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Weapplyanelectric field toamoderately conducting liquid surrounded
byanother coflowing liquid, all inside aglass-basedmicrofluidic device,
to study nonaxisymmetric instabilities.We find that the bending of the
electrified jet results in a steady-state, helicoidal structure with a
constant opening angle. Remarkably, the characteristic phase speed of
thehelicoidalwaveonly dependson the charge carriedby the jet in the
helicoidal region and its stability critically depends on the properties of
the coflowing liquid. In fact, the steady-state helical structure becomes
chaotic when the longest characteristic time is that of the inner liquid
rather than that of the outer coflowing liquid. We also perform
a numerical analysis to show that the natural preference of the jet is
to adopt the conical helix structure observed experimentally.
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Aliquid with finite electrical conductivity in the presence of
a strong electric field can deform and adopt a conical shape

resulting from the balance between electric and surface tension
stresses (1). However, near the apex of the cone, this structure is
not stable and the associated singularity is replaced by a thin jet (2–
6). The resultant cone–jet structure, which is stable within certain
values of the applied voltage and imposed liquid flow rate, is the
workhorse of electrospray and all its associated applications (7–10).
The jet that emanates from this structure always breaks into

spherical droplets due to axisymmetric instabilities (11–13). How-
ever, in many cases, the jet bends off-axis due to a lateral instability
that results from the electrostatic repulsion between bent and
straight parts of the jet (14–19). If the growth rate associated to this
whipping instability is larger than that associated to jet breakup, the
off-axis movement of the jet becomes the most significant aspect of
its evolution. This is exploited in electrospinning, where the simple
liquid is replaced by a polymer solution whose solvent evaporates
before drop breakup takes place, thus resulting in the formation of
polymer fibers (14, 17, 18, 20). The presence of the lateral instability
in this application results in thinner fibers, as bending stretches,
concomittantly thinning the jet (20). Unfortunately, in most exper-
imental realizations, whippingmanifests in a chaotic fashion (15, 16,
18, 19, 21, 22) preventing us from knowing and unraveling its de-
tailed structure and properties.
In this work, we apply an electric field to amoderately conducting

liquid surrounded by a coflowing liquid to generate a steady-state
whipping structure, which we find is helicoidal, with an amplitude
that increases linearly along the downstream direction. Inter-
estingly, the characteristic phase speed of the helical wave is de-
termined by the electrostatic repulsion between the fluid elements
of the jet in the whipping region. By performing a numerical
analysis, we show that the conical helix structure is the natural
configuration of electrified jets, provided the growth rate associ-
ated with jet breakup is small. This is true even in the absence of
a coflowing liquid. However, the properties of this liquid dramati-
cally affect the stability of the whipping structure.
We use a microfluidic device consisting of a glass capillary with

a square cross-section of inner side a = 2 mm and two cylindrical
glass capillaries with similar outer diameter, coaxially aligned
with the square one; the device is similar to that used for
generating double emulsions (23). One of the two cylindrical
capillaries is tapered into a tip with inner diameter dtip = 47 μm.We
pump a conducting liquid, ethylene glycol, with electrical conductivity

K = 10−4 S/m and viscosity ηi = 17 cP, through the inside of this
capillary, and a dielectric liquid, polydimethylsiloxane oil, with vis-
cosity ηo = 1.5 cP, through the voids left between the outer square
cross-section and the inner circular cross-section of this capillary, as
shown in Fig. 1A. The third liquid is also an electrical conductor and
flows through the inside of the second cylindrical capillary. As a re-
sult of the imposed flow, the exit of the device is provided by the
voids left between the outer square cross-section and the circular
cross-section of this second cylindrical capillary, as also shown in Fig.
1A. To apply the external electric field, we establish an electric
potential difference between themetallic needles in contact with the
inner and third liquids, which due to their finite electrical conduc-
tivity act as electrodes. Using this electro-coflow configuration, we
fix the flow rate of the dielectric liquid to qo= 60mL/h and adjust the
flow rate of the third liquid to maintain a constant tip-to-counter-
electrode distance of L = 2.2 mm.We then vary the inner-fluid flow
rate, qi, and the applied voltage, V, to obtain a steady-state whipping
structure, which we monitor using high-speed imaging and optical
microscopy. We also measure the electric current, I, using a
picoammeter.
The resulting time sequence of the images indicates that the

whipping structure is 3D, with regions that are in and out of focus,
as shown in the Movie S1 and in agreement with previous results
(16–19, 21, 22). It also has a wavelike character with propagation
direction along the axial direction. Finally, we find that the whip-
ping structure has a constant opening angle, α, reflecting the linear
increase of the lateral amplitude of the instability along the
axial direction.

Significance

Whipping is a lateral instability experienced by charged jets
and exploited in electrospinning to make polymer fibers. In
contrast to its axisymmetric, Rayleigh–Plateau counterpart,
which induces jet breakup and drop formation, whipping is
nonaxisymmetric and manifests itself in a chaotic fashion, with
the jet moving in uncontrolled and hardly quantifiable ways.
As a result and despite its physical significance, we still do not
know its detailed structure and properties. Here we perform
microfluidics experiments to generate and study steady-state
whipping. Remarkably, when the longest characteristic time
scale in the problem is that of the surrounding liquid, the
whipping structure is steady and helicoidal. Otherwise, it is as
chaotic as it was in all previous studies.
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Based on these results, we hypothesize that the structure is
that of a helix with a linearly increasing amplitude. Hence, in
terms of the time, t, the parametric equations of the structure in
Cartesian coordinates are:

xðtÞ = λt
T
tan
�
α

2

�
cos
�
2πt
T

�
; [1]

yðtÞ= λt
T
tan
�
α

2

�
sin
�
2πt
T

�
; [2]

zðtÞ= λt
T
; [3]

with λ the mean wavelength obtained by averaging the distance
between consecutive minima and consecutive maxima (Fig. 1B),
and T the period measured by correlating consecutive images and
identifying the snapshots with the largest overlap. To obtain rep-
resentative values of these quantities at each V and qi, we average
them using 100 independent measurements. For V = 1,800 V and
qi = 80 μL/h, we obtain α = (46.29 ± 0.12)°, λ= ð25:26± 0:07Þ μm,
and T = (192.3 ± 0.1) μs, and the reconstructed whipping struc-
ture based on Eqs. 1–3 shown in Fig. 1C.
To test our hypothesis, we recall that a helicoidal trajectory

results from the composition of uniform motion in the axial di-
rection, which we take as the z direction, and circular motion
in the perpendicular xy plane, and measure the component of
the velocity in this plane, vexprad = 2πAðzÞ=T, at certain axial lo-
cation, with A(z) the amplitude of the whipping structure at that

location. We obtain vexprad =Oð0:1 m=sÞ. For the same axial posi-
tion, we use Eqs. 1 and 2 to estimate this speed: vestrad =

�� _x  î+ _y  ĵ
��,

where î and ĵ are the unit vectors in the x and y directions, re-
spectively. We find that vexprad ’ vestrad, as shown in Table 1 for
representative values of qi and V, confirming the helicoidal
character of the experimental whipping structure.
We can also experimentally determine the axial component

of the whipping velocity, which is nothing but the phase velocity
of the wave: vexpphase = λ=T. We obtain vexpphase =Oð0:1m=sÞ, as also
shown in Table 1. To account for this value, we consider that the
axial motion is uniform. We then divide the jet in fluid elements
of length equal to the jet diameter and balance the axial com-
ponent of the electric force acting on a fluid element due to all
other fluid elements in the whipping region, Fel,z, with the axial
component of the drag force exerted on that element by the
outer viscous liquid, Fdrag,z. Hence, Fel,z = Fdrag,z, where

Fel;z =
1
4πe

 X
i≠j

Q2

r3i; j
~ri; j

!
· k̂; [4]

Fdrag;z =
4πηodj

logð1:64Þ
�
~v−~vo

�
· k̂; [5]

with ~v as the velocity of the fluid element, e and ~vo as the di-
electric permittivity and average velocity of the dielectric liquid,
Q as the charge of the fluid element, ri, j as the distance between
fluid elements i and j, and k̂ as the unit vector in the z direction.
We obtain Q from the electrical current, assuming the charge
carried by the jet in the whipping region is mostly at the surface
and convected by the flow (24). In this case, Q= Iπd3j =ð4qiÞ, with
dj as the jet diameter, which we can measure accurately before
the whipping region, as shown in Fig. 1B. For ~Fdrag, we use the
drag on a finite cylinder of length and diameter dj, located per-
pendicular to the flow (25). From the force balance at each fluid
element, we obtain the axial component of~v at each axial loca-
tion z. The average of all these axial values provides an estimate
of the phase speed, vestphase, which is of the same order of magni-
tude of the experimental measurement, as shown in Table 1. This
agreement indicates that the phase speed of the whipping struc-
ture is determined by the charge carried by the jet. In this case,
the effect of the imposed V and qi on the whipping structure is to
set the value of Q, which is what ultimately affects the properties
of the jet in the whipping region.
We note that the phase speed depends weakly on z; it decreases

with increasing z up to certain axial position, as shown in Fig. 2A.
This implies that, in this region, the axial distance traveled by the
whipping wave in time T should decrease. Consistent with this, we
find that the whipping wavelength always slightly decreases with z;
this can be seen in the example shown in Fig. 1B and has also been
reported by other authors (22).
Our results conclusively show that the whipping structure is he-

lical, emphasizing the importance of the lateral unstable modes
leading to this shape. To test this, we perform a numerical analysis
of a straight jet of length l with surface charge density σ, diameter dj,

V

Conducting
liquid

Dielectric
liquid Exit

Liquid
collector

dj

A

 B -20 0 2040-20
0 20

0

50

100
z

 C

−0.1
0.2

−0.1
0.2

0.0

0.4

0.8

−0.2 0 0.2
−0.2
−0.1
0.0
0.1
0.2

−0.2 0 0.2
0.0
0.2
0.4
0.6
0.8
1.0

z

y

y

x

z

x y

 E  FD

Fig. 1. (A) Schematic of the electro-coflow device. (B) Representative image
of the whipping structure. (C) Helicoidal trajectory for α = 46.29, λ= 25:26μm,
and T = 192.3 μs. The x, y, and z scales are in micrometers. (D) The yz and (E) xy
projections of (F) the whipping trajectory obtained from the numerical anal-
ysis for Re(i) = 0.056, L/dtip = 88, 2«V2/(γdtip) = 654, 4ηiqi=ðπγd2

tipÞ= 0:028, and
dtipI/(4qi) = 0.0056. The x, y, and z scales are made dimensionless with L.

Table 1. Experimental and estimated values of the xy plane and
phase velocities in meters per seconds for certain V and qi

qi (μl/h) V(V) vexprad vestrad vexpphase vestphase

35 1,800 0.1 0.03 0.07 0.2
50 1,950 0.09 0.06 0.09 0.2
80 2,250 0.1 0.2 0.2 0.1
140 2,400 0.08 0.1 0.05 0.04

The values of vrad correspond to z = 20.9 μm; similar agreement is obtained
at other z.
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inner speed at the injection needle ui = 4qi=ðπd2tipÞ, viscosity ηi, and
density ρ, in the presence of an external electric field ~E=V=L  k̂.
Note that we do not consider the presence of an outer fluid me-
dium. In addition, because the jet is slender, we simplify our
problem to a single dimension by averaging all quantities over the
jet cross-section. We then use Cosserat’s rod theory (26, 27) or its
equivalent for liquid jets (28, 29), which is expressed in terms of
a curve that specifies the center of the circular cross-section and an
orthonormal triad characterizing its orientation in space, bd1, bd2, andbd3, where bd3 is the unit vector tangent to the centerline s at every
position. The velocity field is expressed as~v=~c+ u bd3, where u bd3 is
the relative velocity of the fluid with respect to that of the center
line, ~c= ∂t~r, with ~r the position vector of the center line. The
equations of motion can be obtained from balances of mass, linear
and angular momentum applied to a control volume moving with
the center line. The mass conservation equation is:

∂A
∂t

+
∂
∂s
ðuAÞ= 0; [6]

where A= πd2j =4 is the jet cross-section. The linear momentum
equation is:

∂~f
∂s

+ πγ
∂
�
dj  bd3�
∂s

+~τe = ρA
d~v
dt
; [7]

where d/dt = ∂/∂t + u∂/∂s is the material derivative. The vector~f
is a force related to viscous and surface tension stresses, which
we write using Trouton’s model (30):

~f · d̂3 = 3ηi A
∂u
∂s

− πγ
dj
2
: [8]

Recall that in the one-dimensional approach we are considering,
the contribution from surface tension directly appears in the
force balance. The first derivative of~f with respect to s is related
to extensional stresses, and the second term in the left-hand side
of Eq. 7 is related to bending stresses. The vector~τe is related to
the electric force exerted on a point of the centerline by the
external field and due to the net repulsion resulting from the
charged jet itself (16):

~τe = πdjσ~E−
�
πdjσ

�2
4π«

log
�
2L
dj

�
~κ × d̂3 [9]

where~κ is a generalized curvature vector:~κ= κ1 bd1 + κ2 bd2 + κ3 bd3,
with κ1 and κ2 as the two curvatures of the centerline and κ3
its torsion; ~κ × bd3 is a vector normal to the centerline of the jet
giving the direction of the self-repulsion contribution.

Finally, the angular momentum equation is:

∂
∂s

~m+ d̂3 ×~f +
1
2
γA

∂dj
∂s

P0 ·~κ = ρA
d
dt

 
d2j
16

P2 ·~ωc

!
[10]

where we have defined the tensor Pk := bd1 bd1 + bd2 bd2 + k bd3 bd3, and
~m is the torque of ~f with respect to the center of the circular
cross-section (29):

~m = 3ηi
πd4j
64

P2=3 ·
∂~ωc

∂s
[11]

with ~ωc =~ω+ u~κ the angular velocity, which we write in terms of
the angular velocity in the frame of reference of the jet, ~ω, and
a Coriolis term, u~κ. Note that the spatial and time derivatives
of the unit vectors bdi are related to the curvature and angular
velocity vectors: ∂sbdi =~κ × bdi and ∂tbdi =~ω× bdi. Furthermore, ~κ
and ~ω must satisfy the compatibility relations, ∂s~c=~ω× bd3 and
∂t~κ=~ω×~κ+ ∂s~ω, resulting from the identities ∂s∂t~r= ∂t∂s~r and
∂s∂tbdi = ∂t∂sbdi.
The above equations are solved with the following boundary

conditions at the injection needle, where s = 0, and at the end of
the jet, where s = l: uð0Þ− ui = djð0Þ− dtip =~cð0Þ=~ωð0Þ=~κð0Þ= 0
and~f ðlÞ+ πγdj=2 bd3 = ~mðlÞ= 0. Because we are mainly interested
in periodic solutions, we express any vector quantity in terms
of a rotation tensor around bd3 as ~bðs; tÞ= ½cosðΩ tÞðI − bd3 bd3Þ+
sinðΩ tÞð bd3 × IÞ+ bd3 bd3� ·~bðs; 0Þ, where Ω is the jet rotation fre-
quency around the axial direction and ~b stands for either~v, ~ω,
~κ,~f , or ~m. Observe that this ensures that the bd3 component of the
vector remains invariant along the orbit, and its projection on
the bd1– bd2 plane changes periodically. In addition, we note that
the scalar quantities u and dj retain their initial value: u(s, t) =
u(s, 0) and dj(s, t) = dj(s, 0). With these considerations the time
dependence disappears from the original equations, hence
resulting in a nonlinear boundary value problem in the spatial
variable s. We note that our model correctly considers momentum
balance in all sections of the jet, in contrast to previous models
(16, 19). In addition, we solve the full nonlinear model and do not
simply perform a stability analysis of a base state of the jet.
To solve the problem, we first find the periodic solution cor-

responding to a set of qi and V values for which the jet is nearly
straight. Then, we smoothly change the values of these param-
eters in a way that the solution corresponding to a given set can
be used as initial guess to iterate the solution corresponding to
the next one. For qi = 80 μL/h and V = 1,800 V, we obtain a
conical helix, as shown in Fig. 1 D–F, with α = 40° and 1/Ω = T =
102 μs, consistent with the experimental results.
The agreement between the model and the experiment can be

understood by comparing the relative importance of the forces
considered in the model. Considering that the typical speed u ∼
0.1 m/s and taking dj, V/L, 1/dj , and L/u, as characteristic arc
length, external electric field, curvature, and time, respectively,
we find that the dominant force in the problem is that associated
to the electrostatic self-repulsion of the jet, which is exactly what
we found was the key ingredient to understand the experimental
value of the phase speed of the helical wave.
Interestingly, although in most experimental studies the

whipping structure is either chaotic and uncontrolled (15, 16, 19)
or it is only able to persist for a very narrow range of V and qi
values (22), in our experiments the steady-state whipping struc-
ture persists over an extended range of operating parameters, as
shown in Fig. 2B. Because most of the other experiments are
performed in the presence of quiescent air or hexane, this
discrepancy suggests that it is the presence of the more vis-
cous outer liquid in our experiments what ultimately controls
the range in parameter space where steady-state whipping is
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Fig. 2. (A) Estimated phase velocity, vestphase, as a function of the axial coordinate
z for V = 1,950 V and qi = 90 μL/h. (B) State diagram in the V/L - qi represen-
tation where steady-state whipping is observed. qo = 60 mL/h; ηo = 1.5 cP.
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observed. To explore this possibility, we compare the values of
the relevant dimensionless numbers: the Reynolds number, Re =
ti/tv; the Weber number We = (ti/tc)

2; the Ohnesorge number
Oh = tv/tc, S1 = ðtðoÞc =tðiÞv Þ2 and S2 = ðtðiÞc =tðoÞv Þ2, which we have con-
veniently written in terms of the capillary time, tc = ðρd3j =γÞ1=2; the
viscous time, tv = ηdj/γ; and the inertial time, ti = ρvd2j =γ, because
these are the characteristic time scales in the problem. The
superscripts (o) and (i) indicate outer or inner liquid, re-
spectively. We find that in most whipping studies (15, 16, 21, 22),
Oh (i) > 1, We(i), Re(i) < 1, S1 < 1, and S2 > 1, implying that
tðiÞv > tðiÞc > tðoÞv , tðiÞv > tðiÞc > tðiÞi , and tðiÞv > tðoÞc . Hence, the longest
characteristic time scale in all these cases is that of the inner liquid.
In contrast, in our experiments, S1 > 1, S2 < 1, Oh(o),We(o), Re(o) <
1, and Oh(o),We(o), Re(o) > 1, implying that tðiÞi < tðiÞv < tðiÞc < tðoÞv . tðoÞi
and tðiÞv < tðoÞc < tðoÞv . As a result, in our experiments, the longest
characteristic time scale is that of the outer liquid. Hence, the
stability of the whipping structure in the space of operating
parameters could indeed result from the presence of the outer
coflowing liquid.
To further test this we perform experiments with other outer

liquids of viscosity ηo = 0.5 cP and ηo = 9.4 cP. As in the case of
ηo = 1.5 cP, the region where we observe whipping is significantly
large, as shown in Fig. 3A. However, the whipping we observe for
the case of the outer liquid with smallest viscosity is highly chaotic,
as shown by the snapshot in Fig. 3B and Movie S2; it is reminiscent
of the whipping behavior observed in previous experiments, which
were all performed in quiescent air or hexadecane. In contrast, for
ηo = 9.4 cP, the structure remains helicoidal and steady, as shown
by the snapshot in Fig. 3C, consistent with the results for ηo = 1.5
cP. Interestingly, for the lowest viscosity case, we find that S1, S2 >
1,Oh(i),We(i), Re(i) < 1 andOh(o),We(o) < 1, Re(o) > 1, implying that
tðoÞv < tðoÞi < tðoÞc and tðiÞi < tðiÞv ∼ tðiÞc ∼ tðoÞc . As a result, the longest time
scale of the outer liquid is, in this case, comparable to the longest
time scale of the inner liquid, consistent with our prior analysis and
emphasizing that the presence of the outer liquid in our experi-
ments is critical in controlling the steady-state character of the
whipping structure.

Conclusions
We have shown that the whipping structure is well described as
a conical helix whose properties are determined by the charge
carried by the jet; this emphasizes the importance of the charge
distribution downstream from the injection needle. By performing
a numerical analysis of the problem, we have confirmed that the
lateral, unstable modes result in a helical shape of constant
opening angle, consistent with the experiments. However, we note
that our 1D (Cosserat) model assuming a constant surface charge

density along the jet and a simplified self-repulsion due to the
charge, is only the starting point for more complete models. These
would ideally consider the electrohydrodynamic equations of the
coupled electric and hydrodynamic problem both inside the jet
and in the outside medium with appropriate boundary conditions
at the interface, which is not a priori defined and should also be
calculated as part of the theoretical problem.
It is worth noting that the outer coflowing liquid plays a signifi-

cant role in determining the region where steady-state whipping is
achieved, an interesting fact that could be exploited to obtain well-
controlled jets and hence fibers, if polymer solutions are in-
corporated in the process. Indeed, when the largest characteristic
time scale in the problem is that of the outer liquid, a helicoidal
steady-state whipping structure is observed. In contrast, when the
longest characteristic time scale in the problem is that of the inner
liquid, whipping manifests chaotically. Thus, the presence of the
outer coflowing liquid in our experiments is essential. We have,
however, just begun to explore its influence. We anticipate that
other distinct behaviors could result in the presence of this
coflowing liquid, which were not seen before in the presence of
quiescent air or in the presence of a very low viscosity quiescent
liquid. It will likely be through additional experimental, computa-
tional, and theoretical work that the complete behavior of
electrified jets in the presence of outer moving liquids will be
unraveled and understood.
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