATTICES 2053

O(ε2):

∂E
(2)
i

∂t
+ [b

(1)
i + a

(0)
i ]E

(2)
i − a

(0)
i E

(2)
i−1 − I(2) = −[b

(2)
i + a

(1)
i ](E

(1)
i )2 + a

(1)
i E

(1)
i E

(1)
i−1 ,

E
(2)
1 − E

(2)
0 = 0 ;

N∑
i=1

E
(2)
i = 0 .(C.6)

O(ε3):

∂E
(3)
i

∂t
+
[
b
(1)
i + a

(0)
i

]
E

(3)
i − a

(0)
i E

(3)
i−1 − I(3) = −∂E

(1)
i

∂T

−ϕ(2
[
b
(2)
i + a

(1)
i

]
E∗

i,2 − a
(1)
i E∗

i−1,2)E
(1)
i + ϕa

(1)
i E∗

i,2E
(1)
i−1 − 2

[
b
(1)
i + a

(1)
i

]
E

(1)
i E

(2)
i

+a
(1)
i E

(1)
i−1E

(2)
i + a

(1)
i E

(1)
i E

(2)
i−1 −

[
b
(3)
i +

a
(2)
i

2

]
(E

(1)
i )3 +

a
(2)
i

2
(E

(1)
i )2E

(1)
i−1 ,

E
(3)
1 − E

(3)
0 = 0 ;

N∑
i=1

E
(3)
i = 0 .(C.7)

We will solve these systems and apply the solvability condition (B.8) when we find a
term proportional to e±iwt.

We make the following ansatz for the form of the order O(ε) time dependent
electric fields and current,

E
(1)
i (t, T ) = A(T )eiwtξi + c.c. , i = 1, . . . , N ,

I(1)(t, T ) = A(T )eiwt + c.c. ,(C.8)

where c.c. means complex conjugate of the previous term, and ξi is the eigenvector
of (A.4) with λ = iw, i.e., it is the eigenvector corresponding to the eigenvalue which
crosses the imaginary axis at φ = φc. This form is equivalent to a projection into the
tangent space along the bifurcating eigendirection. Note that, at this level, A(T ) is
still undetermined. The eigenvector ξi has to be properly normalized so that the first
equation in expression (A.4) can be satisfied for i = 1. This gives the condition

ξ1(iw + b
(1)
1 ) = 1 .(C.9)

The equations to order O(ε2) are

(C.10)

∂E
(2)
i

∂t
+ [b

(1)
i + a

(0)
i ]E

(2)
i − a

(0)
i E

(2)
i−1 − I(2) = {−2[b

(2)
i + a

(1)
i ]|ξi|2 + 2a

(1)
i Re(ξiξ̄i−1)}|A|2

+{−[b
(2)
i + a

(1)
i ]ξ2

i + a
(1)
i ξiξi−1}A2ei2wt + c.c.,

E
(2)
1 − E

(2)
0 = 0 ;

N∑
i=1

E
(2)
i = 0.

There are no resonant terms at this order either; we seek solutions of the form

E
(1)
i (t, T ) = α0,i|A(T )|2 + α2,iA(T )2ei2wt + c.c. , i = 1, . . . , N ,

I(2)(t, T ) = β0|A(T )|2 + β2A(T )2ei2wt + c.c. .(C.11)
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We have (2N+2) unknowns; {β0, β2, α0,i, α2,i}, i = 1, . . . , N . Substituting expressions
(C.11) in (C) and comparing terms proportional to |A|2 and A2ei2wt we get 2N
equations which have to be complemented with the bias condition and the boundary

condition in (C.6);
∑N

i=1 E
(2)
i = 0 and E

(2)
1 − E

(2)
0 = 0.

The linear systems that have to be solved are
• terms proportional to |A|2

[b
(1)
i + a

(0)
i ]α0,i − a

(0)
i α0,i−1 − β0 = (−2[b

(2)
i + a

(1)
i ]|ξi|2 + 2a

(1)
i Re(ξiξ̄i−1)),

α0,1 − α0,0 = 0 ;

N∑
i=1

α0,i = 0;(C.12)

• terms proportional to A2ei2wt

[i2wα2,i + b
(1)
i + a

(0)
i ]α2,i − a

(0)
i α2,i−1 − β2 = −[b

(2)
i + a

(1)
i ]ξ2

i + a
(1)
i ξiξi−1,

α2,1 − α2,0 = 0 ;

N∑
i=1

α2,i = 0.(C.13)

Note that α0,i and β0 are real whereas α2,i and β2 are complex. These systems
are very similar to the one obtained in the linearization (A.4) and can be solved in a
similar way eliminating one of the variables with the boundary condition.

With the solution of (C.12) and (C.13) we have the solution at order O(ε2),
but A(T ) is still unknown. In order to get an amplitude equation that describes
the time evolution of A(T ) we have to substitute our solution in (C.7) and make
use of the solvability condition. The terms proportional to eiwt that appear in the
nonhomogeneous term are

(C.14)

− ξi
dA

dT
+ ϕ{−(2 [b

(2)
i + a

(1)
i ] E∗

i,2 − a
(1)
i E∗

i−1,2) ξi + a
(1)
i E∗

i,2 ξi−1} A

+

{(
−2α0,i

[
b
(2)
i + a

(1)
i

]
+ α0,i−1 a

(1)
i

)
ξi +

(
−2α2,i

[
b
(2)
i + a

(1)
i

]
+ α2,i−1 a

(1)
i

)
ξ̄i

+ α0,i a
(1)
i ξi−1 + α2,i a

(1)
i ξ̄i−1 − 3

[
b
(3)
i +

a
(2)
i

2

]
ξi|ξi|2 + a

(2)
i ξi−1|ξi|2 +

a
(2)
i

2
ξ̄i−1ξ

2
i

}
A|A|2

Applying the solvability condition we finally get

dA

dT
= ϕλ1A− γA|A|2,(C.15)

where

λ1 =

N∑
i=1

N∑
j=1

〈(M + iwI)−1〉ijc1j
N∑
i=1

N∑
j=1

〈(M + iwI)−1〉ijξj
(C.16)
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and

γ = −

N∑
i=1

N∑
j=1

〈(M + iwI)−1〉ijc2j
N∑
i=1

N∑
j=1

〈(M + iwI)−1〉ijξj
(C.17)

and c1i y c2i, i = 1, . . . , N , are the coefficients of A and A|A|2 in (C.14), respectively.
Equation (C.15) is the amplitude equation we wanted to derive.

Although the calculation in Appendix C seems involved it is just one diagonaliza-
tion of an (N − 1) × (N − 1) matrix, several linear systems, and a sum. A discussion
of the solution is given in section 4.

It can be shown in a similar way as in [4] that λ1 is the eigenvalue crossing
velocity; λ1 = (∂λ/∂φ)φ=φc . Deriving the eigenvalue equation (A.4) with respect to
φ, denoting by Gφ the partial derivative ∂G/∂φ and taking into account the chain

rule for the derivatives of a
(0)
i and b

(1)
i we get

a
(0)
i,φ = a

(1)
i E∗

i,φ,(C.18)

b
(1)
i,φ = 2b

(2)
i E∗

i,φ + a
(1)
i E∗

i,φ − a
(1)
i E∗

i−1,φ,

[λ + b
(1)
i + a

(0)
i ] êi,φ − a

(0)
i êi−1,φ − j∗φ = −λφêi − {2[b

(2)
i + a

(1)
i ]E∗

i,φ

−a
(1)
i E∗

i−1,φ}êi + a
(1)
i E∗

i,φêi−1,

êi,φ − êi,φ = 0 ,

N∑
i=1

êi,φ = 0 .

Note that at φ = φc, êi = ξi, E
∗
i,φ = E∗

i,2, and the sum of the last two terms in
the left-hand side of (C.19) is equal to the coefficient of A (c1i) in (C.14). Imposing
the solvability condition for êi,φ and ĵφ we get that λφ = λ1. Thus Reλ1 > 0 at the
onset of the oscillatory branch, Reλ1 < 0 at the end, and ϕRe(λ1) > 0 in both cases.
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