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A powerful method of investigating proton-unbound nuclear states by tracking their decay products in flight is
discussed in detail. To verify the method, four known levels in 'F, 'Ne, and '°Na were investigated by measuring
the angular correlations between protons and the respective heavy-ion fragments stemming from the precursor
decays in flight. The parent nuclei of interest were produced in nuclear reactions of one-neutron removal from
7Ne and Mg projectiles at energies of 410-450 A MeV. The trajectories of the respective decay products,
1“0 4 p +p and "®Ne + p + p, were measured by applying a tracking technique with microstrip detectors. These
data were used to reconstruct the angular correlations of the fragments, which provided information on energies
and widths of the parent states. In addition for reproducing properties of known states, evidence for hitherto
unknown excited states in '°F and '®Ne was found. This tracking technique has an advantage in studies of exotic
nuclei beyond the proton drip line measuring the resonance energies and widths with a high precision although

by using low-intensity beams and very thick targets.
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I. NUCLEAR STRUCTURE BEYOND THE
PROTON DRIP LINE

Nuclear structure beyond the proton drip line, where nuclei
are unbound and exist only as resonances in the continuum, is
still a rather unexplored topic despite substantial experimental
advances made lately. In particular, the recently discovered
phenomenon of two-proton (2p) radioactivity, the spontaneous
break-up of an atomic nucleus by the emission of two protons,
displays unexpectedly long half-lives for all reported 2p
precursors, ¥ Fe, 3*Zn, Mg, and **" Ag [1-4] in comparison
with the predictions of a quasiclassical estimate of the emission
of 2He. A quantum-mechanical theory of 2p radioactivity
based on a three-body model of nuclear structure of a 2p-decay
precursor (which assumes a configuration p + p + “core”) [5-7]
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explains such long half-lives as the result of a decay retardation
due to the higher three-body centrifugal barrier in the parent
nucleus. The theory predicts the regular occurrence of long-
lived 2p precursors in the region beyond the proton drip line.
Calculating correctly the properties of 2p-unbound nuclei with
a three-body model may also be of interest for nuclear astro-
physics. The inverse reaction to 2p decay, radiative 2p capture,
may play an important role in the synthesis of heavy elements
in the universe, by possibly bridging some “waiting points” in
the rp process (see, e.g., [8—10]). Measurements of 2p decays
are so far the only way of studying radiative 2p capture.

In general, one expects one-proton (lp) or 2p decaying
resonances in light nuclei to be very broad due to small
Coulomb barriers. For example, the ground states (g.s.) of
5F or %N are seen as broad s-wave proton resonances
(see, e.g., Refs. [11-15]). Only a few excited states of
such nuclei located beyond the proton drip line are known.
Their widths are usually of the order of hundreds of keV.
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However, some proton-unbound nuclei whose structure is
more complicated than a single-particle configuration (i.e.,
a proton orbit around an inert nuclear core) may exist as
very long-lived resonances due to high few-body centrifugal
barriers and/or small 1p spectroscopic factors. In particular, the
measured 1p and 2p decays of the recently found excited states
in F and '°Ne [11] gave evidence for relatively stable nuclear
configurations beyond the proton drip line. The observed
states have much smaller widths compared to the respective
predictions of models assuming single-particle configurations
of parent states. Their structure may be ascribed to particle-
hole configurations where protons are coupled to core-excited
states. Then 1p-decay branches of such configurations into the
excited-core states are larger than those into the respective
g.s.’s [16,17]. The excited-core daughters are, in turn, open
to 1p decays, and therefore the corresponding final states
comprise three particles. Such a phenomenon is expected to
be general for nuclei beyond the proton drip line where 1p and
2p thresholds are very low.

The time scale of nuclear decays by proton emission
accessible in experiments spans from 102 s (for the longer
lifetimes, weak decays prevail) to 102! s (for the shorter
lifetimes, continuum dynamics are important). Such a broad
range can be accessed by different experimental techniques. In
the case of nuclear 1p and 2p decays with lifetimes larger than
a few microseconds, one can implant the radioactive atoms and
subsequently detect their decay. For much shorter half lives,
the conventional in-flight-decay method aims at detecting
all fragments of a proton precursor in missing-mass or
invariant-mass measurements. A novel experimental technique
for measuring in-flight decays of proton-unbound nuclei with
lifetimes in the time range of 1077-10'2 s was suggested
in Ref. [18] and discussed in Refs. [7,19,20]. In such a
measurement, the trajectories of all decay products are tracked
and the decay vertices as well as the angular correlations of the
decay products can be deduced from the measured trajectories.
For the first time in studies of radioactivity, we performed
an in-flight-decay experiment by the tracking technique with
microstrip detectors. Some results of the experiment were
published in previous articles. The observations of '’Mg and its
2p radioactivity [3], proton-proton correlations from 2p decays
of ’Mg and '*Ne [21], and new resonances in °F populated by
1p decay of excited states in '*Ne [11] were reported. Due to
space limitations, some important details of the experimental
technique and methods of analysis remained unexplained. An
understanding of these details is crucial for future applications
of the presented method in studies of nucleari specata beyond
the proton drip line.

In a series of two articles, we intend to present more
experimental details concerning the previously published
results and to provide new data on unobserved nuclear states.
In the present article, the first of the series, we describe the
tracking technique in more detail and verify it by reproducing
the properties of previously known proton-unbound states
in the isotopes '°F, '®Ne, and '°Na. The article is structured
in the following way. In Sec. II, the experimental setup and
the tracking procedure of charged particles with microstrip
detectors are described. The method of identification of a
2p-precursor state of interest, measuring its decay energy and
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width by using angular correlations of its decay products is
discussed in Sec. III. A comparison of selected cases of 1p and
2p decays with literature data is given in Sec. IV. Spectroscopic
results on previously unknown proton-unbound states in the
isotopes '°F and 'Ne are presented in Sec. V. Finally, the
advantages of the tracking technique in studies of nuclear
structure beyond the proton drip line are presented in Sec. VI.
More experimental details of applying the tracking method
to lifetime measurements in the nanosecond to femtosecond
regime, as pioneered for the case of "Mg [3], will form the
subject of a forthcoming article.

II. EXPERIMENTAL METHOD

The experiment was performed by using a 5914 MeV beam
of 2*Mg accelerated by the SIS facility at GSI, Darmstadt. A
sketch of the experimental setup is presented in Fig. 1 where
the upper panel shows the general layout and the lower panel
provides a closeup view of the tracking detectors. Radioactive
beams of Mg and '"Ne were produced at the Projectile
Fragment Separator (FRS) [22] with average intensities of
400 and 800 ions s~! and energies of 450 and 410A MeV,
respectively. In total, about 2.2 x 107 of ions of Mg and
9.1 x 10% of '"Ne were produced. The secondary reactions
(**Mg,"”Mg) and (!"Ne,'®Ne) occurred at the midplane of FRS
in a 2 g/cm? °Be reaction target. Special ion-optical settings
for FRS were applied, the first FRS half being tuned in an
achromatic mode using a wedge-shaped degrader at the first
focal plane F1, while its second half was set for identification
of the heavy ions (HI), in particular '"Ne and '*O, with high
acceptance in angle and momentum.

At the FRS midplane, a 6 x 6 cm? double-sided Si detector
(DSSD) with 32 x 32 strips and a 20 x 20 cm? multiwire
chamber were used upstream of the reaction target to track
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FIG. 1. Upper panel: Sketch of the experimental setup located
at the FRS midplane. The secondary beams were tracked by a
DSSD and a multiwire chamber (MW). The reaction products were
formed in fragmentation reactions in the reaction target located at
the FRS focus F2. Outgoing protons and heavy ions were tracked in
triple coincidences HI 4 p + p by three planes of silicon micro-strip
detectors (D1-D3). The heavy ions were identified at the foci F3
and F4 by magnetic-rigidity, time-of-flight (TOF), and energy loss
measurements with the scintillator detector Sc4 at F4. Lower panel:
Illustration of tracking 2p decays of ?Mg with the three planes of
microstrip detectors.
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FIG. 2. (Color online) Transverse spatial profile of ions versus
their energy loss of a secondary beam detected in front of the FRS
reaction target by the DSSD detector. The ion-optical settings of the
first half of FRS are optimized for a 410 A MeV beam of *’Mg.

the incoming 2°Mg('"Ne) projectiles. As an example, the
identification plot used to identify 2°Mg projectiles detected
by DSSD is shown in Fig. 2. Downstream from the reaction
target, a microstrip detector array [23], developed on the basis
of the tracker of the AMSO02 project [24], was positioned. It
consisted of four large-area (7 x 4 cm?) double-sided silicon
microstrip detectors (MSD) with a pitch of 0.1 mm on both
sides, covering an opening angle of ~150 mrad around the
beam direction. They were used to measure energy losses and
positions of coincident hits of 2p’s and a heavy fragment, thus
allowing us to reconstruct all decay-product trajectories and
derive the coordinates of the reaction vertex and the angular
p-p and proton-HI correlations.

In the second half of FRS, the heavy-ion decay products
like '"Ne or '*O were unambiguously identified by their times
of flight, their magnetic rigidities, and their energy losses
measured with position-sensitive scintillator detectors. As an
example, an HI identification plot is shown in Fig. 3 where the
fragment atomic numbers Z are plotted versus their mass(A)-
over-charge( Q) ratios, AoQ (at our energies, ions were fully
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FIG. 3. (Color online) Identification plot for ions detected at the
FRS focal planes F2 and F4. The ion-optical setting was optimized
for the transmission of !”Ne ions produced in the reaction target by a
410 A MeV beam of 2°Mg. The Y axis represents the element number,
Z, the X axis displays the mass-to-charge ratio, AoQ.
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FIG. 4. Typical numbers of strips fired in microstrip detectors by
400 A MeV protons (left) and '"Ne ions (right).

stripped and Z = Q). Nuclear mass(A)-over-charge(Q) ratios,
AoQ were determined by a standard method [22] from the
measured times of flight and positions at the focal planes
(which allowed to calculate the respective magnetic rigidities)
by taking into account the full tracking information at the
F2 and F4 focal planes of FRS. As one may see in Fig. 3,
the AoQ values of secondary-beam ions Mg and fragments
17Ne are very close, which demonstrates the purity of the Mg
secondary beam obtained by the achromatic tuning of the ion
optics in the first half of FRS. The 2°Mg isotopes constituted
more than 90% of the secondary-beam ions registered at
F2. The small contamination consisted mainly of 7Ne, even
smaller admixtures of 2'Mg, 2*Al and so on were also present.

Fragment tracking was based on the response of the double-
sided microstrip detectors (MSD, labeled D1, D2, and D3
in Fig. 1) to protons and heavy ions. Due to the capacitive
coupling between neighboring strips, in most cases more than
one strip shows a finite signal above the strip pedestal. In Fig. 4,
the numbers of strips fired in MSD is shown for protons and
17Ne ions.

One can see that protons fire mostly only one strip. Thus
their position uncertainty is o, = 100/+/12 ~ 30 um. The
Ne(Mg) ions typically produce clusters of 7(9) strips, which is
due to capacitive coupling between the neighboring strips. In
an individual detector, the cluster centroid can be determined
with an accuracy of about 14 pum. The cluster areas are
proportional to the energy losses of the impinging ions, a
typical example of the energy loss measured by the MSD is
shown in Fig. 5.

In the present study, we were mainly interested in observing
the coincident event of heavy ions (HI) and 2p’s. Conditions
for true HI+p+p events were (i) the minimal distance
between proton and heavy-ion trajectories was required to
be very small, typically less than 150 pum, and (ii) the
difference between the two longitudinal coordinates of the
vertices defined by each of the two p-HI pairs (taken from
the same HI + p + p event) had to lie within the range defined
by the experimental uncertainty of 0.3—1 mm, depending on the
detection angle. The achieved angular resolution in fragment
tracking was ~1 mrad.

The inset in Fig. 5 shows that the proton can be well
separated from noise if triple HI 4+ p+ p coincidences are
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FIG. 5. Typical energy-loss spectrum of different ions derived
from the hit-cluster areas on the X side of the microstrip detector
[23]. The inset shows the proton energy-loss spectrum derived from
coincident triple '"Ne + p + p events.

required. The energy-loss spectra for those HI + p 4 p events
are particularly clean, as shown in Fig. 6. Under these
conditions, proton signals are well separated from the heavy-
ion ones.

To track ions through the three layers of MSD in the
present experiment, it is necessary to determine the offsets
of the detectors relative to each other. Such an alignment
procedure uses single-ion tracks crossing all three layers of
MSD. For each detector, five alignment parameters were
determined, namely two spatial (X, Yo) and three angular (6,
6, 05) offsets. The offsets were determined by minimizing the
differences d X and dY between the X and Y coordinates of
20Mg ions in the secondary-target plane as derived from the
two alternative trajectories given by the different MSD pairs,
D1-D3 and D2-D3 (see Fig. 1). The offsets were changed
iteratively until dX and dY were minimal. The result of this
procedure is illustrated in Fig. 7, where the dY is plotted versus
d X, the differences between the two alternative coordinates
(X, Y) obtained for each *’Mg ion on the secondary-target
plane (see Fig. 1). Projecting the d X—dY distribution on the
axes yields full width at half maximum (FWHM) widths
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FIG. 6. Distribution of uncorrected cluster areas from the Y

side of the microstrip detector derived from triple O+ p+p
coincidences.
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FIG. 7. (Color online) Uncertainties of positions of 2°Mg ions
at the reaction target in the (X, Y)-transverse directions. The uncer-
tainties were evaluated from the differences between two alternative
(X, Y)-coordinate values of the 2’Mg positions at the target derived
from two alternative 2°Mg trajectories defined by the MSD pairs
D1-D3 and D2-D3, see Fig. 1.

of ~10 um in both directions. Though the used procedure
of alignment is simplified in comparison with a complete
procedure which makes a minimization of all five offsets at
the same time (e.g., see the Compact Muon Solenoid (CMS)
tracking procedure [25]), the achieved tracking accuracy
serves well for our physics case.

Proton-HI vertices are defined as points where the distance
between the respective trajectories is minimal. The inclusive
distribution of these distances-of-minimal-approach is illus-
trated in Fig. 8. A three-particle HI 4- p + p vertex is given by
averaging the coordinates of the two two-particle vertices. It is
obvious that in Z (beam) direction the uncertainty of the vertex
depends on the 2p-HI angles (taken from the same HI 4 p +p
event), yielding a larger uncertainty in the case of smaller
p + HI angles due to the almost parallel movement of the ions.
Typical uncertainties range from 0.3 to 1 mm, see the respective
histograms in the upper and lower panels of Fig. 9. The
uncertainty of the centroid of an N-event vertex distribution
is smaller than the respective single-event uncertainty by
a factor of 1/+/N. For example, the centroid of the "Mg
—17Ne 4 p + p vertex distribution (about 300 events) can be

4000
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0 L L L L 1 L L L L I h I :
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FIG. 8. Distances of the closest approach d of two trajectories of
a proton and an '"Ne ion derived from tracked '"Ne + p + p events.
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FIG. 9. Spatial differences between two decay vertices along the
Z (beam) direction defined for the p;-'"Ne and p,-'"Ne trajectories
which were taken from the same '"Ne + p: + p2 event. (a) Distribution
for events with large p-'"Ne angles (>50 mrad). (b) Distribution for
events with small p-'"Ne angles (<50 mrad).

measured with an accuracy of 0.1 mm. Angular uncertainties
of the decay products were mainly due to the angular straggling
of protons in the MSD and amounted to ~1 mrad.

Additional technical information concerning the detectors
and their electronics as well as the applied tracking procedures
can also be found in Refs. [23,26,27].

III. NUCLEAR-STRUCTURE INFORMATION FROM
PROTON-ION ANGULAR CORRELATIONS

In the following section we want to show how nuclear-
structure information concerning the nuclei involved in 1p
or 2p decay can be obtained from measuring only the
trajectories of the decay products, without measuring their
kinetic energies.

For a discussion of 2p decay, we can discriminate between
three different cases. These cases are illustrated in Fig. 10. The
upper panels show schematically the nuclear states involved in
2p decay, the lower panels show the corresponding momentum
correlations k1 _pgr — k,2—p1. In Fig. 10(a) of direct 2p decay,
sequential 2p emission is energetically forbidden since even
the g.s. of the intermediate nucleus with mass number A — 1
lies higher in energy than the g.s. of the 2p precursor with
mass number A. The theory of direct 2p emission tells us
[5,7,28,29] that the momenta of both emitted protons should
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FIG. 10. Cartoons of transverse momentum correlations K _pr —
k- (lower panels) expected for three different mechanisms of 2p
emission (illustrated in the upper panels) from a parent nucleus with
mass number A to a daughter nucleus with A-2: (a) direct three-body
decay, (b) sequential emission of protons via a narrow intermediate
state in nucleus A-/ , and (c) deexcitation of broad continuum states
in the nucleus A with final-state interaction due to a narrow resonance
in the intermediate nucleus with A-1.

preferentially be equal; consequently, the 2p momentum-
correlation plot should have the shape of a quadrant, with
a radius corresponding to the 5, value and with most of the
counts lying in the peak indicated by the dark spot in the lower
panel of Fig. 10(a). Note that all momentum-correlation plots
in Fig. 10 are symmetric with respect to the 45° line since the
protons p; and p; are indistinguishable.

Figure 10(b) represents the sequential emission of two
protons through a narrow resonance in the intermediate
nucleus with A — 1. The kpi_pgr — kpo—pr correlation plot
should yield double peaks [30] as indicated by the black dots
in the lower panel of Fig. 10(b).

The third 2p-decay mechanism to be considered is 2p
emission from broad continuum parent states with final-state
interactions in the p-HI pairs [Fig. 10(c)]. This mechanism
should reveal broad distributions along narrow ‘“slices” as
shown in the lower part of Fig. 10(c).

In the present method, we do not measure proton or
HI momenta. Instead, we simply measure their trajecto-
ries directly downstream from the secondary-reaction target.
Figure 11(a) shows the kinematics plot for the simple case of

(a)

vertex

(b)

FIG. 11. (a) Kinematics of isotropic mono-energetic proton emis-
sion from a high-energy heavy ion. (b) The corresponding angular
p-HI distribution exhibiting the peak corresponding to the Q-value
of the proton decay.
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isotropic and mono-energetic single-proton emission from a
high-energy heavy ion. Figure 11(b) shows the corresponding
distribution of laboratory p-HI opening angles, 6,_y;. The
angular spectrum exhibits a sharp peak corresponding to the
situation where the proton is emitted roughly orthogonal to
the HI momentum vector. Thus the maximum value of 6,_pg
is directly related to the decay energy Q , of the emitted proton.
In the same way, the k,i_p1 — kp2—1 momentum correlations
for 2p decays (Fig. 10) can be replaced by the corresponding
0p1—m1 — Opo—m correlations. If the initial and final states of
p emission are narrow, the width of a peak in the angular
distribution is governed mostly by angular straggling of the
proton in the secondary-reaction target. If those states are
broad, the width results from a convolution of the state’s width
with proton angular straggling.

Itis clear that the cases sketched in Figs. 10 and 11 represent
ideal cases. In reality, several proton branches may be present,
representing more than one of the cases shown schematically
in Figs. 10(a) through (c), and leading to complicated spectra
with several peaks. One can, however, clean up the spectra and
enhance transitions with small Q values by gating on small
angles of 6,_y and plotting the spectrum of 6,,_p; under
this condition. Another option is to plot the one-dimensional

distribution of p = V072 y+ 67,  instead of the two-
dimensional distribution 6,_p; versus 6,,_y;. The variable
p is related to the energy sum of both emitted protons and
therefore to the 2p-decay energy Q», of the precursor state.
The p distributions are very useful in the analysis of 2p decay
data since they produce spectra with less peaks and allow to
gate on specific excitation-energy regions.

In all cases, detailed Monte Carlo simulations are needed
to interpret the angular spectra. To obtain the energy of a
resonance, its numerical value is varied within a reasonable
range of energies and for each case the corresponding angular
correlation is calculated. This predicted angular correlation is
then compared to the measured one. The resonance energy is
obtained as the test value where the probability that the two
distributions are identical is maximum. In the same way, at
least limits for the width of a resonance can be obtained, as
will be shown in the following.

IV. INVESTIGATIONS OF REFERENCE CASES: 1P AND 2P
DECAYS OF KNOWN STATES IN 'F, 1NE, AND “NA

A. 2p decay of the '®Ne ground state

The validity of our method to obtain the properties of
proton-unbound states from tracking their decay products can
be tested by reproducing the literature data. For this purpose,
we studied the 2p decay of '°Ne into 'O 4 p +p. '°Ne was
formed by 1n-removal inside the reaction target from the !"Ne
secondary beam, which was transmitted simultaneously with
the Mg secondary beam. Its 2p decay can be gated on
by requiring two coincident proton tracks in the microstrip
detectors simultaneously with identifying '*O in the second
half of the FRS (see Fig. 3).

A scheme of the relevant levels in '®Ne, 1F, and *O is
shown in Fig. 12. The 2p-decay energy of the 'Ne g.s. was
measured with high precision to be 1.40(2) MeV [31]. Its decay
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FIG. 12. The level schemes of known states in 'O, '°F, and '°Ne
(Refs. [12-14,31,32]). 1p decays of states in '°Ne and 'F into the
g.s. of '*O are indicated by the dash-dotted arrows. The 2p decay
of the 'Ne g.s. is illustrated by the dashed arrow. The hatched area
indicates the unspecified continuum states in '°Ne. Decay energies
and level widths are given in MeV; the decay energies are relative to
the respective 1p and 2p thresholds.

properties and those of the related resonances in intermediate
ISF were also studied in Refs. [12-14,32]. The 2p emission
of the '®Ne g.s. must be mainly direct decay because the se-
quential emission of protons via an intermediate resonance, the
(higher lying) g.s. of 'F, is energy forbidden and can only pro-
ceed through the tails of the respective resonances (see Fig. 12).
The quantum-mechanical theory of direct 2p decay which uses
a three-body model [5-7] predicts the correlations of the frag-
ments of 'Ne to be strongly influenced by nuclear structure
together with Coulomb and three-body centrifugal barriers.
In particular, p-p correlations are expected to result from a
dominant s-wave configuration in the '*Ne g.s. (in contrast
with its mirror, '°C, thus breaking isospin symmetry) [33].

1. Monte Carlo simulations

To understand the conversion from momentum to angular
correlations in 2p decay, we performed simulations of 2p
decays from the known g.s. of '®Ne under the assumption that
its mechanism is direct 2p emission. Monte Carlo simulations
were done using the GEANT software package [34]. GEANT
includes relativistic kinematics and all important processes
of interaction of relativistic particles with various materials.
The physical input for the GEANT simulations was provided
by the three-body model mentioned previously [5-7]. The
simulations started at a randomly chosen Hi+ p+p vertex
inside the reaction target and followed the protons and HI
through the remainder of the reaction target and the detectors,
taking into account angular straggling and detection efficiency
as well as the experimental uncertainties in position determi-
nation and in reconstructing the vertex coordinates, trajectory
angles, and so on. In particular, all selection conditions
applied for a data analysis were used in simulations in the
same way.

The result of the simulation for direct 2p decay of the
6Ne g.s. is shown in Fig. 13(a). Its similarity with the
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FIG. 13. (Color online) (a) Simulated angular correlations 0, 119 — 6,,,_14¢ from Monte-Carlo simulations of the experimental response to
the direct 2p decay of the '°Ne g.s. with a 2p-decay energy of 1.4 MeV. (b) Similar simulation for the 2p decay of an assumed excited state in
16Ne with a 2p-decay energy of 7.6 MeV decaying sequentially by 2p emission through the g.s. of '3F. (c) Experimental angular correlations
(p1—"*0)—(p,—"*0) obtained from measured '*O + p + p events (color boxes with scale shown on the right-hand side). The shadowed arc areas
indicate the locations of simultaneous or sequential 2p decays of the most intensively populated states in '®Ne (the ground and the 7.6-MeV
excited state).

schematic plot in Fig. 10(a) is obvious. The 2p decay energy indexes are given for illustration purposes only. One
0>, = 1.40(2) MeV [31] is translated into an arc with a radius can distinguish several peaks indicating the most intense
of about 45 mrad; projecting the distribution leads to a single 2p-emission channels. Events with the smallest p-'*O angles
peak at about 35 mrad. fall into a distinct cluster around 6,_o = 35 mrad; these
In a similar way, the sequential-decay mechanism [shown events can be attributed to the direct 2p decay from the '*Ne
schematically in Fig. 10(b)] can be simulated. An example g.s. Most of the other events are located in an arc with a
is displayed in Fig. 13(b). It represents the sequential decay radius of about 115 mrad. This group can be attributed to the
of a hypothetical broad state in '®Ne with a 2p-decay energy 2p decay from a high-lying excited state in '°Ne.
of 7.6 MeV via the g.s. of 'SE. According to its schematic For a quantitative interpretation, projections of the
representation in Fig. 10, it results in two symmetric bumps two-dimensional (p;-'*O)—(p,-'*0) distribution shown in
(at 50 and 110 mrad in the projection onto one axis). The arc Fig. 13(c) are useful. However, an inclusive projection onto the

radius corresponds to about 115 mrad. one-dimensional p-'*O axis as shown in Fig. 14(a) leads to a
complicated spectrum with several peaks and the most intense
2. Comparison with experimental data for '*O +p +p peaks are labeled (1-4). To disentangle the “ground state”

from the “excited state” events, one needs to project onto one
p-'%0 axis by gating on either the small-angle or large-angle
regions of the other p-'*O axis. Such projections are shown

Figure 13(c) shows the measured angular (p, —140)—(p2-140)
correlations obtained in our experiment. The distribution is
symmetrized with respect to proton permutations, proton

(@ [ 264 528 792 1056 1320 1584 (b)
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150 M 3) 1 @ 604
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1 Y : {
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FIG. 14. (Color online) (a) Opening angles 6,_o (full circles with statistical uncertainties) projected from the measured '*O +p + p events
shown in Fig. 13(c). The upper axis shows the transverse momenta k of protons with respect to '“O. The apparent peaks are labeled (1-4).
(b) Angular p = v/ 0131 o+ 9;2 _o distribution (full circles with statistical uncertainties) obtained from the data shown in Fig. 13(a). The dashed
and dash-dotted curves show the results of Monte Carlo simulations of the experimental response to 2p decays of the known ground 0 and
first-excited 2" states in '®Ne with Q,, values of 1.35 and 3.2 MeV, respectively. For illustration purpose, the dash-dot-dotted curve shows a
hypothetical contribution from the excited second 0" state at 3.5 MeV. The dotted curve is the contribution of a previously unknown excited
state with 0>, ~ 7.6 MeV (the properties of the excited states will be considered in Sec. V). The solid curve results from the sum fit.
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FIG. 15. (a) Angular p-'*O correlations (full circles with statis-
tical uncertainties) obtained from the measured p + p + '“O events
by selecting the other proton angle 6,,,_o within the range from 0 to
45 mrad, which corresponds to the '®Ne g.s. region. The solid curve
represents the Monte Carlo simulation of the detector response for
1®Ney s— '*O + p + p with the fitted 2p-decay energy of 1.35(8) MeV.
The dashed line is a sum fit to the data. The dotted curve indicates
the assumed background contribution. (b) Calculated probability that
the simulation matches the data as a function of the assumed decay
energy (see text). The curve represents a Gaussian function fitted to
the histogram.

in Figs. 15 and 17 and will be discussed in detail in the
following. Another helpful presentation of the measured triple
4O+ p +p events is the distribution of p = v9§1£+ 9;2@
distribution as discussed at the end of Sec. III. We present this
distribution in Fig. 14(b). As expected, the number of peaks
was reduced and the spectrum exhibits more structure. One can
clearly distinguish between the small-angle peak at ~45 mrad
and a broad distribution at larger angles. Our simulations show
that the small-angle peak is due to the 2p decay of the '°Ne
g.s., and the continuous component is related to 2p decays
of excited states in '°Ne (these states will be considered in
Sec. V).

The upper panel in Fig. 15 displays the angular distribution
0p1-0- The 0,5_o gate was chosen from 0 to 45 mrad, where
the 2p decay of the '*Ne g.s. is expected to show up. The peak
around 35 mrad (the suggested “ground state””) dominates the
spectrum; only a few correlations are seen between a proton
from the “ground state” and another proton at larger angles.
This means that the protons from the “ground-state” and
“excited-state” peaks are not correlated (i.e., the peaks cannot
be explained by a sequential emission of protons from the same
state in '*Ne). The large-angle part of the distribution (corre-

PHYSICAL REVIEW C 82, 054315 (2010)

sponding to larger excitation energies in '*Ne) has the same
shape as the 6,,;_o distribution selected within the 6,,,_o range
just outside the “ground state” region, from 48 to 160 mrad.
By scaling this component to the large-angle data of the upper
part of Fig. 15 we obtain the dotted background curve.

To interpret this spectrum quantitatively, the data are
compared to a Monte Carlo simulation of the response of
our setup to the 2p decay '*Ne — 'O+ p+p as described
in Sec. IVAIL. As inputs into the GEANT simulations, we
used the predictions of fragment correlations in the precursor
frame as given by the model of direct 2p emission [33]. For
a chosen range of 2p-decay energies Q»,, we calculated the
respective probabilities P((Q5,) for the simulations to match
the data (the standard statistical Kolmogorov-Smirnov test of
compatibility of two histograms, see, e.g., [35]), which are
shown in the lower panel in Fig. 15. The O, value with
the closest match (assuming that P >50%) was accepted. The
best-fit simulation reproduces the data in the small-angle peak
region quantitatively with Q,, = 1.35(8) MeV, in agreement
with the literature value of 1.40(2) MeV [31]. The statistical
uncertainty of the fitted value is given by the Q», range where
the experimental data are described by the simulation with
probabilities above 50%. One should note that the ungated
calculations have practically the same shape as those cut by
horizontal slices and therefore the corresponding systematic
error may be neglected.

Figure 16 shows the angular p-'*O correlations from the
16Ne ground-state 2p decay selected by another gate, namely
the arc-area covering the g.s. decay correlations as shown
in Fig. 13(c). Such a gate cuts off most of the continuous
background, but changes the shape of the distribution a bit
as demonstrated by the gated and ungated calculations of the
corresponding correlations. As the applied selection gate on
the p parameter may introduce some uncontrolled bias in the
generated distribution in comparison with the previous case,
we accept the fit results illustrated in Fig. 15 because their
systematic errors are under control.

80+

B D
=] (=]
1 1

BGS

)
b

Intensity (counts)

Op _140 (mrad)

FIG. 16. Angular p-'*O correlations (full circles with statistical
uncertainties) from the '®Ne g.s. obtained from the measured
p+p+ 'O events by selecting their arc-area p = V6, o+ 6, o
within the range from 35 to 50 mrad [see Fig. 14(b)]. The solid curve
is the corresponding calculation of the decay '®Ne,—'*O+p+p
with a 2p-decay energy of 1.35(8) MeV cut by the same condition as
the data. The similar but un-truncated calculation is presented by the
dashed curve whose shape practically coincides with the calculation

in Fig. 15(a).
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FIG. 17. Angular p-'*O distribution obtained from the data shown
in Fig. 13(c) by selecting the other proton angle from 120 to 150 mrad,
which corresponds to p-'*O final-state interactions due to the ground
and excited states of '’F. The dashed and dotted curves result from
Monte Carlo simulations of the known 1p decays of the ground and
first-excited states of '°F with 1p-decay energies of 1.56(13) and
2.80(4) MeV, respectively [12]. The dash-dotted and dash-dot-dotted
curves show the fit of two other peaks by suggesting two unknown
excited states in '5F with 1p-decay energies of 4.9(2) and 6.4(2) MeV,
respectively. Their derived properties are given in Sec. V. The solid
line is the sum fit.

B. 1p decay of known states in °F

The measured p + p 4+ HI events can also be used for studies
of lp-decaying resonances in unbound nuclei. Figure 17
displays the angular p-'*O distribution for the continuum of
highly “excited states” in I16Ne [see Fig. 13(c)] obtained from
the p+ p + '*O events by selecting large angles of the other
proton ranging from 120 to 160 mrad. The selected range
corresponds to energies of the other proton between ~8 and
~20 MeV. The distribution shows two small-angle peaks that
reflect the p-'*O final-state interaction due to the ground and
first-excited states in '>F. This can be verified by Monte Carlo
simulations of 1p decays F* — %O + p of the known ground
1/2" and first-excited 5/27 states in '°F with Q, values
of 1.56(13) and 2.80(4) MeV [12], respectively. With these
assumptions, the first two small-angle peaks are reproduced
quantitatively. The peaks at larger angles are assigned to 1p
decays of previously unknown excited states in '°F and the
respective spectroscopic analysis is described in Sec. V.

C. 1p decay of the ’Na ground state

Another reference case is the 1p decay of the known g.s.
of '"Na whose decay energy is Q, = 0.32(2) MeV [36]. It
is fed by the decay of high-lying continuum states in 2°Mg,
as shown schematically in Fig. 10(c). We detected it in the
measured '®Ne +p+p coincidence events whose angular
(p1-'8Ne)—(p,-'®Ne) correlations are shown in Fig. 18(a).
For illustration purposes, the corresponding Monte Carlo
simulations are shown in Fig. 18(b).

Projecting the two-dimensional angular distribution shown
in Fig. 18(a) onto the 6, sy axis yields a one-dimensional
spectrum the lower part of which is shown in Fig. 19(a). A
narrow peak around 25 mrad corresponds to the expected 1p-
decaying resonance, the g.s. of !°Na. The assumed background
is extrapolated from the data outside the 'Na peak and
contributes by ~27% in the peak region.
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FIG. 18. (Color online) (a) Angular (p,-'3Ne)—(p,-'®Ne) correla-
tions obtained from the measured '®Ne + p + p events (color boxes
with scale shown on the right-hand side). The grey slices indicate the
areas where final-state interaction in the p-'®Ne pairs due to the '*Na
g.s. is expected. (b) Angular correlations 6, _isxe — 6,185, Obtained
by Monte Carlo simulations of the experimental response for 2p
emission from broad continuum states in 2°Mg through the g.s. of
“Na with a known 1p-decay energy of 0.32(2) MeV [36].

Monte Carlo simulations of the detector response for the
decay of '"Na, ;— '®Ne + p were performed to obtain the best-
fit value for the Q, value of this decay. Figure 19(b) shows the
probabilities that the simulations match the data as a function
of the assumed 1p-decay energy. The highest probability is
obtained for Q, = 0.328(22) MeV, which is in quantitative
agreement with the literature value of 0.321(13) MeV [36].
Using the same method, we have also tried to determine the
width of the '°Na g.s. Varying the width yields the probability
distribution shown in Fig. 19(c). This gives only an upper
limit of less than 40 keV. As the width of the 19Nag_s, is known
to be very small, <1 eV, our result reflects the experimental
resolution of our detector setup.

At the end of this section we emphasize that all our nuclear-
state assignments assume that one peak in the measured p-HI
spectra matches one single resonance only. Therefore several
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FIG. 19. (Color online) (a) Angular p-'8Ne correlations (full
circles with statistical uncertainties) projected from Fig. 18(a). The
peak reflects the final-state interaction due to the Na g.s. The
dashed curve represents the Monte Carlo simulation of the detector
response for '"Na, —'¥Ne + p with the fitted 1p-decay energy of
0.328(22) MeV. The assumed background (dotted line) is interpolated
from the data outside the '’Na peak. The solid line is a sum fit to the
data. The lower panels show the probability that the simulations match
the data as functions of (b) the assumed decay energy and (c) width
of the '’Na g.s. The probability histograms are fitted by Gaussian and
sigmoidal functions (solid lines).

closely spaced states (e.g., in the case of 1p decays of the
lowest states in '°F) can be misinterpreted as one broad level
if they are populated within the experimental resolution of
0.2-0.4 MeV. Simulations of the response of our setup show
that multiple scattering of the protons in the thick target
is the main reason for the p-HI peak broadening and the
relatively large errors of the resonance-width measurements.
The obtained spectroscopic information may be improved in
new experiments by using a thinner reaction target.

V. SPECTROSCOPY OF HITHERTO UNKNOWN 1P- AND
2P-UNBOUND STATES IN °F AND NE

In the previous section, we demonstrated that we can
precisely reproduce the known properties of proton-decaying
resonances with our tracking technique. This has encouraged
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us to deduce the properties of so far unknown states in '°F and
16Ne with the same method.

A. States in '°F

As mentioned in Secs. IV A2 and IV B, projections of
the two-dimensional distribution of (p1-14O)—(p2—14O) corre-
lations [Fig. 13(c)] from the decay of '®Ne exhibit peaks that
can either be attributed to the direct 2p decay of the '®Ne g.s.
or to the sequential decay of excited states in '*Ne via two
known states in 19F, the 1/2% g.s. or 5/2% first-excited state.
These events were disentangled by making slice projections
from the measured (p;-'*0)—(p,-'*O) correlations, selecting a
small-angle gate, 0o < 45 mrad to enhance the direct 2p g.s.
decay, and a large-angle gate, 6,,,_o > 120 mrad to enhance
the sequential decays.

Figure 20(b) again displays the 6,;_o distribution obtained
by gating on condition 6,,_o > 120 mrad, as in Fig. 17. For
illustration purposes, the inclusive 6,,;_o distribution is shown
in Fig. 20(a). The two left-most peaks in Fig. 20(b) were
attributed in Sec. IVB to 1p decays of the known ground
1/2" and first-excited 5/2% states in '5F with Q, of 1.5(1)
and 2.8(1) MeV, respectively. The two peaks at larger angles
can be assigned to 1p decays of unknown excited states in
ISF with derived Q, values of 4.9(2) and 6.4(2) MeV [21].
These values and their uncertainties were deduced in the same
way as those derived for 'Ne, by varying their level energies
in the Monte-Carlo simulation of sequential decays until the
simulated spectra matched the measured ones. In a similar way,
the resonance widths I were fitted, the 1/2% and 5/27" states
in F with known widths serving as test cases. The levels with
Qp of 4.9 and 6.4 MeV are very narrow and smaller than our
experimental resolution, the upper limit amounts to 0.2 MeV.
In the inset of Fig. 20(b) we plot the probability distribution,
P(I), for the width I" of the level with O, = 4.9 MeV.

The state with O, = 4.9 MeV is likely the mirror state
of SC(17) since its location in 'F relative to the (§+)1
state is similar to that in '>C. This state is 0.27 MeV above
the 2p threshold, however, the *O(0])+p 1p-decay mode
dominates.

The Q, =64 MeV state in BE observed in the
40(0]) + p decay, is also open for 2p decay via the 1;, 05,
and 3] states in '*O and may be seen in triple "N +p+p
coincidences. Their angular 6, _n-0,, N correlations are shown
in Fig. 21(a). Only few events are detected in the arc area of
interest around 62 mrad, so we may conclude that the 2p-decay
branch of the 0, = 6.4 MeV state has not been observed.
Theoretical estimates of the widths I' of these unobserved
decays can be obtained by the standard expression

['=C*S Ty, (1)

Single-particle widths I, were calculated in the two-body
potential model with Woods-Saxon potential parameters of
ro=1.25 fm and a = 0.65 fm (see, e.g., Ref. [14]). The
spectroscopic factors C2S were determined from occupancies
of bound orbits calculated in the (spsdpf)-shell model with
the Warburton and Brown (WBP) interaction [37] using the
NUSHELL@MSU code [38]. Two possible J* assignments for
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FIG. 20. (a) The 6,_¢ correlations shown in Fig. 14(b) in
comparison with the simulations of different 1p decays of °F states.
The simulation curves are similar to those described in (b). (b) One-
dimensional 6,,_q projection (full circles with statistical uncertainties)
of the two-dimensional data shown in Fig. 13(c), obtained by gating
on 0,, o > 120 mrad, which corresponds to ’F resonances due to
final-state interactions in p,-'“O pairs. The dashed and dotted curves
result from simulations of the response of our setup to the known 1p
decays of the ground and first-excited states in '°F, see Sec. IV B.
The dash-dotted and dash-dot-dotted curves indicate two new states
in 1°F with fitted Q, values of 4.9(2) and 6.4(2) MeV, respectively.
The solid line is the sum fit. The short-dash curved shows the sum fit
with all level widths set to 1 keV, which illustrates the experimental
resolution. The short-dash-dotted curve is the 1p-decay estimate of
the 7.8 MeV state in "°F. (c) The 6,_¢ distribution selected within the

arc-area v, o+ 07,  around 115 mrad, which corresponds to the
7.6 MeV state in 'Ne. The solid curve is a fit obtained by simulating
the sequential 2p decay of the '*Ne* state via the g.s. (dashed curve)
and the first-excited state (dash-dotted curve) in '°F. The dotted curve
shows a similar fit with the '*Ne* width set to 1 keV. The insets in (b)
and (c) show the probability (as a function of the assumed resonance

width) that the simulations match the data.

the O, = 6.4 MeV state were considered, 5/27 and 3/27. In
both cases, the dominant structure is a d-wave proton coupled
to the '*O(17) core. However, due to the centrifugal barrier,
the 'y ,. for this configuration is only ~11 keV while the same
proton is well above the barrier for the '*O(0}) +p branch
with £ = 1. Although C2S for the £ = 1 branch is small, the
40(0) + p width dominates being ~50 keV for 5/2~ and
more than 100 keV for 3/27. The corresponding widths for
the *O(17) 4+ p decay are about 4 and 7 keV. This explains
our nonobservation of the 2p decay of the Q, = 6.4 MeV

PHYSICAL REVIEW C 82, 054315 (2010)

state. Although both J™ assignments predict relatively narrow
widths consistent with the data, the energy split between the
0, =4.9and 6.4 MeV states favors the 3/2~ assignment since
the same split between the 1/27 and 3/2 states is observed
in the mirror nucleus '>C. The 3/2~ assignment also agrees
with the shell-model predictions [17] (see Table I).

Triple "*N + p + p coincidences were measured in the same
experiment and provided evidence for the presence of a new
state in 'SF. Both the two-dimensional data and different
projections are shown in Figs. 21(a) through (d). Two intense
peaks are seen around 50 and 65 mrad in the inclusive
projection, 6, n [Fig. 21(b)]. We selected these peaks by
imposing the condition 78 mrad < V67, \ + 6., < 88 mrad
[Fig. 21(c)]. In the corresponding 6, n distribution, two
distinguished peaks have positions and widths that match those
from the sequential 2p decay of a narrow '>F* resonance via
the known level *O(2]) at 6.59 MeV [39]. This is justified
by the final-state-interaction channel >N + p—'*O* whose
6, correlations are shown in Fig. 21(d). The simulations
of the known 5.17 and 6.59 MeV states in 'O [39] match
the two most intense peaks of this distribution providing
references for this case. The fitted Q5 value for the I5F* gtate
is 3.2(2) MeV, its width is estimated to be I' = 0.4(4) MeV,
see the inset of Fig. 21(c). As a cross check, we simulated an
alternative sequential 2p decay via the neighboring '“O(37)
state at 6.27 MeV (the 2p-decay energy of the parent state
should then be 8.0 MeV), which fails to fit the data. The
new 'SF* state is also open to the '*O(0}) + p decay branch
with @, = 7.8(2) MeV. We simulated this channel using the
ISF* energy and width derived from the observed 2p branch,
see Fig. 20(b). Some data events may be attributed to the 1p
decay, though contributions from other possible higher-lying
states in '°F are unknown. Thus we estimate the ratio of the
1p/2p decay branches of the 7.8 MeV state to be less than 0.2.

. . . +
Three J™ assignments were considered for this state, (% )2,

(%_)2, and (%Jr)z, based on known spins and parities in
the corresponding range of excitation energies in the mirror
nucleus C. The spsdpf shell-model widths of the main decay
channels for each of these assignments are given in Table I. The

(%7)2 assignment is clearly wrong. We cannot discriminate

between the (%Jr)z and (§+)2 assignments by using the
measured 1p/2p branching ratio because the 1p decay width
cannot be reliably determined in our theoretical approach.
However, this energy matches well the predictions made
for (§+)2 in the multichannel algebraic scattering (MCAS)
approach [16]. If this assignment is confirmed in the future,
this will mean that we observed a large Thomas-Ehrman shift
of 0.6 MeV in an s-wave configuration built on an excited core.

B. States in °Ne

In the search for reaction channels feeding the observed
I5F states, we inspected the two peaks in Fig. 20(a) around the
p-'*0 angles of 70 and 100 mrad. These peaks were assumed
to originate from sequential 2p decay of a single excited
state in 'Ne via 1F. The 0,—o distribution, selected within

the corresponding arc area 110 mrad < V67, o +67, o <
125 mrad [see Fig. 20(c)] can be explained by sequential
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FIG. 21. (Color online) (a) Angular correlations 6,;_x-6,,~ from the BN +p+p events (color boxes with scale shown on right). The
arc area indicates 2p emission from an unknown *F* resonance. The bands show the p+ !N final-state interaction due to the 3~ state
in '*0. (b) Inclusive projection 0, of the data shown in panel (a). (c) Distribution 6,y (full circles with statistical errors) gated by 78
mrad < V0, « + 67, y < 88 mrad, which corresponds to the 2p decay of a resonance in '*F*. The solid curve is the simulation of the
sequential 2p decay of '’F* via the 2% state in '*O at E* = 6.59 MeV [39]. The fitted parameters of the "F* state are 0, = 7.8(2) MeV and
I' = 0.4(4) MeV. The dotted and dash-dotted curves show similar calculations with assumed "*F* widths of 1 and 800 keV, respectively. The
inset shows the probability (as a function of the assumed resonance width) that the simulations match the data. (d) The 6,,;_y histogram obtained
for 6,,n >80 mrad, which corresponds to p + 13N final-state interactions. The solid, dotted, dashed, dash-dotted and dash-dot-dotted curves
are simulations of the 1p resonances in 40* at E* 0of 5.173, 5.92, 6.272, 6.59, and 7.768 MeV, respectively [39].

2p decay of a high-lying state in 'Ne via 15F(%Jr) and
SEST) with the fitted values of Q,, =7.6(2) MeV and
', = 0.8(7%%) MeV. The P(I") distribution for this state is

TABLE L The Q}® and roe (in MeV) of states observed in
ISF*, the assigned spin-parity J™, the calculated spsdpf shell-model
widths FiM in comparison to the (sd)? shell model [17] and the

MCAS [16] predictions. The excitation energies E, © of 'SC mirror
states are from [39].

Q;xp F;xp Jr FIS)M Q[p17] F[p”] QE}IG] r;lﬁ] E)ICSC
2.8(1) 0.4(1) 5/2t 033 278 03 279 0.18 0.74
492) 022) 1/2= 009 549 0.005 4.63 0.055 3.10
6.4(2) 02(2) 5/2= 0.05 6.88 0.010 592 0.006 4.22

3/2= 0.10 7.25 0.040 6.30 0.180 4.66
7.8(2) 0.4(4) 3/25 045 - - - - 5.83
12, ~3* - - - - 587
5/25 03 775 04 - - 6.36

aThe width is calculated for the '#O*(2*) + p decay branch.
®The width is calculated for the '*O*(17) + p decay branch, which in
turn decays into 3N +p +p.

shown in the inset of Fig. 20(c). The asymmetric shape of
P(T) is due to correlations of the two fit parameters, the level
width and the decay branching ratio because larger assumed
widths cause smaller admixtures of the 1/2% decay channel.
The obtained branching ratios of the 1/2% and 5/2% decay
channels are 0.24(8) and 0.76(8), respectively. The position
of the observed '®Ne* state correspond to the 6.1 MeV state
in its mirror 'C with J™ = (2+,37,47) [40]. We calculated
shell-model partial widths of all decay channels for each of
these J” assignments for the !®Ne* state. The most important
ones are shown in Table II. According to these calculations,
the only plausible spin-parity of the 7.6 MeV state is 2.

TABLE II. Different J™ assignment for the 7.6 MeV level in '*Ne
and the corresponding partial widths (in MeV) for decay into three
I5F 4 p channels, calculated in the shell model.

J SE(;)+p SEG)+p SE(; ) +p
2+ 0.036 >0.37 0.036
3 0.007 >0.005 0.120
4+ 14
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FIG. 22. (Color online) Angular p-'*O correlations (full circles
with statistical uncertainties) obtained from the measured p + p + 4O
events by selecting the p angle within the range from 65 to 80 mrad
[see Fig. 14(b)], which corresponds to the first-excited state in 16Ne.
The solid curve represents the Monte Carlo simulation of the detector
response for '*Ne*(2+)—> 40 + p + p direct 2p decay with the fitted
values O, =3.2(2) MeV and I' = 0.2(2) MeV. The dotted line
presents the same calculation but assuming a different 2p-decay
mechanism, namely a sequential proton emission via 'SF g.s. The
dashed line is a simulation of a hypothetical direct 2p decay of the
0% state with Q5, = 3.5MeV and I = 1 MeV reported in Ref. [41].
The dash-dotted curve indicates the background contribution scaled
from the 7.6 MeV state data.

In addition to the previously discussed two states in
16Ne, we found an evidence for the first-excited state 2%
in 'Ne by inspecting the p-angular distribution shown in
Fig. 14(b). The intermediate part of the p distribution cannot
be reproduced by only the ground 1.4 MeV and the excited
7.6 MeV states. However, a quantitative description of the
data can be achieved by adding an excited state in '®Ne with
the fitted values of 2p-decay energy Q,, = 3.2(2) MeV and
width I', = 0.2(2) MeV. These values were obtained by fitting
the corresponding angular p-'*O correlations as illustrated in
Fig. 22. One may see that both direct and sequential 2p-decay
mechanisms produce very similar distributions, which we
cannot distinguish with the present experimental uncertainties.
The obtained values are in quantitative agreement with the
previous measurements reporting for 2* 0, = 3.09(7) MeV
[32] and provide the first evaluation of its width which is
less than 0.2 MeV. The measured width value is crucial for
assigning spin-parity of this state. In the article [41] a first
excited state in '®Ne was found at Q,, = 3.5 MeV, and it
was identified as a second 0% rather than 2%. The positions of
these two states are quite close, however, their widths should
be 1 and 0.01 MeV, respectively, according to the theoretical
predictions [33]. Our data are consistent with spin-parity of 2%
only. The level and decay scheme of the '*Ne precursor states
derived from our measurements are included in Fig. 23.

Summarizing this chapter, we measured 1p and 2p decays
of excited states in '°F and 'Ne that can be explained as
valence protons coupled to excited-core states, which are,
in turn, proton resonances. For the O, =4.9 and 6.4 MeV
states in '5F, the proton energies of such a configuration are
too small and the decay into excited-core daughter states
is suppressed by the Coulomb barrier. In the cases of 'SF*
(@), =7.8 MeV) and 16Ne* (@, = 7.6 MeV) these energies

PHYSICAL REVIEW C 82, 054315 (2010)

N “o F Ne
i
(312,52) 782) 71 547 6
; ) - s Z
7L 2 6.59(1)‘,//./(5/2,3/2) 6.4(2),?’_,?-’ ' /
Or12 4628 JAa2)490) it 7
A "
E Yryi LA
Z 3 A sntasow i 2 220
o 3+ %/
E f -'!// /'//
9 YLDt sean i
M i ‘ i 70" 14002
! y /7 /‘/ -
L 7 xd e
/'/ ///// Z‘p
) s
O 7/ /’/

FIG. 23. Level scheme of all states observed in our experiment.
Single-proton 1p decays of the states in '°Ne, '°F, and '*O are shown
by dash-dotted arrows. The corresponding decay energies are shown
relative to the respective '*O + 1p(2p) thresholds. A 2p decay of the
!6Ne g.s. is illustrated by the dashed arrow. The hatched area indicates
the high-energy continuum in '®Ne.

are larger and their decays into excited-core daughter states
dominate. In all cases the relation I', < @, holds, which
means that observed nuclear configurations beyond the proton
drip line are relatively stable.

VI. SUMMARY AND OUTLOOK

The described method of in-flight 1p- and 2p-decay
measurements by tracking all decay products is a powerful
technique in studies of 1p- and 2p-unbound nuclei, which has
several advantages over the conventional missing-mass and
invariant-mass methods. In particular,

(i) Measurements of the total energies of the protons
are not required. The method allows to measure the
decay energies and widths of the 1p- and 2p-precursor
states by using only angular correlations between decay
products. Three-body angular correlations provide in-
formation on nuclear structure and decay mechanisms.

(i) The method is ideally suited for low-intensity beams
of exotic nuclei near the proton-drip line. Thick targets
(up to several g/cm?) and low-quality beams can be
used without loosing too much precision in measuring
the angles between the decay products, which is crucial
for determining the resonance energies and widths. A
relatively high precision of the measured decay energies
of 50-200 keV at incident energies of 500 A MeV was
demonstrated.

(iii) Large registration efficiencies (of about 30-70% for
three-particle events) allow studies of multiparticle
decay branches.

In a forthcoming article, we will explain in detail how
2p-decay lifetimes in the range from nanoseconds to femtosec-
onds can be measured with this technique, as was demonstrated
for the 2p decay of the Mg g.s. [3]. Since this type of
measurement requires only a rather simple setup and can be
applied to proton-unbound nuclei with very small production
cross sections, many more nuclei are expected to be studied
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with this method in the future (e.g., see some theoretically
predicted cases in Refs. [20,42]).
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