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We extend a model proposed for explaining multiplicity and oscillations of concentrations and tem-
perature in catalyzed oxidation of carbon monoxide; the importance of the dimension of the system and
the closure approximation applied to the results, and, especially to the oscillatory behavior, is analyzed.
Kinetic phase transitions, namely, single state<> multiplicity, single state<> oscillations, and multiplici-
ty<> oscillations are found, depending on the reaction heat and the temperature relaxation parameter.
Also, the role played by desorption of reactants is considered. When there is no desorption, temperature
oscillations take place around room temperature, but if desorption is operative, oscillations occur about
a higher temperature. For the one-dimensional case a spurious kinetic phase transition is obtained when

the singlet closure approximation is applied.

I. INTRODUCTION

Multiplicity and oscillations are phenomena often ob-
served in reactions catalyzed on a surface. Oxidation of
carbon monoxide on platinum or other metals is one of
the most representative of these reactions and has been
the object of a great number of experimental and theoret-
ical studies. A number of models, based on different
mechanisms, have been proposed for explaining multipli-
city and oscillations in this reaction, easy models as well
as models with increasing difficulty.

Recently some papers have analyzed kinetic phase
transitions, bistability, hysteresis, “poisoning,” and so on,
for this or similar reactions, on the basis of lattice mod-
els, using the Monte Carlo method or applying different
closure approximations to obtain rate equations.?” '

On the other hand, the importance of the dimension of
the system and the approximation applied for obtaining
the kinetic equations from a master equation has been re-
vealed in the study of kinetic phase transitions.
Specifically, closure approximations that are too simple
can give rise to spurious kinetic phase transitions in one-
dimensional systems where competitive adsorption of two
species takes place, with or without further chemical re-
action, when there is interaction between nearest neigh-
bors'®!7 (something similar to that happens in the equi-
librium Ising model when the Bragg-Williams or the
Bethe-Peierls approximations are applied). Significant
differences among results obtained using different approx-
imations have been detected in oscillatory situations. '*

Moreover, models where, because of reaction heats, a
catalytic surface can keep a different temperature from
that of its surroundings and temperature oscillations can
originate jointly with concentration oscillations have
been considered.!° 2! Temperature fluctuations give rise
to a strong nonlinearity of kinetic equations owing to the
Arrhenius law.

In this paper, the model initially proposed by Lagos,
Sales, and Suhl'® is extended to consider other features of
the problem and to analyze the influence of the system di-
mension and the kind of closure approximation on the re-
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sults and especially on oscillatory behavior and its
characteristics.

In Sec. II the two-dimensional model is analyzed by ap-
plying a singlet closure approximation (SCA), and in Sec.
III desorption of reactives is also considered; in Sec. IV a
doublet closure approximation (DCA) is applied; finally,
in Sec. V the case of a linear chain is studied for compar-
ison with the two-dimensional system, the influence of
the system dimension in this kind of kinetic phase transi-
tion being made clear.

II. SQUARE LATTICE.
SINGLET CLOSURE APPROXIMATION

Temperature and concentration oscillations in chemi-
cal reactions catalyzed on a surface constitute a represen-
tative case of oscillatory states in far from thermodynam-
ic equilibrium systems. Catalyzed oxidation of carbon
monoxide is a good example of this kind of behavior.

A known model, by Lagos, Sales, and Suhl,!® assumes
that the reaction takes place according to three elemental
mechanisms:

0,(g)+2V(s)—20(s) , 2.1
CO(g)+V(s)—CO(s) , (2.2)
CO(s)+0(s)—CO,(g)+2V (s) , 2.3)

where O,(g), CO(g), and CO,(g) indicate, respectively,
oxygen, carbon monoxide, and carbon dioxide molecules
in gaseous phase; O(s) and CO(s) denote an oxygen atom
and a carbon monoxide molecule adsorbed on the surface
and V(s) is a vacant site on the surface. This simple
scheme constitutes the Langmuir-Hinshelwood (LH)
mechanism.

The surface where adsorption and reaction processes
take place is assumed to be like a square lattice and each
oxygen atom (O) and each carbon monoxide molecule
(CO) can occupy one lattice site at most. Adsorption of
an oxygen molecule (O,) needs two adjacent vacant sites,
dissociation in two atoms being allowed. On the other
hand, a CO molecule and an O atom, both adsorbed next
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neighbors, can react, constituting a CO, molecule, which
leaves the surface immediately. The transition probabili-
ties for the processes (2.1)-(2.3) are chosen as

W,=k\(T)n,,, W,=ky)(T)n,, Wi=k3(T)noco »

where k;(T) (i =1,2,3) denote the rate constants of the
processes (2.1)-(2.3); ny is the vacant fraction, n,, the
vacant pair fraction, and ng o the density of
oxygen—carbon monoxide pairs.

Kinetic equations for the singlet densities ng and ncg
are formulated from a mean field approximation, where
all the cluster densities are written in terms of singlet
densities (SCA)

dno 2
dt =2W1'—'W3=2k1(T)(1_n0_nco)
—k3(T)n0nC0 ’ (2.4)
dnco
T=Wz‘W3=k2(T)(1_"o_"co)_ks(T)”onco .

2.5

The rate constant of the process (2.1) is assumed in the
Arrhenius form

1 1

T, T

kl(T)=k1(TB)exp R

where Ty is room temperature, E is the activation energy
for the dissociative adsorption of the O, molecule (as-
sumed independent of the coverage), and R is the gas
constant. Also, processes (2.2) and (2.3) are not con-
sidered activates and, therefore, k,(T)=k,(Ty) and
ky(T)=k;(Ty).

If thermal diffusivity of the surface is much higher
than that of the surroundings, the surface temperature,
due to adsorption and reaction heats, can be different
from the room temperature, thus affecting the process
rates. Equations (1) and (2) must be completed with an
equation for the surface temperature,

dT

3
C—=_L(T_TB)+ 2 AH,'W,' N

ar 2 (2.6)

where C is the heat capacity of the system, L /C (L is ap-
proximately equal to thermal conductivity times a
geometric factor) is the relaxation rate of T to T, and
AH, are the reaction heats of the processes (2.1)-(2.3), in-
cluding a suitable geometric factor.

Kinetic equations (2.4)—(2.6) can be written in terms of
the dimensionless constants and variables

T L
=——-1, 7=k3t, €= y Y=7T=,
7T, b E TR, Y ke
ky(Tg) ky(Ty)
a= ’ = ’
k3(Tp) ky(Tg)
AH AH
h1=—1—, h,= 2’ q= AQ ,
2CT, CT, CcT,

where AQ=AH,/2+AH,+AH;>0 is the net reaction
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heat. Moreover, for simplicity, h, =h, =h is assumed.
Kinetic equations are

dng )
—_=ag(z)(l_n0_nco) _nonCO ) (2.7)
dr

dnco

dr :b(l_no_nco)—'nonco N (2-8)
dz _ 2
g’;—"}/z +h [ag(z)(l—no—nco) +b(1—no_nco)

_znonco]+qn0nco N (2.9)

where g (z)=exp[ez/(z +1)].
Equations (2.7)-(2.9) can give rise to oscillatory states
for certain values of the parameters ' ={a,b,¢,v,h,q}.
Four steady solutions, x; = {n3,n%,,z"}, are obtained
from dngy /dT=dn o /dT=dz /d7=0, which are denoted

X 41 =(1,0,0) ,
x_,;=(0,1,0),

(st st st+
xo+ =(ng",ngd,z"")

b

xo_ =3 ,ng,z"7),

stt —1(1—,, F st

ngo =3(1—voFuy), z
vo=[b/ag(z*)] and

with ndtf=1(1—v,+u,),
(0] 2 0 0
=(q/yInyEngs where

ug=[(1—vy)* —4bv,y1"2

Solutions x,, and x,_ are for the meaningful range
(0<nd <1,0<ngG<1,0<n+ngy <1) for values of
vo<1 and 4bvy <(1—wvgy)% Solutions x,; and x,_ are
symmetrical with each other.

The stability analysis is performed in the usual way,
from the eigenvalues of the stability matrix.?? x,, is a
saddle point and x _, is a stable node (corresponding to
the poisoning of the surface by CO at room temperature);
xo+ and x,_ can be unstable, marginally stable, or
stable, depending on the values of the parameter T".

With the aim of studying the oscillatory behavior of
the system and the existence of limit cycles three
representative cases have been analyzed.

(i) ¢ =0 and y — . For this case only Egs. (2.7) and
(2.8) must be considered because as Y — oo the system re-
laxes instantaneously to room temperature (z =0).

Now x,_ is a saddle point and x, is a stable node or
a spiral point (state marginally stable), depending on the
values of I'={a,b}. As can be seen, there are no self-
sustained oscillations.

The Runge-Kutta?> method has been applied for
different initial conditions. In Fig. 1, for a =1 and
b =0.2, some trajectories in the phase space ng-ncq are
shown. Steady solutions are x,, =(0.7464,0.0536)
(stable node), x,_ =(0.0536,0.7464) (saddle point),
x 1 =(1,0) (saddle point), and x _; =(0,1) (stable node).
The phase space is clearly split into two basins, corre-
sponding to x,, and x_;, respectively. The separatrix
crosses the saddle point x_.

(ii) ¢ =0 and v finite. In this case, the steady solutions
are only functions of I'={a,b}, since z*=0, and can be
obtained as in case (i). However, for analyzing stability of
solutions the set of parameters I'={a,b,¢,y,h} must be
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1 considered.

Steady solution x,_ is also a saddle point, and x _; a
stable node, and the trajectories starting from points in
the basin of x _, tend to x _;; the remaining trajectories
tend to the stable node x4, or, if xy; is unstable, come
near to a limit cycle. For 0 <y <y. (with the other pa-
rameter fixed) limit cycles increase in size as y decreases
in relation to y,.. Thus, for a =1, b=0.2, €=10, and
co h =S5, y. is 1.11 and limit cycles can be found for the

range 0 <y < 1.11. Steady solutions for @ =1 and b =0.2

(they do not depend on ¢, h, and y) are x,=(1,0,0),

x_,=(0,1,0), x4, =(0.7464,0.0536,0), and x,_

=(0.0536,0.7464,0). In general, x,,; 1is an unstable

focus, marginally stable state, stable focus, and stable

node as y increases, for the above values of the other pa-
1 rameters.

In Fig. 2(a) two limit cycles are shown for y =0.7 and
1 (both for a =1, b =0.2, e=10, h =5, ¢ =0). In Fig.
2(b), oscillations in concentrations and temperature are
shown for y =1.

(iii) ¢#0 and y finite. Now, although an analytical
solution is not possible and numerical methods must be
applied, the distribution of singular points, stability, and
separatrix are similar to those of case (ii).

An analysis has been performed considering different
03 values of & and y, choosing g /A =2 and fixing the other

0

(0] n,

FIG. 1. Trajectories on the phase plane ng-nco for the case
g =0and y — o, with @ =1,b =0.2. O denotes stable node and
A saddle point.

(a) p parameters. Now, x,, is a stable node, stable focus,
=0.7 marginally stable state, and an unstable focus as y in-
creases. For certain values of ¥, x,, and x,_ disappear,
Neo x 4, and x _ being the only steady states.
In Fig. 3 a limit cycle is shown for a =0.0027, b =0.8,
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FIG. 2. (a) Projection on the ng-nco plane of several limit 0.7 No 0.9
cycles: y=0.7 and 1 both with a=1, b=0.2, e=10, h =5, FIG. 3. (Oscillatory state no=0.8003, nco=0.0998,
g =0. The unstable focus is located in the state no,=0.7464, z=0.9988 obtained for a =0.0027, b=0.8, e=16, h =12.5,
nco=0.0536, z =0 for both cases. (b) Time evolution of tem- g =25, y=2. Case of large h (large surface to volume ratio).
perature and concentrations for a =1, b=0.2, e=10, h =5, Temporary oscillations are shown in (a) and the projection on

g=0,y=1. the no-nco plane of the limit cycle obtained is shown in (b).
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€=16, h =12.5, ¢ =25, y =2. The temperature and con-
centration oscillations are shown in Fig. 3(a) and projec-
tion on the ng —ngg plane of the limit cycle obtained is
drawn in Fig. 3(b). Here h is large (large surface to
volume ratio).

If y is changed, for the same values of the other pa-
rameters, limit cycles can be obtained for the range
1.70=y <5.06, x4, and x,_ disappearing for ¥ =5.06.
Temperature decreases as y increases, changing between
605 and 548 K, with 75 =298 K.

For h small (Fig. 4), calculations have been performed
for @ =0.002, b=0.05, €=20, h =0.5, ¢ =1, y=0.1.
Limit cycles appear for 0.07<y <0.15, temperature
changing between 377 and 365 K, with T; =298 K.

As can be seen, frequency and amplitude of oscillations
depend on the case considered. For elevated temperature
(T =550 K, h large) amplitudes and periods are smaller
than for lower temperature (7 <380 K, 4 small).

III. REACTIVE DESORPTION. SCA

Now we assume reaction takes place according to five
elemental mechanisms:

0,(g)+2¥V(5s)—20(s) , (3.1)
0-8”

"o

0.2

0.2

%I\/\/\A/\/\/\/\/\/\/VWW\/

° (a)

0.5

z

o'.

K T 10
0.2

nco{ \ (b)

0

0.2 n, 0.8
FIG. 4. (Oscillatory state n,=0.4568, nco=0.0536,

z=0.2448 obtained for @ =0.002, b=0.05 =20, h =0.5,
g= 1, y=0.1. Case of small 4 (small surface to volume ratio).
Time display of the oscillations is shown in (a) and the projec-

tion on the ng-nco plane of the limit cycle obtained is shown in
(b).
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CO(g)+V(s)—CO(s) , (3.2)
CO(s)+0(s)—CO,(g)+2¥(s) , (3.3)
20(s)—0,(g)+2¥ (s) , (3.4)
CO(s)—CO(g)+ V¥ (s) , (3.5)

thus extending the previous model analyzed in Sec. II, by
including desorption processes of oxygen (3.4) and carbon
monoxide (3.5) from surface.

Now kinetic equations are

dno — 2 2
=ag(z)[1—no—nco) —nonco—a'npg »
dr
dnco
dT =b(1_no_nco)_nonco_b'g,(z)nco N

.z (3.6
E;z —yz+hlag(z)1—ng—nco)?

+b(1—no—nco)—2nonco]
+qnonco—h’[a’n%) +b'g'(z)ngg],

where a' and b’ are the ratios of the preexponential fac-
tors in the Arrhenius form of the processes (3.4)-(3.3) and
(3.5)-(3.3), respectively; €' is a quantity proportional to
the activation energy of the process (3.5); h’ is a quantity
proportional to the ratio of the reaction heats in process-
es (3.4) and (3.5) to the heat capacity of the system; and
g'(z)=exp[e'z/(z +1)]. The other parameters have been
defined in Sec. II. Now the set of parameters concerning
the problem is I'={a,b,a’,b’,¢,€',v,h,h',q}.

The previous model analyzed in Sec. II, which does not
take into account desorption, gives rise to oscillatory
states for certain values of the parameters. To analyze
how desorption influences oscillations, case (ii) in Sec. IT
(g =0, v finite), with a =1, b =0.2, e=10, h =5, is stud-
ied. Then the problem depends on the parameters a’, b’,
¢', and k', corresponding to desorption processes, and .

(i) a'=0, b'+0. This case assumes that oxygen desorp-
tion does not take place. Experimental’*~26 results show
that for a temperature lower than 600 K the reaction
kinetics is governed essentially by the CO coverage.
Desorption rate of oxygen is negligible and CO coverage
is governed mainly by the parameters proportional to
rates of CO adsorption and desorption (b and b’, respec-
tively).

Steady state x , ; =(1,0,0) always exists and is a saddle
point. Additionally, up to three steady solutions can be
obtained, depending on the values of &’.

(a) h'=h. For this case z*=0 and the other steady
solutions depend on I'={a,b,b’}. The values of a =1
and b =0.2 being fixed, three steady solutions are ob-
tained from 4'=0 (there is no CO desorption) up to
b'=0.011. For b'=0.012 two of these solutions disap-
pear.

When b'=0.01, steady solutions are x_;
=(0.0056,0.9223,0), x,_ =(0.0236,0.8359,0), and
xo+ =(0.7507,0.0519,0). If € is fixed and the values of
v (y >0) are increasing, x _; is a stable focus or node,
Xxy_ is a saddle point, and x,, can be an unstable focus
(giving rise to a limit cycle), marginally stable state, stable
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focus, and stable node. For b'=0.012, x_; and x,_
disappear and x4, =(0.7516,0.0517,0).

Now, the formation of a CO packed structure, x _,,
limits the reaction steady rate by an end, and the forma-
tion of a state where oxygen atoms are closely bound (ox-
ygen adsorption predominates), x , limits it at the other
end.

Thus the trajectories in the phase space tend to x _; or
xo4 and if x, is not stable they come near a limit cycle,
for 0<y <vy,. The size of the limit cycle decreases as y
increases. For €'=0.10 there are limit cycles for the
range 0<y <1.08; for € =20 in 0<y <1.09, and for
e'=50, 0<y<1.10, i.e., the value of €' scarcely
influences the value of y.. In Fig. 5 a limit cycle is
shown, for b'=0.01, ¢'=5, and y=0.7.

(b) A’ <h. For values h' = 4.5, with b'=0.1, ¢'=5, and
y=0.7, four steady solutions can be found, x,,;, x_,
Xg_, Xo4 , and their characteristics are similar to those of
case (a). However, unlike case h =h' (where the system
relaxed to room temperature, z*=0), now the desorption
mechanism makes z%>0. Thus, for #'=4.5 and the
values of the other parameters fixed, x ,; =(1,0,0) (sad-
dle point), x_, =(0.0092,0.9025,0.0067) (stable focus),
xo_ =(0.0155,0.8718,0.0064) (saddle point), and
Xxo4 =(0.7517,0.0516,0.0004) (unstable focus).

For h’'<4.5,x _, and x,_ disappear. In Fig. 6 a limit

1 (2)

0.3

0.3
L NN
(o]

21,

-03
[o]

03
o

FIG. 5. Oscillatory state ng =0.7507, nco =0.0519, z =0 ob-
tained for a =1, =0.2, =10, h =5, ¢ =0, y=0.7, a’=0,
b'=0.01, ¢’=5, h'=5. Case h =h'. Temporary oscillations of
coverage fractions and temperature are shown in (a). The pro-
jection on the ng-nco plane of the limit cycle is in (b).

M. C. LEMOS AND A. CORDOBA 49

cycle corresponding to this case is shown, with A'=3,
b'=0.1, €¢'=5, and y=0.7, resulting in x,,
=(0.8057,0.0350,0.0105). If y varies with the other pa-
rameters fixed, limit cycles can be obtained for the range
0<y <0.90.

(i) a’'#0,b'=0. For this case the steady state
x_,=(0,1,0) is always obtained; it is a stable node. De-
pending on the values of 4’, two additional steady solu-
tions can be obtained, but the state x , ; =(1,0,0) never
appears. When #’=h or h’' <h there are limit cycles for
the range O0<y <y, (with a suitable value for y,) but
z%'=0 for the former case and z* > 0 for the latter.

(iii) a'50,b’'7#0. Now, some of the states x ., =(1,0,0)
or x_,;=(0,1,0) are not obtained, unlike the previous
cases. With regard to existence and characteristics of
limit cycles, results are similar to those previously ob-
tained.

Summarizing, with regard to oscillations, when desorp-
tion exists, the behavior of the system is essentially simi-
lar to the case when desorption is not operative. The
most remarkable feature is z%>0 (for A’ <h), i.e., tem-
perature fluctuates around a temperature greater than
room temperature.

IV. DOUBLET CLOSURE APPROXIMATION

In order to analyze the influence of the closure approx-
imation applied on the existence of multiplicity and, espe-

(o] 2x10

MNeo x
0l

0.6 N 1

FIG. 6. Oscillatory state no=0.8057, nco=0.0350,
z=0.0105 obtained for a =1, b=0.2, ¢=10, h =5, q =0,
y=0.7, a’=0, b'=0.1, ¢'=5, h'=3. Case h >h’. Temporary
oscillations are shown in (a) and the projection on the no-nco
plane of the limit cycle in (b).
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cially, on oscillations, in this section kinetic equations
have been obtained for the kinetic model of Sec. II by ap-
plying a closure approximation consisting of closing the
hierarchy of kinetic equations at the level of doublets
(DCA). In general, the densities of clusters including
more than two sites are written in terms of densities of
singlets, n;, and doublets, n;;:
= itk
Rijk = ’

R

where i, j, and k can be ¥ (vacancy), CO (site occupied by
a carbon monoxide molecule), and O (site occupied by an
oxygen atom).

Now we assume that the surface is a square two-
dimensional lattice. Following the guideline of Ref. 27,
in a doublet closure approximation the state of the sur-
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face is determined giving the density of single particles n;
and the density of pairs, ng and n,{, where i,j =V, CO,
O, and x (y) indicates that the pair is situated on the x
axis (y axis). Thus, for a carbon monoxide molecule, CO,
adsorbed on the surface, the four nearest neighbors are
considered, leaving the surface when a neighbor oxygen
atom is found to react, forming a carbon dioxide mole-
cule. For an oxygen molecule, O,, adsorbed on the sur-
face, its six nearest neighbors are considered; one oxygen
atom leaves the surface when meeting a neighbor carbon
monoxide molecule to form a carbon dioxide molecule.
By dependence relationship among the variables n;, nj,
and n}, the number of independent variables can be re-
duced. Choosing as independent variables ng, ncq, 5.0
no.cos Méo.cor and the scaled temperature z, kinetic
equations are

dng
_d‘T—:ag(Z)[l“2”0_2"co+”o-o+2no-co+nco-co]—”o-co ’
dncg
dT =b(1_no—nco)~—no_co ,
dnoo _ 1 1 3ng—noo—no.co) 3no.0M0.co
_JT_Z—ag(z)[l_2n0_2nco+n0_0+2n0_co+nco~co] E"" (l—no—nco) - 2no )
4.1)
dno.co 3ag (z)
dr 4(l_ni__nco)[1“?—'10*2’1co+”o-o‘*’2'1o-co""”co-co]["co_"o-co_"co-co]
no. 3ng. 3nq.
+b[ne—No0—Noco]— oco |, “"oco , “Mo-co ,
4 ng nco
dnco.co 3no.comco-co
T*Zb[nco_”o-co_”co-co]‘“‘_z—ncg‘— ’
j_j_':'—"}’z_"h[ag(z)[l_2no—2nco+n0_0+2n0_co+nco_co]+b(l—no_nco)_’zno_co}+qn0_co N

where ng.g, no.co» and nep.co are the densities of pairs
0-0, 0-CO, and CO-CO, respectively; T ={a,b,&,7,h,q}
is the set of relevant parameters of the model.

In general, four steady solutions, x=(ng,
ncosno.0:"o.corHco.cor2), are obtained, at most; they

are labeled, for analogy with Secs. II and III, as x
st+

=(1,0,1,0,0,0), x_,=(0,1,0,0,1,0), xo»=(n%",
; t+ +

ndd nd nsty,ndd co,z®), with n3" >ndd, and

—_ t— t— t— t— st— st— 3 st—

xo- =(ng ,no1M5.0:M0.cosNCo.cor2” ), With ng

<ndy; now x,_ is not symmetrical with xy, . Thus the
number of steady solutions in the DCA is the same as in
the SCA.

The previous cases analyzed in Sec. II are now con-
sidered: ¢ =0, y — «; ¢ =0, v finite; g0, y finite.

The results obtained are qualitatively similar to those
of Sec. II, but there are some quantitative differences.
Thus the range 0<y <y, allowing oscillations is shor-
tened; for example, in the case ¢ =0, y finite, for a =1,
b=0.2, €=10, and h =5, y.=0.34 for the DCA, but
Y.=1.11 for the SCA. Some quantitative differences for
the values of nq, ncg, and so on, and reaction rate can be
appreciated.

Figures 7 and 8, both with a =0.002, b =0.05, ¢=20,

h =0.5, g =1, and ¥ =0.08, show case g0 and ¥ finite
for DCA. Figure 7 shows the projection of limit cycle on
the phase plane ny-ng; and temperature and concentra-
tion oscillations for the same limit cycle are shown in Fig.
8. Both figures can be compared with Fig. 4, which
represents an analogous case in SCA.

Summarizing, in this two-dimensional model, the kind
of approximation applied does not essentially affect the
results, although some quantitative differences appear.
Considering the kinetic phase transitions taking place in

0.2

co

0.2 n, 0.9

FIG. 7. Projection on the phase plane ng-ngg of the limit cy-
cle obtained for a =0.002, b=0.05, €=20, h=0.5, ¢ =1,
y=0.08. The unstable focus is ny=0.5381, nco=0.0617,
no.0 =0.3354, ng.co =0.02, ngo.co =0.0071, and z =0.2501.
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TABLE I. Kinetic phase transitions in this model.
Y Transitions
0 o Multiplicity YES 1 stable node <« 2 stable nodes
Oscillations NO
Finite Multiplicity YES
Oscillations YES 1 stable node
(Temperature fluctuates
around the room temperature) 1 stable node
and
#0 Finite Multiplicity YES 1 limit cycle
Oscillations YES
(Temperature fluctuates 2 stable nodes
around a temperature greater
than the room temperature)
this system, depending on the “‘thermal” parameters g dng 1 1
and 7, Table I can be written. 4r 2% (2)(1—ng—ngo)— > Monco »
V. LINEAR CHAIN. SCA AND DCA
90 (1 p—neg)— Lnon (5.1)
Catalyzed oxidation of carbon monoxide takes place on dr 0 Teol o TOoTCo :
a surface and, therefore, a two-dimensional model must
be applied. However, as has been demonstrated for other d 1
cases, '%!7?" some closure approximations can introduce Lz yz+h |—ag(z2)X1—ng—nco)?
spurious kinetic transitions when they have been applied dr 2
to one-dimensional systems. For checking this possibility
in Fhls Ipodel, the adsorption and reaction processes de- +b(1—np—nco)—nonco |+ g_n omco
scribed in Sec. Il are assumed to take place on a linear
chain.
Kinetic equations applying the SCA are and the ones resulting from the DCA are
J
dn fe) 1
dr = 3ag (Z)[ 1 _2’10 *cho +n0_0 +2n0_co +nco_co ] - E'no_co s
dnco 1
—dT_‘Zb (1 —nNop —nco)__z_no_co ’
dnoo _ 1 1, (no—no.0"M"oco) no-oMo-co
——=—ag(z)[1—2ng—2nco +noo+2n +n —+ - ,
dr 2 g (z)] o felo) 0-0 0-CO co-co 2 (1—ng—tico) 2,
(5.2)
dno.co a
_ g (z) _ _
dr 41—ng—neg) (1=2n¢=2nco +n0.012n0.co T Mc0.collnco —"0.co —Mco.co]
1 no-.co , "o-co
+b(n0_n0_0—"no_co)_zn0_co 1+——+ - ,
no nco
dncoco 1 Mo.con
=2b(nco—no.co " Mco.co) ™ e
dr 2 nco

dz _ ! 1
dr vz+h 3“8(7-)[1—2”0“2"co+no.o+2"o.co+”co<co]+b(1‘"0‘”co)‘”o-co +?qn0_co.
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0.9
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0.7

No-0

014
0 T 10°
FIG. 8. Temporary oscillations of temperature and coverage
fractions for @ =0.002, b =0.05, e=20, h =0.5, ¢ =1, y=0.08.
The oscillatory state is np=0.5381, nco=0.0617,
no.0=0.3354, no.c0 =0.02, nco.co=0.0071, z =0.2501.

First, kinetic equations from the SCA will be analyzed.
As in the two-dimensional case, four steady solutions
are obtained, x |, Xx_;, Xg, Xg—; X4 is a saddle point
and x_, is a stable node; x,, and x,_ can be stable or
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unstable, depending on the values of the parameters
I'={a,b,e,7,h,q}.

Similar results to those of the two-dimensional system
are obtained for the one-dimensional systems applying
the SCA. However, the analysis of the kinetic equations
derived from the DCA for a one-dimensional system is
essentially different from that previously obtained in Sec.
II and in this section for the SCA.

Effectively, for ¢ =0 and y — 0, only the steady states
x4+,=(1,0,1,0,0) and x _;=(0,1,0,0,1) are found; they
can be saddle points or stable node, depending on
I'={a,b}. There is no multiplicity of stable steady
states.

When the possible existence of limit cycles is analyzed
(for y finite, with ¢ =0 and ¢50) discrepancies with the
SCA also appear. A wide sweep in the framework of the
parameters I'={a,b,,7,h,q} has been performed and,
for all the analyzed cases only one stable steady state
(stable node) has been obtained, corresponding to
x4+,=(1,0,1,0,0,0) or x _; =(0,1,0,0,1,0), depending on
the values of parameter I'.

Summarizing, the nonlinearity introduced in the model
of the surface reaction formulated to study the catalyzed
oxidation of carbon monoxide does not give rise to multi-
plicity of stable steady states or oscillations in one-
dimensional systems when the DCA is applied, but does
when the system is two dimensional.

As in other cases of equilibrium and kinetic phase tran-
sitions, it is made clear that these take place in two-
dimensional systems but not in one-dimensional ones and,
therefore, the transition appearing when the SCA is ap-
plied to a one-dimensional system is spurious and a
consequence of the approximation applied.
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