
Research Article
Nanocrystalline Al Composites from Powder Milled under
Ammonia Gas Flow

J. Cintas,1 E. S. Caballero,1 J. M. Montes,1 F. G. Cuevas,2 and C. Arevalo1

1 Metallurgy and Materials Engineering Group, Escuela Técnica Superior de Ingenieŕıa, University of Seville,
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The production of high hardness and thermally stable nanocrystalline aluminium composites is described. Al powder was milled
at room temperature in an ammonia flow for a period of less than 5 h. NH

3
dissociation during milling provokes the absorption,

at a high rate, of nitrogen into aluminium, hardening it by forming a solid solution. Controlled amounts of AlN and Al
5
O
6
N are

formed during the subsequent sintering of milled powders for consolidation. The pinning action of these abundant dispersoids
highly restrains aluminium grain growth during heating. The mean size of the Al grains remains below 45 nm and even after the
milled powder is sintered at 650∘C for 1 h.

1. Introduction

Nanostructured materials are promising materials that offer
newopportunities for substantially improving the standard of
living. Over the last years, nanostructured materials research
has grown significantly [1–3]. Grain size reduction to the
nanometre scale allows for improvements in mechanical
properties, as has been shown by several researchers [4–8].
Currently, the most common processing methods for the
production of nanocrystalline materials include inert gas
condensation, chemical reactionmethods, electrodeposition,
severe plastic deformation, and mechanical milling [9, 10].
The latter, also called high-energy milling or mechanical
alloying, is considered one of the main techniques in this
regard [11, 12].

Al powder has traditionally been reinforcedwith a variety
of micron-size directly added ceramic particles, such as
alumina, silicon carbide, titanium carbide, and others [13–
15]. Recently, Al-matrix composites reinforced with sub-
micrometric (0.1–1 𝜇m) and nanometric (<0.1 𝜇m) particles
have been widely studied [16, 17]. However, one of the main
challenges towards achieving a homogeneous distribution of

a nanometric ceramic phase in a metal matrix is avoiding
agglomeration of the reinforcement particles [18].

It has been found that the reinforcement of aluminium
powders is more homogeneous when these dispersoids are
formed through direct reaction of the aluminium with its
environment, rather than by simply mixing aluminium with
ceramic composites [19–22]. Aluminium easily reacts with
elements such as C, O, N, and H, which leads to difficulties in
its traditional processing, but this reactivity can be positively
used through mechanical alloying to form, after thermal
treatments, several phases finely dispersed in the matrix.
These phases, such as aluminium oxide (Al

2
O
3
), carbide

(Al
4
C
3
), nitride (AlN), oxynitrides, and oxycarbonitrides

[19], perform as reinforcing instead of embrittling agents. In
the presence of hydrogen, aluminium forms hydrides, which
are brittle, but they are easily removed by heating, forming
hydrogen, which is evacuated during sintering [23, 24].

On the other hand, aluminiumnitride possesses excellent
conductivity, low thermal expansion, high hardness, and
good oxidation resistance at elevated temperatures [25].
These characteristics suggest that AlN may be an acceptable
reinforcement not only for mechanical applications but also
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for physical aims such as electronic applications, when the
composite/substrate junctionmust have no significant distor-
tionswith thermal changes [26]. Several preparationmethods
of Al/AlN composite materials have been reported. Most of
them are based on pressure or pressureless metal infiltration,
spray deposition and hot pressing, squeeze casting, and
mechanical alloying [27–31].

This paper describes a new and simple method to obtain
aluminium-based nanostructured components reinforced
by self-forming nanometric AlN. These reinforcements are
formed through the mechanosynthesis of Al powders in
an ammonia gas flow at room temperature for relatively
short milling times (5 h), followed by a conventional powder
metallurgy consolidation process.

2. Materials and Methods

The starting material was atomised elemental aluminium
powder (ECKAAS61, Eckart-Werke,Germany), with a purity
higher than 99.7% and a mean particle size of 80.5 𝜇m.
Aluminium powder was milled in a high-energy attritor ball-
mill (Union Process, USA). The water-cooled stainless steel
vessel used has a 1400 cm3 capacity. A 3wt.% micropowder
organic wax (etilen bis-stearamide) was used to control the
welding and fracture processes of Al powder during milling.
The mill charge contained 72 g of powder and 3600 g of
balls (charge ratio in wt.%: 50 : 1). The milling processes were
performed in an ammonia (NH

3
) flowof 1 cm3/s with a purity

higher than 99.96%.
In order to study the evolution of the morphology

and microstructure of the powders, milling was performed
from 1 to 5 h with rotor speeds of 300 and 500 rpm. For
comparison, a milling process in vacuum (5 Pa) at 500 rpm
for 5 h was also performed. The powder particle sizes were
measured by laser diffraction (Malvern, Mastersizer 2000),
whereas the morphology was studied by a scanning electron
microscope (SEM, Philips XL-30) equipped with an energy
dispersive microanalysis system. To measure the powder
compressibility, a universal testing machine (Instron, 5505)
with a load cell of 100 kN was used.

The milled powders were consolidated by cold uniaxial
pressing (1300MPa) and vacuum (5 Pa) sintering (650∘C
for 1 h). X-ray diffraction measurements (XRD, Bruker D8
Advance, using CuK𝛼 radiation) and transmission electron
microscopy (TEM, Phillips CM 200) of milled and sintered
powders were used to identify, quantify, and measure the
crystallite and grain size of the phases formed. Vickers
hardness (Struers Duramin A300) of sintered compacts was
evaluated using a load of 1 kg, whereas relative density was
determined both by Archimedes’ principle and by mass and
dimensions measurement.

3. Results and Discussion

3.1. Granulometry. Figure 1 displays the granulometric
distribution of the as-received aluminium (ARAl) and
the mechanically alloyed powders, at 300 and 500 rpm, in
an ammonia gas flow (MAA 300 and MAA 500, resp.).

The curve of the MAA 500 powders (Figure 1(b)) shows
that, contrary to that expected for a ductile powder such
as aluminium, the particle size decreases from its initial
value (powder milled for 1 h, MAA 500-1). This is due to
the rapid dissociation and adsorption of components of the
ammonia from the beginning of the mechanical alloying
process, strengthening the aluminium by solid solution.
This strengthening associated with high-energy milling is
responsible for the rapid particle size decrease. On the other
hand, lack of symmetry is observed in the curves of the 3-
and 5-h milled powders (MAA 500-3 andMAA 500-5).This
could be related to the small particle size of these powders,
which significantly promotes powder agglomeration.

In contrast, the lower energy of the process when
milling at 300 rpm causes a slower particle size evolution
(Figure 1(a)). The powder requires more time to harden,
homogenise. and decrease in size. Therefore, the MAA 300
powders have a larger mean particle size (Figure 1(c)) and a
broader particle size distribution as compared to the MAA
500 powders for the same milling time. Furthermore, the
lower milling energy and the consequent increase of the
particle welding processes are also responsible for the higher
particle size observed after 1 h (MAA 300-1) as compared
with the ARAl (Figure 1(c)).

3.2.Morphology. Figure 2 shows the sequence of SEMmicro-
graphs of MAA 300 powders as a function of milling time.
For this rotor speed, powder morphological changes occur
following the usual evolution [32]; after 1 h of milling, the
powder particles have a flake shape (Figure 2(a)); after 2 h,
they begin to weld to each other (Figure 2(b)); and after
3 h, they tend toward an elongated multilayer structure
(Figure 2(c)), which is revealed when sections of powders are
studied. With increasing milling time, it was found that the
elongated multilayer particles evolve to equiaxed particles,
markedly decreasing their size (Figure 2(d)).

In contrast, this morphological evolution is faster for
samples obtained by milling at 500 rpm. As shown in
Figure 3, the particles have a flake shape after 1 h of milling
(Figure 3(a)) and acquire an equiaxial morphology after only
2 h (Figure 3(b)). By increasing the milling time, the particle
size is further reduced, while its geometry tends to be more
rounded (Figures 3(c) and 3(d)). It can be observed that the
powder tends to agglomerate, causing the aforementioned
lack of symmetry of the granulometric curves of powders
milled for 3 h and 5 h (MAA 500-3 and MAA 500-5).

3.3. Compressibility Test. Due to the small size of the as-
milled powder particles, it was not possible to measure their
microhardness. Nevertheless, a compressibility test (measur-
ing the relative green density versus the applied compaction
pressure) is an indirect method for determining the inherent
hardness of powder particles [19]. This curve is very useful
for determining, during the powder consolidation process,
the adequate compaction pressure, that is, the desired green
density. Compressibility curves of the milled powders are
shown in Figure 4. Curves for the ARAl and vacuum-milled
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Figure 1: Granulometric curve of ARAl and powdersmilled inNH
3
flow at (a) 300 rpm and (b) 500 rpm for 1, 3, and 5 h and (c)mean particle

size (D4,3) of these powders.
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Figure 2: Morphological evolution of the milled powder in ammonia flow at 300 rpm for (a) 1 h, (b) 2 h, (c) 3 h, and (d) 5 h. Note the different
magnification used.
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Figure 3: Morphologic evolution of powder milled in NH
3
flow at 500 rpm for (a) 1 h, (b) 2 h, (c) 3 h, and (d) 5 h. Note the different

magnification used.
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Figure 4: Compressibility curves of (a) ARAl and powders milled in ammonia at 300 rpm for 1, 3, and 5 h and (b) powders milled at 500 rpm
in vacuum for 5 h and in ammonia for 1, 3, and 5 h.

powder at 500 rpm for 5 h (MAV 500-5) are also included for
comparison.

The powder milled in ammonia at 300 rpm for 1 h
(MAA 300-1) and pressed at 500MPa has a relative density
higher than 98% (Figure 4(a)), whereas the relative density of
powder milled under the same conditions but for 5 h (MAA
300-5) is slightly higher than 78%. In contrast, the ARAl
powder reaches a relative density close to 100% for the same
compaction pressure. This shows that, even when using a
rotor speed of only 300 rpm, the strain hardening effect is
quite fast with respect to milling time.

At a pressure of 500MPa, the powders milled at 500 rpm
for 1 and 5 h (MAA 500-1 and MAA 500-5) reach relative
densities above 90 and 70%, respectively (Figure 4(b)). These
values are slightly lower in comparison with the powders
milled at 300 rpm, because, as expected, the hardening effect
increases with rotor speed. However, this increase is not
only due to the milling energy. In ammonia flow milling,
solid solution hardening has an additional effect on the
strain hardening.This assertion can be verified by comparing
(Figure 4(b)) the compressibility curves of MA A 500-5 and
powdermilled in vacuumat the same rotor speed for the same
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Figure 5: X-ray diffraction of as-milled and as-sintered Al powders milled for 5 h (a) in vacuum and (b) in ammonia gas flow.

Table 1: Phases present vol.% in sintered Al powders milled in an ammonia gas flow at 500 rpm for 1, 3, and 5 h (MA A 500-1 S, MA A 500-3
S, and MA A 500-5 S).

Phase Material
MA A 500-1 S MA A 500-3 S MA A 500-5 S

Aluminium (Al) 78.45 46.41 28.87
Aluminium nitride (AlN) 6.22 20.25 49.58
Aluminium oxynitride (Al5O6N) 15.33 33.33 21.55

duration (MAV500-5). Logically, the friction force caused by
interlock behaviour between irregular-shape particles could
increase the hardening effect.

3.4. Microstructure. The powders milled in vacuum at
500 rpm for 5 h before and after sintering (MAV 500-5 and
MAV 500-5 S, resp.) were analysed by XRD to determine
and quantify the phases formed (Figure 5(a)). The XRD
patterns of the as-milled powders show only Al peaks. In
contrast, in the sintered compact pattern, the presence of
aluminium carbide (Al

4
C
3
) and small oxide (𝛿-Al

2
O
3
) peaks

is detected. The carbides form come from the etilen bis-
stearamide wax (H

35
C
17
CONHC

2
H
4
NHCOC

17
H
35
) used as

process controlling agent during milling, whereas the oxides
mainly come from the powder particle surface.

TheXRDpatternswere fitted via Rietveld refinement [33],
and the methods of Williamson-Hall [34] and Langford [35]
were applied to calculate the crystallite size and to quantify
the phases formed.These methods gave an as-milled Al crys-
tallite size of 38±1 nm, whereas after sintering, the crystallite
size increased to 700±9 nm.This grain growth during heating
is exclusively controlled by the pinning effect of Al

4
C
3
and

Al
2
O
3
, whichwere present at 8.98 and 0.61 vol.%, respectively.

Similar to the vacuum-milled powders, only Al peaks
were observed in the XRD pattern (Figure 5(b)) of the pow-
ders milled, also for 5 h, in an ammonia flow (MA A 500-5),
with a crystallite size of 16±0.5 nm. However, the situation is

very different after sintering; nitrogen, in solid solution after
milling, creates nanocrystalline aluminium nitride (AlN)
and aluminium oxynitride (Al

5
O
6
N) (12 ± 0.5 and 4 ±

0.2 nm, resp., also calculated by XRD) during powder heating
(Figure 5(b)). Thus, the proposed mechanosynthesis process
can produce NH

3
dissociation at room temperature, whereas

under normal conditions (without milling), this occurrence
only happens at temperatures of approximately 550∘C. This
could be an advantage over other methods for preparing
Al/AlN composites, which usually include complicated steps
or are performed at very low or high temperatures [36–
39]. As expected, the quantity of aluminium nitride and
oxynitride depends on the milling time, as shown in the
quantification results of Table 1. It is notable that, after 3 h
and 5 h of milling at 500 rpm, 20.25 and 49.58 vol.% of AlN
were, respectively, obtained, showing that the formation of
AlN with this method is very effective, even for short milling
times.

Even more interesting is the effect that these nanocrys-
talline dispersoids have on Al grain growth. After sintering,
the Al crystallite size of powders milled 5 h in vacuum
increased to 700 ± 9 nm, as measured on the XRD pattern,
while it increased only to 45 ± 1 nm for powders milled in an
ammonia gas flow for the same duration.

In order to check these sizes, consolidated compacts have
been studied by TEM. Figure 6(a) shows a bright field image
of a sintered compact prepared from 5 h vacuum-milled
powders. Results by image analysis on micrographs of these
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Figure 6: Bright-field TEM images of sintered compacts showing different phases formed in (a) MAV 500-5 S and (b) MAA 500-5 S.
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Figure 7: Green (𝐷G) and sintered (𝐷S) relative density and Vickers
hardness of sintered compacts from powders milled at 500 rpm in
vacuum for 5 h and in an ammonia flow for 1, 3, and 5 h.

specimens give anAlmean grain size of 709±20 nm, resulting
in 15 times that of Al grains in specimens prepared from
powder milled under ammonia flow for 5 h (Figure 6(b)),
which resulted to be only of 43 ± 9 nm as obtained by image
analysis from TEM images.

The aforementioned remarkable amount of dispersoids,
together with the small Al grain size, surely increases the
hardness of compacts processed from powders milled in
an ammonia flow. However, this expected hardness could
be reduced due to the difficulty in consolidating such hard
powders.

Figure 7 shows the green (𝐷G) and sintered (𝐷S) relative
densities of compacts prepared from powders milled in

an ammonia flow at 500 rpm. The values of MAV 500-5
are also included for comparison. The low hardness of the
MAA 500-1 powders makes it possible to reach high green
densities (95.4%); however, the flake shape and relatively
large size of the particles make the sintering process difficult,
increasing the density by only 1.3%. An increase in themilling
time to 3 or 5 h makes the powders harden, avoiding high
green densities after the pressing stage. Despite the high
specific area of both powders, due to their small size, their
low green density seems to be the reason, together with
the lower sinterability of the refractory phases (now in a
higher amount), that the sinterability level of these samples is
constrained (Figure 7). Improvements in the relative densities
of the final products are currently under study in the authors’
laboratory, using additives such as copper to promote liquid
phase sintering.

The nanosized Al grains and the presence of hard phases
dispersed in the compacts prepared from ammonia-milled
powders make their hardness be, despite their relatively
elevated porosities, higher than those achieved in compacts
prepared from vacuum-milled powders (Figure 7). It is
remarkable that hardness of 478HV

1
was achieved in sintered

compacts of powders milled for 5 h in NH
3
.

4. Conclusions

Aluminium powder was attrition-milled in an ammonia flow
of 1 cm3/s for 1 to 5 h, with rotor speeds of 300 and 500 rpm.
The following conclusions are drawn.

(1) A simple method at room temperature has been
developed to produce bulk aluminium-based nano-
composites reinforced with in situ generated alu-
minium nitride and oxynitride nanodispersoids.

(2) During milling, the ammonia is decomposed, and
high quantities of nitrogen are incorporated into the
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Al powder, hardening it by solid solution. Thus, it is
possible to obtain small and hard equiaxial particles
after only 2 h of milling.

(3) The milled powders, both in vacuum or in NH
3
gas

flow, only show the presence of aluminium with a
crystallite size of approximately 38±1 and 16±0.5 nm,
respectively. After heating, aluminium nitride (AlN)
and oxynitride (Al

5
O
6
N) are formed in the ammonia-

flow-milled powders, whereas in the vacuum-milled
powders, only aluminium oxide (Al

2
O
3
) and carbide

(Al
4
C
3
) appear.

(4) The ammonia-flow-milled powders have a high quan-
tity of AlN (up to 49.58 vol.%) and Al

5
O
6
N nano-

metric dispersoids, with crystallite sizes below 12 ±
0.5 nm. Thus, these phases highly restrict aluminium
grain growth during sintering, keeping it below 45 ±
1 nm (MAA 500-5 S).

(5) The final compacts produced with these ammonia-
flow-milled powders exhibit high hardness (up to
478HV

1
), despite their low relative density values.
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