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Shape phase transition in odd-even nuclei: From spherical to deformed γ -unstable shapes
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Shape phase transitions in odd-A nuclei are investigated within the framework of the interacting boson-fermion
model. The case of a single j = 9/2 fermion coupled to an even-even boson core is considered. This boson
core transits from spherical to γ -unstable shapes depending on the value of a control parameter in the boson
Hamiltonian. The effect of the coupling of the odd particle to this core along the shape transition and, in particular,
at the critical point is discussed. For that purpose, the ground-state energy surface in terms of the β and γ shape
variables for the even core and odd-even energy surfaces for the different K states coming from j = 9/2 are
constructed. The evolution of each individual coupled state along the transition from the spherical [U(5)] to the
γ -unstable [O(6)] situation is investigated. One finds that the core-fermion coupling gives rise to a smoother
transition than in the even-core case.
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I. INTRODUCTION

The study of phase transitions in finite nuclear quantal
systems has been the subject of many investigations of the
nuclear physics many-body problem. Recent review articles
about the quantum phase transitions (QPTs) in nuclei, mostly
on even-even systems, can be found in Refs. [1–5]. Phase
transitions can be classified into two classes. The first of them
is known as first-order phase transition and includes those for
which two different phases coexist in an interval of the control
parameters. The absolute minimum of the energy surface as
a function of the order variables changes discontinuously for
given values of the control parameters. The critical point in
this case is the point in the parameter space for which the
two coexisting minima (representing different phases) of the
energy surface have the same energy. The second kind of
phase transition is called the continuous phase transition and
embraces all the cases for which the phase change occurs very
softly (there is no coexistence) in a continuous way from one
phase to the other as the control parameters are varied.

In the last few years, there has been a revival in the study of
quantum phase shape transitions in mesoscopic systems after
the introduction of the concept of the critical point symmetry
(CPS). The CPS concept, first introduced by Iachello [6],
applies when a quantal system undergoes transitions between
traditional dynamical symmetries (definite shapes) and is
designed to apply at the critical point of the shape phase
transition. In the context of nuclear physics, both first-order
and continuous shape phase transitions have been modeled
within the geometric collective model (GCM) [7]. The CPSs
proposed up to now are known as E(5) [6], X(5) [8], and
Y(5) [9] and correspond to the transition from spherical
to γ -unstable shapes (continuous), from spherical to axially
deformed shapes (first order), and from axially deformed
to triaxial shapes (continuous), respectively. Although these
symmetries have been obtained within the formalism based on
the Bohr Hamiltonian [7], similar ideas have also been used

in connection with the interacting boson model (IBM) [10].
Both in the GCM and in the IBM, nuclei can be classified
according to their equilibrium shapes. In the GCM, collective
deformations are described by introducing two collective
variables, called deformation parameters or shape variables
(β, γ ). The β variable measures the axial deviation from
sphericity and the angle variable γ controls the departure
from axial deformation. Although the IBM is formulated from
the beginning in an abstract second quantized form, shape
information can be introduced in the model by resorting
to the intrinsic state formalism [11–13]. In this formalism,
shape variables β and γ with the same interpretation as in
the GCM, are introduced. Within this formalism, it has been
shown that the three IBM dynamical symmetries [14] [U(5),
SU(3), and O(6)] correspond to three analytical solutions for
the collective Bohr Hamiltonian: the vibrational, rotational,
and γ -unstable limits [7]. This correspondence has also been
further explored by Rowe and collaborators in a series of
papers [15–17].

Phase diagrams for both the GCM and the IBM, for the
case of even-even nuclei, have been extensively studied [3–5].
However, few studies have been done on the corresponding
phase transitions in Bose-Fermi systems. Recent studies of
shape phase transitions in odd-even nuclei have been presented
in the GCM and in the interacting boson-fermion model
(IBFM) [18] in Refs. [19–23]. The CPS E(5/4) symmetry [19]
has been discussed for the critical point of a single j = 3/2
fermion coupled to a boson core that undergoes a transition
from spherical to γ unstable. In Ref. [20], the corresponding
transition has been studied in the framework of the IBFM.
A more complex case of the CPS, called E(5/12) symmetry,
has been described for the richer case of a fermion that can
occupy single-particle states with angular momenta j = 1/2,
3/2, and 5/2 coupled to a core undergoing the transition from
spherical to deformed γ unstable [21–23]. Both the E(5/4) and
the E(5/12) models [19,21,22] were obtained starting from the
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Bohr Hamiltonian, but comparable results are obtained within
the IBFM for energy spectra and electromagnetic transitions.
The role of an additional fermion at the critical point for
the transition from spherical to axially deformed shapes has
recently been described within the framework of the IBFM
[23,24]. In Ref. [25], a supersymmetric approach was used to
study phase transitions in odd-even nuclei.

In this paper, we focus on the effect of the coupling between
a fermion in orbit of definite angular momentum j and an even-
even boson core that performs the transition from spherical to
γ -unstable shapes upon variation of a control parameter. This
situation is described within the framework of the intrinsic
frame formalism for the IBFM [26–28]. The aim of this work
is to understand how the coupling of the odd particle modifies
the geometry imposed by the core, how each of the individual
coupled states behaves at the transitional region, and how the
critical point is affected by the inclusion of the odd particle.

The paper is structured as follows. In Sec. II, the model
boson-fermion Hamiltonian is described. Section III presents
the intrinsic frame formalism for odd-even systems. In Sec. IV,
the results of this study are presented. Finally, in Sec. V, our
main conclusions are summarized.

II. THE IBFM HAMILTONIAN

In general, the interacting boson-fermion model (IBFM)
Hamiltonian is written as

H = HB + HF + VBF , (2.1)

where HB is the bosonic part, HF is the fermionic part, and the
VBF term couples the boson and fermion degrees of freedom.
We want to consider the spherical to deformed γ -unstable
shape phase transition in a mixed Bose-Fermi system. For
that purpose, a single fermion with j = 9/2 is coupled to an
even-even boson core that undergoes the shape phase transition
from spherical to deformed γ -unstable shapes. The IBFM
Hamiltonian that describes the transition from U(5) to O(6)
is parametrized as follows:

H = (1 − c)n̂d − c

4NB

Q̂BF · Q̂BF , (2.2)

where NB is the total boson number, c is the control parameter,
and the operators in this Hamiltonian are the d-boson number

n̂d =
∑

µ

d†
µdµ, (2.3)

and the quadrupole operator for the odd-even system, which
is the sum of the boson and fermion quadrupole operators

Q̂BF = Q̂B + q̂F . (2.4)

With these definitions, expression (2.2) can be split into the
three terms of Eq. (2.1).

For the case under study, the boson quadrupole operator
reads

Q̂B = (s† × d̃ + d† × s̃)(2), (2.5)

while the fermion quadrupole operator is

q̂F = tj (a†
j × ãj )(2). (2.6)

The coefficients tj are the single-particle matrix elements of
the E2 fermion operator

tj = −
√

1
5 〈j ||r2Y (2)||j 〉. (2.7)

Since here a single-j shell case is considered, the only tj will
be taken as unity. It is worth noting that the boson and fermion
quadrupole operators can be multiplied by boson and fermion
effective charges, respectively. For the purpose of this work,
they have been set to unity.

With the above-mentioned definitions, the boson Hamilto-
nian in Eq. (2.1) is given by

HB = (1 − c)n̂d − c

4NB

Q̂B · Q̂B. (2.8)

The IBM U(5) situation is recovered for c = 0, while c =
1 reproduces the O(6) limit. By changing c between these
two limits, a continuous (second-order) shape phase transition
is observed with the critical point at cc = NB/(2NB − 2). In
addition to HB , in Eq. (2.1), the fermion part HF and the boson-
fermion interaction VBF are included. The pure fermion part
is a constant for the single-j shell case, and the boson-fermion
interaction obtained from Eq. (2.2) is

V̂BF = − c

2NB

Q̂B · q̂F . (2.9)

III. THE INTRINSIC FRAME FORMALISM

A useful way of looking at phase transitions is to apply the
concept of the intrinsic frame which allows one to associate
a potential energy surface to a Hamiltonian as (2.1) or (2.2)
depending on shape variables. Within the IBM, the intrinsic
state for the ground-state band for an even-even nucleus is
written as

�g.s.(β, γ ) = 1√
NB!

[b†g.s.(β, γ )]NB |0〉, (3.1)

where |0〉 is the boson vacuum. The ground-state boson
creation operator is given by

b†g.s.(β, γ ) = 1√
1 + β2

[
s† + β cos γ d

†
0

+ β√
2

sin γ (d†
2 + d

†
−2)

]
. (3.2)

The ground-state energy surface is obtained by calculating
the expectation value of the boson Hamiltonian (2.8) in the
intrinsic state (3.1):

Eg.s.(β, γ ) = 〈�g.s.(β, γ )|HB |�g.s.(β, γ )〉. (3.3)

The variational parameters β and γ play a similar role to
the one of the intrinsic collective shape variables in the Bohr
Hamiltonian.

Intrinsic frame states for the mixed boson-fermion system
can be constructed by coupling the odd single-particle states to
the intrinsic states of the even core. The lowest states of the odd
nucleus are expected to originate from the above-mentioned
coupling to the intrinsic ground-state �g.s.(β, γ ). To obtain
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them, we first construct the coupled states

�jK (β, γ ) = �g.s.(β, γ ) ⊗ |jK〉, (3.4)

and then diagonalize the total boson-fermion Hamiltonian in
this basis, giving a set of energy eigenvalues En(β, γ ), where
n is an index to count solutions in the odd-even system. In our
case, for angular momentum j = 9/2, the possible magnetic
components are K = −9/2, . . . , 9/2. Therefore there are ten
different states that we restrict to five because of the symmetry
K ↔ −K .

IV. RESULTS

In this section, the effect of the coupling of an odd fermion
with j = 9/2 to a boson core is investigated within the
formalism presented in the preceding section.

First we discuss the coupling of the odd particle to an O(6)
boson core. Consider the even-even core, if in the Hamiltonian
(2.8) the control parameter c is set to unity and the expectation
value of the boson Hamiltonian is computed in the intrinsic
ground state, Eq. (3.3), the corresponding energy function
is γ independent as shown in Fig. 1(a). In our case (with
NB = 5) the minimum in the β variable is around 0.78 (the
value will tend to unity for NB going to infinity). Then the
odd j = 9/2 particle is coupled to the γ -unstable core using
interaction (2.9). In this case, the full Hamiltonian (2.1) has to
be diagonalized in the basis (3.4). For j = 9/2, a 5 × 5 matrix
is obtained. The eigenvalues correspond, in cases of axial
symmetry (γ = 0◦, 60◦, . . .), to states with good projection
of the angular momentum on the symmetry axis K . It should
be noted that in the triaxial situation, K is not a good quantum
number anymore. Calculations of the energy surfaces for the
five eigenvalues of the odd-even system as a function of β and
γ as those presented for the even-even nucleus in Fig. 1(a)
have been performed, producing in all cases the absolute
minima with axial symmetry (either prolate or oblate). This
means that the addition of an odd particle to a deformed
γ -unstable core does not produce triaxiality in any of the
resulting intrinsic odd-even states. With this in mind, we are
presenting in Fig. 1(b) and in all the remaining figures in this
paper, the odd-even energy surfaces only as a function of β

along γ = 0◦. To produce both prolate and oblate shapes, we
will consider positive and negative values of β, maintaining
γ = 0◦. We make use of the equivalence between the pair
of coordinates (β, γ = 60◦) (oblate shapes) and (−β, γ = 0◦)
when calculating energy surfaces (strictly speaking, within the
GCM, β is positively defined and γ takes care of the prolate and
oblate character of the ellipsoid and its orientation in space).
In Fig. 1(b) the energy surfaces obtained when coupling a
j = 9/2 particle to an O(6) core are plotted as a function of β.
States are labeled by the quantum number K . The minimum of
each surface is marked with a dot. From this figure it is clear
that, although the core is γ unstable, the odd-even system
prefers prolate shapes for K = 1/2, 3/2, 5/2, while it tends
to be oblate for K = 7/2, 9/2. This fact is consistent with the
simple picture of a particle orbiting around the equilibrium
shape: the angular momentum has a small projection on the
z axis when it lies close to the xy plane and therefore the

β

γ deg

0

30

60

0 0.5 1

core
c 1 a

0 1 β1

0.2

0.2 1 2
3 2
5 2

7 2

9 2
c

core

1 2
3 2
5 2

7 2

9 2

b0

FIG. 1. (Color online) O(6) energy surfaces: c = 1 with NB = 5.
(a) Energy surface for the even-even system in the β-γ plane.
(b) Five energy surfaces for the different K states coming from
j = 9/2 in the odd-even system as a function of β. In this panel,
the energy surface for the even-even case is also plotted for reference.
(c) Nilsson-like scheme produced when representing the odd-even
energy surfaces relative to the energy of the even-even system.

orbit, perpendicular to the angular momentum vector, lies on
a plane that is close to the z axis, favoring a prolate shape.
When, instead, it is close to the z axis, its projection is large
(K is large) and the orbit lies almost parallel to the xy plane,
favoring an oblate shape. In the same figure, the corresponding
even-even energy surface is plotted, and the presence of two
degenerate minima with the same deformation in absolute
value, one prolate and one oblate, reflects the γ independence.
All odd-even states have approximately the same βmin as
the core, although, as mentioned, K = 7/2, 9/2 favor oblate
shapes (γ = π ), and K = 1/2, 3/2, 5/2 favor prolate ones
(γ = 0). In Fig. 1(c), the same information is plotted but
computing the energy of the odd-even state relative to that
of the even-even core. A Nilsson-like scheme is obtained.

Having discussed the coupling of the fermion to the O(6)
limit, we move now into the transitional region by changing
the control parameter c. In Fig. 2, the evolution of the energy
surfaces for the core and the different K states in the odd-even
system is given for a set of values of c for γ = 0. From the
figure, it is clear that the state K = 9/2 is always favoring
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FIG. 2. (Color online) Evolution of the energy surfaces for the
even-even core and for the different K states in the odd-even system
as a function of β deformation as the control parameter c is changed
in the Hamiltonian, for γ = 0.

oblate deformation when the core is γ unstable. The minimum
moves to smaller negative values as c goes through the critical
point until it gets to β = 0 when the core is well inside
the spherical region. The situation for K = 7/2 is similar,
while K = 1/2, 3/2, and 5/2 favor prolate deformation. This
situation is different from the one encountered in the case
of the coupling of an odd particle to a well-deformed axial
nucleus [24]. In this case, the core deformation drives all
odd-even states except in a small region around the critical
point in the transition from spherical to axially deformed
shapes.

Now we come to the situation at the critical point. For the
case under study (NB = 5), the critical point for the even-even
system is located at c = 0.625. In Fig. 3(a), the energy surface
is plotted for the even-even core as a function of β and γ . It
is seen that the even-even system is γ independent and has a
spherical minimum. In Fig. 3(b), the behaviors of the odd-even
energy surfaces are plotted at the critical point as functions of
β. The even-even surface is very flat in β as expected for the
continuous critical point situation. The dots mark the minima
of the even-even and the different odd-even energy surfaces.
The presence of the unpaired fermion is enough to definitely
drive the system, which would otherwise be critical, into either
prolate or oblate shapes. Figure 3(c) is a Nilsson-like diagram
of the single-particle energies relative to the even-even core
for the same case.
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0.50.5

FIG. 3. (Color online) Critical point energy surfaces: c = 0.625
for NB = 5. Same as Fig. 1, but at the critical point of the even-even
core in the spherical to deformed γ -unstable shape phase transition.

The overall results are summarized in Fig. 4, where the
minima in β for the different odd-even states are plotted versus
the control parameter c. Positive β values correspond to prolate
deformation, while negative ones mean oblate shapes. The
even-even case is plotted as a reference. This splits into two
lines in the deformed region, since for the even-even case
two degenerate minima appear. From the figure, one can see
that all over the transition the states with K = 1/2, 3/2, 5/2
prefer to be prolate, while K = 7/2, 9/2 are producing oblate
shapes. The upper panel is for NB = 5, while the lower one
is for NB = 15. In both cases, it is seen that the odd surfaces
tend to follow the behavior of the even-even core. However,
for the smaller NB value, the deviations from the even-even
case are larger for all K . As NB grows, the transition of the
odd-even system gets closer to the one in the even-even system.
We would like to mention again, that for the case in which
the odd particle is coupled to a core undergoing a transition
from spherical to axially deformed shapes, all the states in
the odd system tend to follow the core deformation either
prolate or oblate [24]. In our case, the γ instability of the
core allows the odd states to drive the entire system toward
either a prolate or a oblate shape depending on the value
of K .
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FIG. 4. (Color online) Evolution of the equilibrium deformation
parameter corresponding to the different K states in the odd-even
system as a function of the control parameter c. The vertical scale
displays the β deformation, with positive values indicating prolate
deformation and negative ones oblate deformed shapes. The values
for the even-even case are plotted for reference. The upper panel is
for a number of bosons NB = 5, and the lower one for NB = 15.

V. SUMMARY AND CONCLUSIONS

In this paper, we have studied the coupling of a single
j = 9/2 particle to a boson core in the situation in which it
changes its shape from spherical to deformed γ unstable. The
transitional behavior is studied within the interacting boson-
fermion model, with a description based on the concept of
intrinsic states. At variance with the case of a core undergoing
a shape transition from spherical to axial deformation [U(5)
to SU(3)], where the overwhelming weight of the core tends
to drive all odd states to have the same deformation (either
prolate or oblate), in the case of a γ -unstable deformed core
the coupling to the odd particle gives rise to a set of intrinsic

states which are partly oblate and partly prolate, maintaining
the same nature all along the transitional path. For all these
states, which are coexisting in the same system, the phase
transition is found to be smoothed out with respect to the
behavior in the even core.

It is worth mentioning that the present study is just a
schematic illustration of the actual situation in odd-even nuclei.
In general, there will be several open shells for the odd particle,
and a realistic boson-fermion interaction will contain not only
the quadrupole-quadrupole term. We think, however, that the
multi-j case will not change the main features obtained in the
single-j case. The exchange interaction is known to be very
important for realistic applications, since it takes into account
the Pauli principle in the boson-fermion space. Anyway, the
case presented here should be a good starting point for the study
of odd-even nuclei in the region of the Ru, Pd, and Cd isotopes
where most of the proposed E(5) nuclei are located. In that
region, 104Ru [29], 102Pd [30], 106Cd, and 108Cd [31] have been
proposed as E(5) nuclei, and the relevant single-particle orbit
for odd-proton isotopes is g9/2. Consequently, 103Tc, 101Rh,
and 105,107Ag would be good candidates for the application
of the present study after the inclusion of the corresponding
exchange interaction.
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