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The Levitron is a toy that consists of a spinning top that levitates over a magnetic base for a few

minutes, until air drag decreases the spin rate below a certain limit. Stable levitation, lasting hours

or even days, has been achieved for Levitrons that were externally driven by either an air jet or an

alternating magnetic field. We report measurements of stable levitation for the latter case. We show

that the top precession couples with the frequency of the alternating field, so that the precession

period equals the period of the field. In addition, the top rotates around itself with the same period.

We present numerical simulations that reproduce the essential features of this dynamics. It is also

shown that the magnetic torque that drives the top is due to a misalignment between the magnetic

dipole moment and the mechanical axis of the top. VC 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4895800]

I. INTRODUCTION

The Levitron is a magnetic toy that consists of a top that
hovers freely above a magnetic base. The top is also made of
a magnetic material and levitates due to the strong magnetic
repulsion between the top and the base; the gyroscopic effect
prevents the axis of the top from flipping. Stable levitation is
possible only when the top is spinning within a certain range
of angular velocities.

The stability of Levitron has been addressed by several
authors.1–3 In order to obtain a stable levitation there are
static as well as dynamic requirements. The static require-
ments concern the detailed functional dependence of the
magnetic field; they stem from energetic considerations. But
an adequate choice of the magnet design does not assure a
stable levitation. The mass of the top must be judiciously
adjusted if the magnetic force is to balance gravity. To this
end, the toy comes with a set of washers that are used to
make tiny changes to its mass.

From the dynamical point of view, there are two limits of
stability for the spin rate. The levitation is not stable if the
spin rate is too low, because the gyroscopic effect is not
strong enough to maintain the direction of the axis of the top.
On the other hand, if the top spins too fast, the axis becomes
too rigid and it cannot follow the magnetic field lines.
The maximum and minimum spin rates for stable levitation
have been calculated using different techniques and
approaches.2,4–8

Once the top is in a stable state of levitation, air friction
eventually decreases the spin rate. After about 2 min, the
angular velocity drops below the lower stability limit and
the levitation ends. The company that commercializes the
Levitron also sells a (patented) device called a perpetuator
that compensates for the friction losses, producing a much
longer levitation.9 The idea is that an alternating magnetic
field induces a torque that compensates for the friction tor-
que. To this end, the perpetuator generates an oscillating
magnetic field with a horizontal component. Simon et al.2

used a similar device in their studies to counterbalance the
effects of air resistance and to spin the top faster. However,
whereas in the perpetuator the spin rate of the top is asyn-
chronous with the ac applied field, Simon et al. synchronized
the external field with the Levitron’s spin rate by means of a
feedback loop.

The aim of our paper is to analyze experimentally and
numerically how an alternating horizontal magnetic field can
produce a permanent levitation. We use two Helmholtz coils
to produce the alternating field, and similar to the situation
studied by Simon et al., the frequency of the ac magnetic
field in our experiments is the same as the spin rate.
Numerically, we solve the set of dynamical equations that
includes the external forcing and the friction losses. We
show that in order to increase the spin rate, the magnetic
dipole of the top must not be exactly aligned with its symme-
try axis. This deviation was already proposed by Flanders
et al. as an explanation of the fact that the top precesses syn-
chronously with the spin of the top around itself.7

This paper is organized as follows. In Secs. II and III, we
present the experimental setup and results. Then, some theo-
retical considerations that illustrate how the external mag-
netic field compensates the friction losses are presented in
Sec. IV. The details of the mathematical model are
presented in Sec. V, while Sec. VI presents the results of the
numerical simulation for different configurations and
parameter sets. Finally, our conclusions are presented in
Sec. VII.

II. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1(a). The
Levitron magnetic base is placed between two Helmholtz
coils. The height of the base is chosen so that the top will
spin in the central region between the coils, where the field is
uniform. The magnitude and frequency of the alternating
magnetic field are controlled by a function generator that
supplies a sinusoidal current to the coils. A video camera
records the top motion and images are transferred to a perso-
nal computer for later analysis. The precession frequency
and the spin rate are determined from the videos.

The mass of the top is 13.70 g, although the washers sup-
plied with the Levitron can increase this mass up to 23.4 g.
The diameter of the top is 29.5 mm and the height of the
ceramic part is 5.3 mm. For these dimensions, the moments of
inertia are I1¼ 1.2� 10�6 kg m2 and I3¼ 2.3� 10�6 kg m2,
where I3 is the moment of inertia about the axis of symmetry
and I1 is the moment of inertia about an axis perpendicular to
the symmetry axis; these have been computed taking 21.2 g as
the mass of the top.
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We measured the magnetic field produced by the top on
its axis of symmetry with the help of a tesla meter (Hall
probe). Assuming that the field is that of a magnetic dipole,
we obtained l¼ 0.91 A m2 for the magnetic moment of the
top.

The magnetic dipole of the top is not perfectly aligned
with its symmetry axis. In order to measure the angle D
between these two directions we made use of the Helmholtz
coils and a compass. We placed the top on a Petri plate,
where it can move with low friction, and the plate between
the Helmholtz coils. The compass was also placed between
the coils, but far enough from the top so as not to interact
with it. With a dc current of 3 A applied to the coils, they
produced a magnetic field of 2.1 mT, much higher than the
Earth’s magnetic field. In this way, both the compass and the
top aligned with the magnetic field produced by the coils. A
photograph allows us to determine the angle between the
magnetic orientation, given by the compass, and the symme-
try axis of the top. For the top used in the experiments pre-
sented here, we find D¼ 2.98¼ 0.05 rad. Repeating this
measurement for the tops of two additional Levitron sets, we
obtained 1.98 and 3.78. Apparently, this misalignment is a
random symmetry-breaking artifact of the manufacturing
process. Given the variation in this angle, the efficiency of
any driving system will vary from one set to another.

III. EXPERIMENTAL RESULTS

Before applying the external forcing to the Levitron, we
took a series of recordings of the freely hovering top. The
top is placed at the equilibrium height with the aid of the
supplied plastic plate. There is first a transient period of sta-
bilization in which the top spins and precesses in a complex
way. When the top hovers, it rotates and precesses at differ-
ent rates. At the same time, the top oscillates vertically with
a well-defined frequency. After a while, precession and rota-
tion start to synchronize and, almost at the limit of stability,
when the velocity has slowed down and the angle of preces-
sion has increased, the precession and spin rates become
almost the same. This coupling between precession and spin-
ning was observed by Flanders et al.7 and was explained by
considering a small angle D between the magnetic moment
and the top axis. The synchronization of precession and

rotation is clearly noticeable in our video recordings [an
example (0A_90s.mov) is included in the online supplement
to this article10].

It is important to clarify at this point that by precession we
refer to the gyration of the top’s symmetry axis around a
vertical axis, in contrast to other definitions where precession
applies only to a relatively slow gyration of the spin axis.

Figure 2 shows measurements of the spin period as a func-
tion of time in the absence of forcing. From these measure-
ments we calculate the coefficient of friction. The typical
time of levitation without forcing is around two minutes.

With the help of the Helmholtz coils, we have achieved
stable levitation for times much longer than two minutes.
In some cases, the levitation lasted for multiple days,
although more often it lasted for a period of hours. It is not
easy to obtain long stable levitations. Lifting the top in the
presence of the ac magnetic field is trickier than in its
absence. In addition, sometimes the hovering lasted for
more than 3 min, which is an indication of some energy
transfer from the coils to the top, but the dynamics was er-
ratic and after 5–10 min the top would fall down. We
focused our study on the cases where the levitation lasted
for more than 10 min, when the features of the dynamics
were well established; this was possible for ac frequencies
in the range 10–50 Hz.

Fig. 1. (a) Schematic of the experimental setup. (b) Schematic of the top showing the deviation D between the symmetry axis and the axis of the magnetic

dipole moment l.

Fig. 2. Spin period as a function of time, without forcing. Values are nor-

malized to the initial spin period T0.
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The video recordings clearly show that the rate of
precession follows the external ac field (see videos
0.40 A_30 Hz.mov and 33 Hz_0.51 A.mov in the online sup-
plement).10 Figure 3 shows measurements of the top’s pre-
cession frequency as a function of the frequency of the
applied magnetic field (the amplitude of the applied field
was 0.49 mT.) In order to achieve the steady state, the top
was allowed to spin for a few minutes before capturing vid-
eos. The data are the result of averaging over at least five
precession periods. It is clearly observed that the precession
and the alternating field frequencies coincide within the
entire range, indicating that the top precession couples to the
torque exerted by the alternating field.

Along with the synchronous precession, the synchroniza-
tion of the spin of the top around itself with the precession,
already observed in the absence of external driving, was also
observed. That is, the top rotates around itself in the same
time that the axis of the top completes a turn around the ver-
tical, and this time coincides with the period of the ac exter-
nal field. Small fluctuations were observed during long
recordings: sometimes the rotation of the top around itself
overtakes the precession, and sometimes it lags behind.
But on average both angular velocities are the same. Stable
levitation was achieved with alternating fields of amplitude
as small as 0.1 mT. Also, it is observed that the top height
periodically oscillates with a period of around 0.78 s.

In summary, the top motion is characterized by a preces-
sion and a rotation about its axis that are coupled to the fre-
quency of the alternating field generated by the coils.

IV. THEORETICAL CONSIDERATIONS

A. Synchronous precession

The synchronous precession in the absence of an external
field was already observed and explained by Flanders et al.7

as due to the small misalignment between the axis of the top
and its magnetic dipole moment. Figure 4(a) shows a sche-
matic view of the relative directions of these vectors. In gen-
eral, the magnetic field of the base, the top axis, and the
magnetic dipole moment are not coplanar. But as shown in
Fig. 4(b), there is a torque that tends to make these vectors
coplanar. In the absence of friction or other losses, the result
would be an oscillation of the plane containing the top axis
and the dipole moment around the direction of the magnetic

field. This oscillation would be superimposed on the preces-
sion. Actually, friction damps this mode and, after a while,
the three vectors become coplanar. The result of this is that
the top completes a rotation around itself in a turn of the top
axis around the magnetic field, as illustrated schematically in
Fig. 5.

B. Coupling of precession and proper rotation with the
external field

Even if the dipole moment and the top axis were perfectly
aligned (D¼ 0), the precession would follow the external
field. The reason for this is depicted in Fig. 6 and explained
in what follows.

Suppose we align the z-axis with the static magnetic field
due to the base, and the y-axis with the ac field produced by
the Helmholtz coils. We write the field due to the coils as
BH ¼ BH0 cosðxtÞey, where x is the (angular) frequency of
oscillation. This field will produce a torque on the top whose
z-component, Nz, is given by

Nz ¼ lBH0 sin hE cos /E cosðxtÞ; (1)

where hE and /E are the Euler angles that define the direc-
tion of the top axis (see Fig. 6).

Fig. 3. Precession frequency of the top as a function of the frequency of the

alternating magnetic field (magnetic field amplitude 0.49 mT).

Fig. 4. (a) Relative orientation of the static magnetic field, the top axis, and

the magnetic dipole moment. (b) Projection of the previous figure on a plane

perpendicular to the top axis. There is a torque that tends to make B, l, and

the axis of the top coplanar.

Fig. 5. The top completes a turn around its axis during a turn of the axis

around the magnetic field.
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This torque is an oscillating quantity, and its average will
be different from zero only for /E ¼ xt, producing in that
case a constant precession velocity. However, this torque
would not be able to power-up the top’s rotation since, for
D¼ 0, the magnetic torque l� B will always be perpendicu-
lar to the axis of symmetry. On the other hand, for nonzero
values of D there will be a nonzero component of the mag-
netic torque along the symmetry axis of the top that powers-
up the rotation and, eventually, compensates for frictional
losses. Because the dipole moment, symmetry axis, and mag-
netic field vectors must be coplanar, the synchronization of
the precession with the external field implies that the proper
rotation is also synchronous with the latter.

In conclusion, the external magnetic field can counterbal-
ance the frictional losses if the precession and the proper
rotation of the top around its axis are mutually synchronized
as well as synchronized with the external field.

V. MATHEMATICAL MODEL

A. Analytical form of the magnetic field

At the point of levitation, the magnetic field has circular
symmetry up to second order in x and y,1 independent of the
form of the base. Following Dullin et al.,4 we express the
field near the levitation point as

Bx ¼
1

2
xV00 zð Þ; (2)

By ¼
1

2
yV00 zð Þ; (3)

Bz ¼ �V0 zð Þ þ
1

4
x2 þ y2
� �

V000 zð Þ; (4)

where V is the magnetic scalar potential and the primes
denote differentiation with respect to z. The potential on the
z-axis V0(z) can be chosen in different ways. Again following
Dullin et al., we choose the one due to a disk of radius a
with a hole of radius b:

V zð Þ ¼ 2B0pz
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ z2
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ z2
p

� �
: (5)

We measured the magnetic field created by the base mag-
net on its axis with the help of a standard tesla meter. A non-
linear fitting allows us to determine the three parameters a,
b, and B0 that best reproduce the field. Figure 7 shows a plot
of the measured magnetic field along with the field computed
from Eqs. (4) and (5) using the best-fit parameters
a¼ 5.4 cm, b/a¼ 0.35, and B0¼ 7.6 mT. The quality of the
fit shows that Eq. (5) satisfactorily reproduces the field on
the z-axis. We also measured the z-component of the mag-
netic field as a function of the coordinates x and y near the
point of levitation and found that it satisfactorily follows the
quadratic law given in Eq. (4).

Assuming that Bz> 0, the conditions of stability imply1–3

V00ðzcÞ > 0; (6)

V000ðzcÞ < 0; (7)

V000 zcð Þ �
1

2

V00 zcð Þ
� �2

V0 zcð Þ
> 0; (8)

where zc is the coordinate of the point of levitation. The first
condition is required for the force between the base and the
top to be repulsive. For b/a¼ 0.35, the last two conditions
imply

zc=a > 1:057; (9)

zc=a < 1:134: (10)

The trapping region—where these conditions are met and
stable levitation is achieved—is rather small (less than half a
centimeter); this is one of the features that makes it difficult
to master the toy.

B. Dynamical equations

The dynamics of the top is described by six coordinates:
the Cartesian coordinates (x, y, and z) of its center of mass,
and three angles that give the spatial orientation. The classi-
cal definition of Euler angles leads to a system of equations
that is singular when the top is spinning around the axis of

Fig. 6. Magnetic torque due to the external ac field. For simplicity, we

choose D¼ 0.

Fig. 7. Graph of B on the z-axis as a function of height above the Levitron

base. Symbols correspond to the measured field and the continuous line to

the fit to Eq. (4).
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symmetry of the field. In order to avoid this singularity, we
use a version of the yaw-pitch-roll sequence, in which the
top orientation is given by three angles (w, h, and /) defined
as follows. The roll angle / represents a clockwise rotation
about the x-axis; the pitch angle h is a counterclockwise rota-
tion about the y-axis; and the yaw angle w is a clockwise
rotation about the z-axis. The coordinates of any point of the
top with respect to a fixed frame of reference can be found
by applying the matrix of rotation Rðw; h;/Þ to the coordi-
nates of the point in a frame comoving with the top. The
detailed expression for this matrix can be found in the
Appendix.

The angular velocity in the top frame can be expressed as
a function of the three angles just defined. For the component

along the axis of symmetry we have X3 ¼ � _w � sin h _/. For

the axes perpendicular to it, we have X1 ¼ �cos h cos w _/ �
sin w _h and X2 ¼ �cos h sin w _/ þ cos w _h.

Due to the complexity of the geometrical configuration,
the Lagrangian method is the fastest and safest way of obtain-
ing the dynamical equations. The Lagrangian is given by

L x; y; z;w; h;/ð Þ

¼ 1

2
m _x2 þ _y2 þ _z2
� �

þ 1

2
I1

_h
2 þ cos2h _/

2
	 


þ 1

2
I3

_w þ sin h _/
� �2 � U x; y; z;w; h;/ð Þ; (11)

where m is the top mass and U is the potential energy
function.

The Helmholtz coils couple to the residual transverse
magnetization of the top. In order to describe the effect of
this transverse magnetization, we assume that the axis of
magnetization makes an angle D with respect to the mechan-
ical axis of symmetry, as in Fig. 1(b). Taking the xz-plane as
the plane that contains the magnetic dipole in the frame
comoving with the top, the magnetic dipole moment can be
written as

l ¼ �ðnz cos Dþ nx sin DÞl; (12)

where l is the magnitude of the dipole. The minus sign is to
indicate that the dipole moment is pointing downwards, a
condition required for equilibrium if we assume that the base
magnetic field is pointing upwards. The unit vectors nx and
nz are given by (see the Appendix)

nx ¼ðcos w cos hÞex � ðcos / sin wþ cos w sin / sin hÞey

þðsin / sin w� cos / cos w sin hÞez; (13)

nz ¼ ðsin hÞex þ ðcos h sin /Þey þ ðcos h cos /Þez; (14)

where ex, ey, and ez are the Cartesian unit vectors in the labo-
ratory frame.

To complete the expression for the Lagrangian, we write
the potential energy of the system as follows:

U¼mgzþlcosDðBx sinhþBy coshsin/þBz coshcos/Þ
þlsinD½Bx coswcosh�Byðcos/sinwþ coswsin/sinhÞ
þBzðsin/sinw�cos/coswsinhÞ�: (15)

Since we use MATLAB to solve the set of differential equa-
tions, it is more convenient to express the equations as
first-order differential equations, which MATLAB’s solvers can

handle directly. To this end, we will switch from the
Lagrangian to the Hamiltonian formalism.

The momenta conjugate to the angular coordinates are

pw ¼
@L
@ _w
¼ I3

_w þ sin h _/
� �

; (16)

ph ¼
@L
@ _h
¼ I1

_h; (17)

p/ ¼
@L
@ _/
¼ I3 sin h _w þ I3 sin2hþ I1 cos2h

� �
_/; (18)

giving the Hamiltonian4

H x; y; z; px; py; pz;w; h;/
� �
¼ 1

2m
p2

x þ p2
y þ p2

z

	 

þ 1

2I1

p2
h þ

p/ � pw sin h
� �2

cos2h

" #

þ
p2

w

2I3

þ U x; y; z;w; h;/ð Þ: (19)

To perform numerical integrations it is convenient to
define dimensionless variables, whose values will typically
be of the order of unity. We take s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1=ðlB0Þ

p
as the time

scale, and the parameter a defined in Eq. (5) as the distance
scale. Hamilton’s equations then become

_x ¼ px; _y ¼ py; _z ¼ pz; (20)

_px ¼ �
@U

@x
; _py ¼ �

@U

@y
; _pz ¼ �

@U

@z
; (21)

_w ¼ kpw þ
sin h
cos2h

pw sin h� p/
� �

; (22)

_h ¼ ph; (23)

_/ ¼ � 1

cos2h
pw sin h� p/
� �

; (24)

_pw ¼ �
@U

@w
; (25)

_ph ¼
1

cos3h
pw sin h� p/
� �

p/ sin h� pw
� �

� @U

@h
; (26)

_p/ ¼ �
@U

@/
; (27)

where the potential energy U is

U¼ Gzþ 1

K
cosD Bx sinhþBy coshsin/þBz coshcos/

� �
þlsinD Bx coswcosh½
�By cos/sinwþcoswsin/sinhð Þ
þBz sin/sinw�cos/coswsinhð Þ�; (28)

and the dimensionless magnetic field is given by Eqs. (2)–(4)
with V(z) the dimensionless form (with b and z both scaled
by a)

V zð Þ ¼ 2pz
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ z2
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2
p

� �
: (29)
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In these equations, there are three dimensionless parameters
defined by

K ¼ ma2

I1

; G ¼ gI1

alB0

; (30)

k ¼ I1

I3

: (31)

A full description of the top dynamics under magnetic
forcing must include a time-dependent magnetic field and a
friction mechanism. Because the field produced by the
Helmholtz coils is uniform in the region of levitation, we can
write this additional magnetic field as

dB ¼ �B0 cosðxtÞey; (32)

where we have taken the y-axis to be the axis of the
Helmholtz coils.

When the top is spinning and levitating, the only source of
friction comes from the air, and we assume that this friction
is proportional to the angular velocity about the symmetry
axis of the top. Under this assumption, Eq. (25) must be
replaced by

_pw ¼ �
@U

@w
� �pw; (33)

where � is a dimensionless friction coefficient.

VI. NUMERICAL RESULTS

A. Dimensionless parameters

At the point of equilibrium, Eq. (28), for D¼ 0, requires

mga

lB0

¼ KG ¼ V00 zcð Þ: (34)

Since conditions (9) and (10) require 1.057< zc< 1.134, the
values of V00ðzÞ at the ends of the interval of stability give
the limits of mass for a stable levitation. For
zc ¼ 1:096; V00ðzcÞ ¼ 1:6185, which gives m¼ 21.2 g.

The characteristics of the top described in Sec. II, along
with the value of B0, give the following dimensionless pa-
rameters for stable levitation: K¼ 31.3 and G¼ 0.0315. We
also find that the ratio of the moments of inertia is k¼ 0.52,
while the time scale is s¼ 13.2 ms.

The friction coefficient can be obtained from the data in
Fig. 4. The angular velocity of the top closely follows the
exponential law _w ¼ _w0e��f t with a coefficient �f¼ 4.35
� 10�3 s�1. The corresponding dimensionless parameter is
�¼ �fs¼ 5.74� 10�5.

B. Results without forcing; magnetic moment aligned to
the axis of the top

The system of Eqs. (20)–(27) was solved using MATLAB.11

In particular, we used the function ODE45, the standard
MATLAB solver for systems of ordinary differential equations.
In order to test our script we ran a series of tests without fric-
tion (�¼ 0), without misalignment (D¼ 0), and without forc-
ing (�¼ 0).

Figure 8 is a plot of the trajectory of the top in the xz-plane
for _w0 ¼ 2 and 160 dimensionless time units. The excursions

of the top in the x-direction are determined by the initial
conditions.

The top can levitate within a certain range of spinning
velocities. Below and above the limiting values, stable levi-
tation is not possible and the top falls down. The limits of
stable levitation have been computed by several authors
using different approaches.2,4–8 All of them give the same
value for the minimum spin rate for levitation:

xmin ¼ 2

ffiffiffiffiffiffiffiffiffiffi
I1lB

I2
3

s
; (35)

which, in terms of our dimensionless quantities, becomes

xmin ¼ 2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV0ðzcÞj

p
: (36)

The exact value of the upper limit depends on the analytical
form of the magnetic field and on the approximations made
in its computation. The different results can be written as

xmax ¼ c
Blð Þ3=2

I3gm1=2
; (37)

which, in terms of our dimensionless quantities, becomes

xmax ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV0 zcð Þj3

q
k

G
ffiffiffiffi
K
p ; (38)

where c is a factor of order unit (for example, c ¼ 4=
ffiffiffiffiffi
27
p

�
0:77 for Dullin et al.,4 and c¼ 0.86 for Genta et al.5)

In order to determine the lower limit of the stability range,
we introduced a nonzero friction coefficient in the numerical
computation. The top angular velocity slows down until, at a
certain velocity, the top “flies apart” (i.e., the top position
changes beyond the stability limits). For k¼ 0.52, b¼ 0.35,
K¼ 51.3, G¼ 0.0315, and D¼ 0, we obtain xmin¼ 1.2 for
the minimum velocity for levitation, a value to be compared
with 1.24, as predicted from Eq. (36).

The upper limit can be obtained by introducing a negative
friction coefficient. This has the effect of slowly accelerating
the top until it reaches an unstable angular velocity. For the
same set of parameters we find xmax¼ 3.5, which is higher
than prediction of Eq. (38), of around 2.4. A careful numeri-
cal study of the instability, which is not the main purpose of
our work, would be required to compute a more accurate
upper limit.

Fig. 8. Trajectory of the top in the xz-plane. The dimensionless parameters

are k¼ 0.52, b¼ 0.35, K¼ 51.3, G¼ 0.0315, D¼ 0, �¼ 0, and �¼ 0. The

initial angular velocity is _w0 ¼ 2:0.
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Simon et al.2 made two testable predictions for the motion
of the top without friction. The first is that the angular pre-
cession frequency is

xp ¼
lB

Ix
; (39)

where x is the angular frequency of rotation around the axis
of the top. In terms of dimensionless variables, this relation
becomes

xp ¼
k
x
: (40)

We have verified this prediction for several values of the top
spin velocity. In fact, the precession is not uniform, and the
angular velocity of precession oscillates with an amplitude
that depends on the initial conditions. The above relation
holds if we average both angular velocities in time. For an
example, see the video animation psi2eps0theta05.mov in
the supplementary material.10

We note that this behavior is numerically encountered
only when the angle D is set to zero, and that we have not
observed this behavior in our experiments, a consequence,
we believe, of the misalignment between the axis of the top
and its magnetic dipole moment. This misalignment is to
some degree unavoidable.

The second prediction by Simon et al., which is also made
by other authors,5,6 is that the top oscillates in z with a
frequency

Xz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m
l
@2Bz

@z2

r
; (41)

which corresponds to

Xz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V000 zcð Þ

K

r
; (42)

in our dimensionless variables. This is due to the fact that,
close to the levitating point, the equation of motion in the
z-direction is that of a harmonic oscillator.

Figure 9 is a plot of the z-coordinate of the top as a func-
tion of time for the same conditions as in the previous plots.
The motion is that of a harmonic oscillator with a dimension-
less period of 61.3. This value compares satisfactorily with

the value 62 predicted by Eq. (42). (As mentioned in
Sec. III, we observed in experiments that the top height oscil-
lates with a period of around 0.78 ms, which corresponds to
a dimensionless period of 59.1).

C. Magnetic moment out of the axis of symmetry;
synchronous precession

As we have already mentioned, Flanders et al.7 showed
that a small deviation of the magnetic moment from the
symmetry axis of the top synchronizes the precession and
the rotation of the top, in a way similar to the motion of the
moon around the earth. In order to test this prediction, we
ran several simulations for different values of D, the angle
between the magnetic moment and the top axis. For D� 0.01
a partial synchronization is observed. For D� 0.05 the syn-
chronization is clearly observed. Because the exact motion is
not steady the synchronization is not perfect, but it takes
place on average (see the video psi_2eps0delta05-
fland02.mov in the supplementary material).10

Interestingly, Flanders et al. discussed the stability limits
for nonzero D and found that, for the case I1< I3, the mini-
mum velocity for stable levitation is higher than in the case
of D¼ 0. We have checked the stability limits for D¼ 0.05
and obtained a maximum spinning velocity of _wmax ¼ 3:46
and a minimum of _wmin ¼ 1:74, a higher value than the
result in the previous section for D¼ 0.

For D¼ 0, the origin of the upper stability limit is linked
to Eq. (40). When the top spins fast, the precession is too
slow to keep the top oriented to the magnetic field direction.2

It is not clear whether this mechanism is present when D 6¼ 0,
because in this case the faster the spinning the faster the pre-
cession. The persistence of an upper limit for stable levita-
tion calls for further analysis of the stability limits, which is
beyond the scope of this paper.

The degree of synchronization depends on the initial con-
ditions. Flanders et al.7 deduced that synchronization implies
that

ð1� kÞx2 sin hE cos hE ¼ k sinðhE þ DÞ; (43)

where the condition is expressed in terms of our dimension-
less parameters and hE is the polar angle in the Euler conven-
tion. This expression is deduced under the assumption of a
uniform magnetic field.

In order to achieve exact synchronization in a given simula-
tion, the initial conditions must be compatible with Eq. (43).
Figure 10 shows the angular velocity of precession as a func-
tion of time for a set of initial conditions that fulfills Eq. (43).
In this case h0¼ 0.02, /0 ¼ 0:0; _/0 ¼ 0:05; _h0 ¼ 0:0, and
_w0 ¼ �2:1511. The synchronization is clearly observed,
although perfect synchronization has not been achieved. In
any case, the main effect of the misalignment between the
magnetic and the mechanical axis is clearly demonstrated.

If we introduce a nonzero friction coefficient, the oscilla-
tions observed in Fig. 10 tend to disappear, in agreement
with the experimental observations.

D. Motion under ac magnetic driving

Once we checked that our numerical code satisfactorily
reproduces the main theoretical predictions in the absence of
external driving, we proceeded to simulate the effect of an
applied ac field produced by the Helmholtz coils.

Fig. 9. Vertical coordinate z of the top as a function of time. The parameters

are k¼ 0.52, b¼ 0.35, K¼ 51.3, G¼ 0.0315, D¼ 0, �¼ 0, and �¼ 0. The

initial angular velocity is _w0 ¼ 2:0. The period of oscillation is 61.3.
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Since the magnetic torque is l� B, the torque will be per-
pendicular to the top axis if the magnetic dipole and the me-
chanical axis of symmetry are exactly aligned. In that case,
an external ac field would not sustain the levitation. The
small misalignment characterized by the angle D makes it
possible to have a nonzero component of the magnetic torque
along the axis of rotation of the top. This is reflected mathe-
matically in the appearance of a dependence on w in the
magnetic energy [Eq. (28)]. Note that this dependence disap-
pears for D¼ 0. Roughly speaking, the component of the
magnetic torque on the top axis is lxBy. Since By is a sinusoi-
dal function of time, lx must oscillate at the same frequency
in order to have a nonzero average. As a consequence, the
precession of the top is locked to the frequency of the ac
magnetic field.

Figure 11 shows the angular velocity X3 as a function of
time for a value of �¼ 0.052, which corresponds to an ampli-
tude of 0.40 mT (a positive friction coefficient
�¼ 5.74� 10�5 is also included). The angular velocity oscil-
lates around 2.0, but it maintains its average value, thus
reflecting a balance between the driving magnetic torque and
the friction torque. The amplitude of the oscillations
decreases slowly in time and tends to a steady value. Figure
12 displays the trajectory of the top in the xz-plane. The
overall behavior is similar to that in Fig. 8, but there is a
small oscillation in the trajectory that reflects the frequency

of the driving magnetic field. Video psi2eps052x3.mov in
the supplementary material10 is an animation of the motion
for these parameters.

The driving torque can compensate for the friction losses
only if there is an average synchronization between the ac
magnetic field and the top precession. This synchronization
is illustrated in Fig. 13, which plots the precession velocity
as a function of time. The average value is exactly 2.0, the
top angular velocity. We have observed that the initial angu-
lar velocity of the top must be very close to the angular fre-
quency of the magnetic field in order to obtain a stable
levitation. For example, for a magnetic field angular fre-
quency x¼ 2.0 and an initial top spinning velocity _w ¼ 2:04
we obtained, after a transient, a sustained motion with
h _/Ei ¼ 2:0. However, a value of _w ¼ 2:05 produces an
unstable motion and the top falls after a while. This is con-
sistent with our experimental experience: it is rather difficult
and takes several tries to set the top in stable levitation when
the ac field is applied.

The synchronization is better illustrated in Fig. 14, where
the supplementary angle to the angle of precession is plotted
along with the phase of the alternating magnetic field. If the
difference between these two angles is zero the torque takes
its maximum value. Although sometimes the precession lags
behind the field phase and at other instants it overtakes the
field phase, the two quantities are in phase on average. In all
the simulations conducted with D 6¼ 0 and a nonzero ac field,

Fig. 10. Angular velocity of precession as a function of time. The parame-

ters are k¼ 0.52, b¼ 0.35, K¼ 51.3, G¼ 0.0315, D¼ 0.05, �¼ 0, and �¼ 0.

The initial angular velocity is _w0 ¼ �2:1511.

Fig. 11. Angular velocity of the top as a function of time when an ac trans-

verse magnetic field is applied. The parameters are k¼ 0.52, b¼ 0.35,

K¼ 51.3, G¼ 0.0315, D¼ 0.05, �¼ 5.74� 10�5, and �¼ 0.052. The initial

angular velocity is _w0 ¼ 2:0.

Fig. 12. Trajectory of the top in the xz-plane. The parameters are k¼ 0.52,

b¼ 0.35, K¼ 51.3, G¼ 0.0315, D¼ 0.05, �¼ 5.74� 10�5, and �¼ 0.052.

The initial angular velocity is _w0 ¼ 2:0.

Fig. 13. Angular velocity of precession as a function of time. The parame-

ters are k¼ 0.52, b¼ 0.35, K¼ 51.3, G¼ 0.0315, D¼ 0.05, �¼ 5.74� 10�5,

and �¼ 0.052. The initial angular velocity is _w0 ¼ 2:0.
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the angular velocity of rotation of the top about its own axis
is, on average, the same as the angular velocity of
precession.

As found experimentally (Fig. 3), the precession fre-
quency remains equal to the magnetic field angular fre-
quency for a wide range of frequencies, in the range of stable
spinning velocities of the top. Consistently, this precession
frequency does not change with the amplitude of the ac mag-
netic field. Since an increase in �, the amplitude of the ac
magnetic field, would induce a stronger torque, the top
adjusts its angle of inclination hE in order to reduce the
torque. Our simulations show that hE increases slowly when
the magnetic field increases. For x¼ 2, and in the range of
0.026<�< 0.065, where stable levitation was obtained, we
found the following fit:

hhEi ¼ 0:15�þ 0:034: (44)

For values of �< 0.026, the average torque created by the ac
magnetic field cannot compensate friction. For �> 0.065 the
ac magnetic field strongly perturbs the top motion and the
top falls down.

VII. CONCLUSION

Experiments with a Levitron subjected to a horizontal
alternating magnetic field show that stable levitation can be
achieved with amplitudes of the alternating field as small as
0.1 mT. The top precession synchronizes with the proper
rotation and couples to the frequency of the alternating field.
The resulting magnetic torque balances the air drag on the
top. We present the equations for the top dynamics including

the air drag and the ac magnetic forcing. Numerical solutions
of the equations for the top dynamics are in accordance with
experimental observations and show that a misalignment
between the magnetic and the mechanical axis of symmetry
is needed in order to achieve permanent levitation.

ACKNOWLEDGMENTS

This work has been carried out with financial support from
the Spanish Ministerio de Ciencia y Tecnolog�ıa (MCYT)
under Research Project No. FIS2011-25161, and Junta de
Andaluc�ıa under Research Project Nos. P10-FQM-5735 and
P09-FQM-4584.

APPENDIX: ROTATION MATRICES

Consider a point x with coordinates (x, y, z) described as a
column vector. The transformation from one coordinate sys-
tem to another can be represented by a matrix equation of
the form

x0 ¼ Rðw; h;/Þx: (A1)

If we identify the fixed system with x and the top system
with x0, the matrix R completely describes the relative orien-
tation of the two systems. The rotation matrix R contains
three independent angles. There are many possible choices
for these angles. We choose the yaw-pitch-roll angles since
this set does not lead to singular equations when the top is
spinning vertically.

In this convention, the matrix Rðw; h;/Þ is built in the fol-
lowing way:

Rðw; h;/Þ ¼ RzðwÞRyðhÞRxð/Þ; (A2)

where the matrices Rx, Ry, and Rz are rotations about the x, y,
and z axes, respectively, and are given by

Rx ¼
1 0 0

0 cos / �sin /

0 sin / cos /

0
B@

1
CA;

Ry ¼
cos h 0 �sin h

0 1 0

sin h 0 cos h

0
B@

1
CA;

Rz ¼
cos w �sin w 0

sin w cos w 0

0 0 1

0
B@

1
CA:

(A3)

The explicit expression of Rðw; h;/Þ is

R ¼
cos w cos h �cos / sin w� cos w sin / sin h sin / sin w� cos / cos w sin h
cos h sin w cos / cos w� sin / sin w sin h �cos w sin /� cos / sin w sin h

sin h cos h sin / cos / cos h

0
@

1
A: (A4)

The inverse matrix R�1¼RT transforms coordinates in the top system into coordinates in the fixed system:
x ¼ R�1ðw; h;/Þx0. The unit vector in the direction of the axis of the top in the top system of coordinates is x0 ¼ ð0 0 1ÞT .
Therefore, the vector nz is given by the third column of R�1, which is the third row of R; that is,

Fig. 14. Supplementary angle to the angle of precession (solid line) and

phase of the external magnetic field (dotted line) as a function of time.

When the angle and the phase are the same, the magnetic torque is at a maxi-

mum. The parameters are k¼ 0.52, b¼ 0.35, K¼ 51.3, G¼ 0.0315,

D¼ 0.05, �¼ 5.74� 10�5, and �¼ 0.052. The initial angular velocity is
_w0 ¼ 2:0.
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nz ¼ ðsin hÞex þ ðcos h sin /Þey þ ðcos h cos /Þez: (A5)

Similarly, nx is given by the first row of R:

nx ¼ðcos w cos hÞex � ðcos / sin wþ cos w sin / sin hÞey

þðsin / sin w� cos / cos w sin hÞez: (A6)

The supplementary material10 includes three animations
of the simulated top motion. The top model is built using
MATLAB functions developed by Land.12 This model is
then rotated using the transformation xðtÞ ¼ R�1ðwðtÞ;
hðtÞ;/ðtÞÞx0, where the angles w(t), h(t), and /ðtÞ are
obtained from the numerical solution of the system of differ-
ential equations.
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