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A model for the mechanical dynamics of a wind turbine is developed, which is the composition of three physical mechanisms:
flexion, torsion, and rotational dynamics. A first contribution is the identification of the essential physical parameters that provide
a time-scale separation of these three mechanisms. Under the assumption of singular perturbations the time-scale separation
allows to work with a reduced model of order one. This reduction has been essential for the control of this system allowing to
control designers to take into account only the reduced-order model. A second contribution consists in employing a measurement
of the fore-aft nacelle acceleration with the reduced model, together with a Kalman filter to estimate the flexible DOFs of the system
(tower and average blade deflection). The successful approach is tested on high-order nonlinear aeroelastic simulator (FAST).

1. Introduction

In the past few years, variable-speed wind turbines research
and design has become increasingly concerned with control
system design. This concern arises for several reasons:
turbines have become larger, control system hardware has
become more powerful, control is a way to drive down
costs and increase performance, and turbine modeling tools
have become more sophisticated. As wind turbines increased
in size and power, control specifications became more
demanding and regulation mechanisms more sophisticated.
Increasingly, control systems have been expected not merely
to keep the turbine within its safe operating region but also
to improve efficiency and quality of power conversion. They
have gradually evolved in consequence until playing today an
important role in modern energy generation systems [1].

The design of the controller must take into account the
effect on loads and at least ensure that excessive loads will
not result from the control action [2]. Many wind turbines
control systems are based on linear models (see, e.g., [3–5]).
This is due to several reasons, as the possibility to obtain

simple analytical solutions to many control problems or
the simpler implementation of such controllers in practical
applications. Most of works describe the wind turbine
dynamics as that of the drive train model, neglecting flexible
structural modes. Generally, the drive-train consists of a low-
speed shaft, gearbox, high-speed shaft and generator. For
example, in [6, 7] a one-mass model of drive train is used
to describe the wind turbine dynamics. This model cannot
account for the flexibility of the low-speed shaft. However,
this flexibility induces flexible resonant and nonresonant
modes that can cause system oscillations [2]. In the literature,
a two-mass model of the drive train is commonly used to
describe the wind turbine dynamics (see, e.g., [2, 8–10]). The
control law deduced from this model is more general and can
be applied for wind turbines of different sizes. Particularly,
these controllers are better adapted for high-flexibility wind
turbines that cannot be properly modeled with a one mass-
model [7].

Much progress has been made in recent years in the
developing of complex yet accurate aeroelastic simulators
for wind turbines, providing good predictions of loads
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Figure 1: Mode shapes for horizontal-axis wind turbines.

and performance. However, the complexity of these models
cannot be handled for control purposes and lower-order
linearized models are usually preferred. Obtaining low-order
accurate system models for wind turbine control design has
proven to be difficult because of the particular operating
conditions. Moreover, the current tendency towards larger
and more flexible wind turbines is making this task even
more involved. The contributions of this work are twofold.
On the one hand a nonlinear model of moderate order is
developed, taking into account drive train, tower, and blades
flexibilities. From this model a linearised model is derived,
which is analysed in the light of the theory of singular
perturbation theory. With this approach the work clearly
identifies three physical subsystems whose main dynamics
can be separated in different time scales, namely, flexion,
torsion, and rotational dynamics. The first contribution
of this work is the identification of the essential physical
parameters which provide a time-scale separation of these
three mechanisms, providing conditions for this separation
to hold.

The second contribution of this work consists in propos-
ing a Kalman filtering structure to estimate the flexible DOF
of tower and blades. In order for this filter to work, it is
proposed to postulate the installation of an accelerometer on
the nacelle, so that its fore-aft acceleration can be measured
and fed to the filter.

It is shown how this additional data can be employed
together with the reduced flexion subsystem to successfully
estimate tower and blade deflections. The approach is tested
by simulation on high-order nonlinear aeroelastic simulator
(FAST), showing good results in recovering essential infor-
mation for load damage evaluation.

2. Model of the Wind Turbine

In this section a mechanical model of WECS is developed
including deformations due to the flexibility of the blades
and the tower. To this end, in Figure 1 two reference systems
have been defined, one attached to the base of the tower

Table 1: Parameters of the WECS mode.

Symbol Description

mt Mass of the tower

mp Mass of each blade

It Inertia of the tower

Ip Inertia of blades

Jr Inertia of the rotor

Jg Generator inertia (low-speed side)

kt Stiffness of the tower

kp Stiffness of each blade

ks Stiffness of the transmission

N Number of blades

R Length of each blade

H Height of the tower

a Length of the nacelle

Bt Damping of the tower

Bp Damping of each blade

Bs Damping of the transmission

Br Rotor external damping

Bg Generator external damping

ng Gearbox Ratio

Hg Distance to the mass center of the tower

Rg Distance to the mass center of the blade

S1 : (O1; x1, y1, z1) and another attached to the blade-
and-shaft joint S2 : (O2; x2, y2, z2). The set of generalised
coordinates of the model of the wind turbine is defined as
q = [θ,φ, θr , θg]T ∈ S4, where θ is the angular position of the
tower, φ is the angular position of the blade out of the plane
of rotation, θr is the angular position of the rotor, and θg is
the angular position of the generator. Let Θi

r be defined as

Θi
r := θr + i

2π
N

, i = 0, 1, . . . ,N − 1, (1)

where N is the total number of blades. Thus, The position of
a point Q at a distance r of the reference system S2 is given by

Q|S2 :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = −r sinφ,

y = r cosφ sinΘi
r ,

z = r cosφ cosΘi
r .

(2)

Thus, the componentwise velocity vector of Q with respect
to S1 can be computed through the well-known formula

�v/S1
(Q) = �v/S2

(Q) + �v/S1
(O2) + �ΩS2/S1 ∧ �O2Q, (3)

with Ω being the angular velocity of S2 with respect to
S1. Now, we are in a position to derive the mechanical
(subsystem) model of a WECS. All the necessary parameters
of the model are defined in Table 1.

Using Lagrange’s equations [11], the dynamic wind-
turbine model with N blades is given by

d

dt

(

∇q̇Ek
)

+∇q̇Ed −∇qEk +∇qEp = Gu, (4)
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where Ek, Ed, and Ep denote the kinetic, dissipative, and
potential energies, respectively, and G the input control
matrix with the control input defined as u = [FT Tr Tg]T ∈
R3 with Tg and Tr being the generator and aerodynamic
torques, respectively, and the thrust forces distributed along
each blade were replaced by a lumped force FT applied at a
distance rb from the axis of rotation. The kinetic (Ek) and
dissipative (Ed) energies are given, respectively, by

Ek = N

2
mp

[
R2

3
φ̇2 + RH cosφφ̇θ̇ +

R2

3
cos2φθ̇2

r

+

(

H2 + a2 + Ra sinφ +
R2

6

(

1 + sin2φ
)
)

θ̇2

]

+
It
2
θ̇2 +

Jr
2
θ̇2
r +

Jg
2
θ̇2
g ,

Ed = Bt

2
θ̇2 +

NBp

2
φ̇2 +

Bs

2

(

θ̇r −
θ̇g
ng

)2

+
Br

2
θ̇2
r +

Bg

2
θ̇2
g ,

(5)

while the potential energy (Ep) can be decomposed as

Ep = Eg + Ef + Et, (6)

with

Eg = Nmpg(H(1− cos θ)− a sin θ)

+ mtgHg(1− cos θ),

Ef = kt
2
θ2 + N

kp
2
φ2,

Et = ks
2

(

θr −
θg
ng

)2

,

(7)

where Eg is due to the gravity action, Ef is due to the
flexibility of the blades and the tower, and Et is due to the
torsion along the shaft referred to the low-speed side. Let
θs = θr − θg /ng be the torsion angle. Thus, redefining a

new set of generalised coordinates as q = [θ,φ, θs, θg]T and
linearising Lagrange’s equation (4), the equation of motion
becomes

Mq̈ + Cq̇ + Kq = Gu, (8)

where for compactness we defined C = C + B. Let qeq,ueq

be the coordinates and torques evaluated at the operation
point; then the vectors q and u represent deviations from
that operating point, as q = q − qeq and u = u − ueq;
M(qeq) ∈ R4×4 the inertia matrix, C(qeq, q̇eq) ∈ R4×4 the
Coriolis and gyroscopic torques, B ∈ R4×4 the damping
torques, K(qeq) the stiffness matrix, and Geq(qeq) ∈ R4×3 the
control matrix. These matrices are given as follows:

M
(

φeq

)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

m1 m2 0 0

m2 m3 0 0

0 0 m4
m4

ng
0 0 0 m5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (9)

where

m1 = It + Nmp
(
H2 + a2)

+ NmpRa sinφeq

+
Ip
2

(

1 + sin2φeq

)

,

m2 = N

2
mpRH cosφeq,

m3 = Ip,

m4 = Jr + Ipcos2φeq,

m5 = Jg ,

(10)

C
(

φ, θs, θg
)

eq
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 0 C23
C23

ng
0 −C23 0 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Bt 0 0 0

0 NBp 0 0

0 0 Br + Bs
Br

ng

0 0 −Bs

ng
Bg +

Bs

ng
− Bs

n2
g

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(11)

with

C23 = Ip sin 2φeq

(

θ̇seq +
θ̇geq

ng

)

, (12)

K
(

θ,φ, θs, θg
)

eq
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k1 0 0 0

0 k3 0 0

0 0 ks 0

0 0 − ks
ng

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (13)

with

k1 = kt −mtgHg cos θeq −Nmpg

×
(

H cos θeq +a sin θeq

)

+NH sin θeqFTeq ,

k3 = Ip cos 2φeq

(

θ̇seq +
θ̇geq

ng

)2

+ Nkp + Nrb sinφeqFTeq .

(14)

Finally, the control matrix reads

G
(
θ,φ

)

eq =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

NH cos θeq 0 0

Nrb cosφeq 0 0

0 1 0

0 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (15)
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The equilibrium or operation point can be computed
through the nonlinear algebraic equations given by

θeq = 1
kt

(

mtgHg sin θeq + Nmpg
(

H sin θeq − a cos θeq

)

+NH cos θeqFTeq

)

,

φeq = 1
Nkp

⎛

⎝Nrb cosφeqFTeq −
Ip
2

sin 2φeq

(

θ̇seq +
θ̇geq

ng

)2⎞

⎠,

θseq =
1
ks

(

Treq −
Br

ng
θ̇geq −

(

Br + Bg

)

θ̇seq

)

,

Tgeq =
Bs

ng
θ̇seq − Bg θ̇geq +

ks
ng

θseq ,

θ̇eq = 0,

φ̇eq = 0,
(16)

d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

θ

φ

θ̇

φ̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0

0 0 0 1

a5 a6 a1 a2

b5 b6 b1 b2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

θ

φ

θ̇

φ̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

a7

b7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

FT

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0

0 0

0 a3

0 b3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
θs

θ̇s

⎤

⎦ +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

a4

b4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

θ̇g ,

(17)

d

dt

⎡

⎣
θs

θ̇s

⎤

⎦ =
⎡

⎣
0 1

z5 z2

⎤

⎦

⎡

⎣
θs

θ̇s

⎤

⎦ +

⎡

⎣
0

z7

⎤

⎦Tg +

⎡

⎣
0

z6

⎤

⎦Tr

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0

0 0

0 0

0 z1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

θ

φ

θ̇

φ̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎣
0

z3

⎤

⎦θ̇g ,

(18)

dθ̇g
dt

= d2θ̇g +
[

d3 d1

]
⎡

⎣
θs

θ̇s

⎤

⎦ + d4Tg . (19)

Moreover, the system (8) can be decomposed as three
subsystems as shown in (17)–(19): the subsystem (1) given
by (17), corresponding to flexibility of the blades and tower,
the subsystem (2) given by (18), corresponding to the
torsion of the shaft, and the subsystem (3) given by (19),
corresponding to the rotational dynamics of the generator.
The corresponding parameters are given in Table 4.

Tr Jr
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ng

Jg Tg
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Figure 2: Drive-train.
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Figure 3: mechanical analogy of the wind turbine.

Table 2: Corresponding values of Figure 3.

� B� K�

+ (
Bt 0
0 NBp

) (
K1 0
0 K3

)

± Br + Bs Ks

− Bg +
Bs

ng
− Bs

n2
g

—

Remark 1. The block structure of (17)–(19) suggests a
mechanical analogy for the three kinds of forces/torques
acting on the wind turbine. Thus, Figures 2 and 3, together
with Table 2, shows the corresponding mechanical analogy
where different springs and dampers emulate the flexibility,
torsion, and friction of the shaft.

3. The Singularly Perturbed System

As it was shown above the mechanical dynamics of a wind
turbine is a composition of three physical mechanisms:
flexibility of the blades and tower, torsion, and rotational
dynamics of the shaft. In this section, we prove that these
three mechanisms act, actually, in different time scales allow-
ing to work with a reduced model of order of only one. This
reduction has been essential for the controller design of wind
turbines, since only a reduced model of first order is needed.
First, we prove this reduction by selecting the essential
physical parameters which provide the decoupling for the
reduction. Once these parameters have been identified a
reparametrization reveals the singular perturbed structure

of the system. To this end, let (Z1,Z2, θ̇g) ∈ R7 denote

a more compact state vector with Z1 = [θ,φ, θ̇, φ̇]T and

Z2 = [θs, θ̇s]
T . A careful and quite tedious analysis of the

physical properties of the system reveals that the parameters
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ε1 := −z1/(b3n2
g) > 0 and ε2 := d1/z3 > 0 allow to transform

(17)–(19) into a singular perturbed dynamics as follows:

ε1
dZ1

dt
= A1Z1 + ws1Z2 + wg1 θ̇g + wf1FT , (20)

ε2
dZ2

dt
= A2Z2 + ws2Z1 + wg2 θ̇g + wrTr + wtTg , (21)

dθ̇g
dt

= d2θ̇g + ws3Z2 + d4Tg , (22)

where ε2 > ε1 > 0 and the corresponding elements of the
matrices are given in Appendix B. Thus, the fact ε2 > ε1

suggests that the Z1, Z2, and θ̇g are the fast, medium, and
slow time-scale dynamics, respectively. The latter means,
mathematically, that for sufficiently small ε2 > 0 the time-
scale separation is satisfied. On the other hand, in (23) and
(24) we show the parameters ε1 and ε2 as a function of the
physical properties of the system given in Table 1, and it is
not difficult to see that both are dimensionless. The following
assumption is now in order. Notice that most of the wind
turbines satisfy the assumption by mechanical design:

ε1 = 1

n2
g

(

Jr + Ipcos2φeq

)

⎛

⎜
⎝Ip −

(

(N/2)mpRH cosφeq

)2

It + Nmp(H2 + a2) + NmpRa sinφeq +
(

Ip/2
)(

1 + sin2φeq

)

⎞

⎟
⎠, (23)

ε2 = Bs

Bg + Bs/ng − Bs/n2
g − BrJg /

(

Jr + Ipcos2φeq

) . (24)

Assumption A. The parameter μ defined through (23) as μ =
ε1 (Jr + Ipcos2φeq) is positive.

Some tedious but straightforward calculations show that
assumption A is satisfied if the following useful inequality—
as a function of some physical properties defined in Table 1—
holds:

It
Ip

>
3
2

(
H

R

)2

⇐⇒ mt

Nmp
>

3
2
. (25)

The following Proposition states the time-scale separation of
the model (20)–(22).

Proposition 2. Consider the parameters given by (23) and
(24) and define

Δ :=
[

Bg +
Bs

ng

(

1− 1
ng

)]2

− 4
BrJgBs

μ
, (26)

where μ = ε1 (Jr + Ipcos2φeq) from (23). Then, the following
implications hold:

(i)Δ < 0, ε1 > 0

(ii)Δ > 0, 0 < ε1 < ε∗

⎫
⎬

⎭
=⇒ ε2 > ε1, (27)

where ε∗ > 0 is defined by

ε∗ :=
Bg + Bs/ng

(

1− 1/ng
)

−√Δ
2
(

BrJg /μ
) . (28)

Proof. The inequality ε1 < ε2 is equivalent, from (23) and
(24), to

ε1 <
Bs

Bg + Bs/ng − Bs/n2
g − BrJg

(
ε1/μ

) , (29)

which in turn is equivalent to f (ε1) > 0, where

f (ε1) := BrJg
μ

ε2
1 −

[

Bg +
Bs

ng

(

1− 1
ng

)]

ε1 + Bs. (30)

Notice that f (0) > 0 and μ > 0. If Δ < 0 then, f (x) > 0,
for any x ∈ R, and therefore any ε1 > 0, satisfies ε2 > ε1. If
Δ > 0 then, f (x) > 0 for any x ∈ [0, ε∗] and therefore ε1 < ε∗

satisfies ε2 > ε1.

Table 3 shows the parameters ε1 and ε2 for a number of
real wind turbines from [12] and [13].

Remark 3. It should be noticed that ε1 and ε2 are a function
of the equilibrium/operation point, and, therefore, the time-
scale separation should hold for any of them. Thus, to see this
in Figure 4 we show ε1 and ε2 as a function of φeq for the WP
1.5 MW wind turbine of Table 3.

3.1. Reduced Dynamics. The theory of singularly perturbed
systems is very well known along with the reduction
process used in this section [14, 15], which underlies the
time-scale separation of the system. A controller design
for mechanical systems based on singular perturbations is
proposed, among others, in [16]. The separation principle
relies on the idea that, under some stability assumptions,
during the fast transients (so-called boundary-layer), the
slow variables remain constant and by the time their changes
become noticeable the fast transients have already reached
their so-called quasisteady state (equilibrium points with
ε = 0). Thus, since the system (20)–(22) has a time-scale
separation, then, according to the latter the response of
the Z1 coordinates of (20) is faster than the response of
the Z2 coordinates of (21). Roughly speaking, comparing
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Table 3: Parameters ε1 and ε2 for real wind turbines.

ε1 ε2

5-MW offshore NREL [12] 1.05e−004 5.15e−003

AWT-27CR2 [13] 5.33e −004 2.29e−002

AOC-15/50 [13] 4.18e −004 1.81e−002

WP 1.5 MW [13] 1.29e−004 5.68e−003

SWRT [13] 9.83e−001 5.01e−001

Table 4: Parameters for the model (17)–(19).

Parameters Value Parameters Value

a1 −m3c11

l1
b1

m2c11

l1

a2

m2c22

l1
b2 −m1c22

l1

a3

m2c23

l1
b3 −m1c23

l1

a4

m2c23

ng l1
b4 −m1c23

ng l1

a5 −m3k1

l1
b5 m2k1

l1

a6
m2k3

l1
b6 −m1k3

l1

a7

N(m3H cos θeq −m2rb cosφeq)

l1
z1

c23

m4

b7 −N(m2H cos θeq −m1rb cosφeq)

l1
z2 − c33

m4
− d1

ng

d1 − c43

m5
z3 − c34

m4
− d2

ng

d2 − c44

m5
z5 −d3

ng
− ks

m4

d3

ks
m5ng

z6
1
m4

d4 − 1
m5

z7 −d4

ng

l1 m1m3 −m2
2 Ip NmpR2

3

the responses between the Z1 and Z2 coordinates, Z1 look
“frozen” for Z2 that is, the coordinates Z1 in the subsystem
(21) can be considered in their steady states. In turn, the
response of the Z2 coordinates is faster than the response of

θ̇g through (22), and so, the Z2 coordinates can be considered
in their steady states. The relation between the stability
properties of the reduced system and the original system

relies on the stability of the equilibria for all the subsystems
involved and under the assumption ε2 > ε1 > 0. In what
follows, we proceed with the reduction process splitting it
into two steps.

Step 1. Consider system (20) and (21) and Z1 and Z2 as the
fast and the slow dynamics, respectively, so that Z1 is at its
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0
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Figure 4: Parameters ε1 and ε2 as a function of φeq.

quasisteady state Z∗1 = [θ
∗

,φ
∗

, θ̇
∗

, φ̇
∗

]T . By setting ε1 = 0,
the equilibrium set becomes

Z∗1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β1θ̇s + β2θ̇g + β3FT

α1θ̇s + α2θ̇g + α3FT

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (31)

along with

α1 = a5b3 − b5a3

a6b5 − b6a5
, β1 = a6b3 − b6a3

a5b6 − b5a6
,

α2 = a5b4 − b5a4

a6b5 − b6a5
, β2 = a6b4 − b6a4

a5b6 − b5a6
,

α3 = a5b7 − b5a7

a6b5 − b6a5
, β3 = a6b7 − b6a7

a5b6 − b5a6
.

(32)

By substituting (31) in (21), (21) becomes

ε2
dZ2

dt
= A2Z2 + wg2 θ̇g + wrTr + wtTg . (33)

Step 2. Consider now the reduced system (33) and (22) and

the fast and slow dynamics as Z2 and θ̇g , respectively. Thus,

by setting ε2 = 0 the quasisteady state Z∗2 = [θ
∗
s , θ̇

∗
s ]T

becomes

Z∗2 =
⎡

⎣
−z3

z5
θ̇g − z6

z5
Tr − z7

z5
Tg

0

⎤

⎦, (34)

and plugging (34) in (22), the reduced dynamics reads

dθ̇g
dt

= −BT

JT
θ̇g +

ng
JT

Tr −
ng
JT

Tgr , (35)

where Tgr is the generator torque referred to the rotor side,
with Tgr = ngTg ,

BT := Br + n2
gBg + Bs

(

1− 1
ng

)

, (36)

JT := Jr + n2
g Jg + Ipcos2φeq. (37)

Remark 4. We underscore here that the reduced equation
(35) reproduces the dynamical structure commonly used for
controlling wind turbines, where flexibility and torsion are
neglected (see, e.g., [7, 8]). In contrast, the previous analysis
proves that taking into account the flexibility and the torsion,
the same dynamical structure (35) arises with a suitable time-
scale separation. Additionally, as a contribution the time-
scale separation recovers the influence of the flexibility and
torsion through (36) and (37). By comparing with [7, 8],
the extra term Ipcos2φeq in (37) shows the influence of the
flexibility of the blades.

Figure 5 shows the block structure according to (20)–
(22). The decoupled structure arises by zeroing the param-
eters ε1 and ε2.

Before concluding the section let us briefly comment on
the stability properties of the singularly perturbed system
(20)–(22). From our previous analysis it is clear that we
cannot expect the states to converge to their quasisteady
states unless some stability conditions are satisfied. The
forthcoming analysis addresses those conditions. To this end,
let us define a change of coordinates to shift the quasisteady
states to the origin, which is given by

Y1 := Z1 + A−1
1 h1

(

Z2, θ̇g ,FT
)

,

Y2 := Z2 + A−1
2 h2

(

Z1, θ̇g ,Tr ,Tg

)

,
(38)

where

h1 := ws1Z2 + wg1 θ̇g + wf1FT ,

h2 := ws2Z1 + wg2 θ̇g + wrTr + wtTg ,
(39)

and, therefore, the system (20)–(22) in the new coordinates
becomes

ε1
dY1

dt
= A1Y1 + ε1h1, (40)

ε2
dY2

dt
= A2Y2 + ε2h2, (41)

dθ̇g
dt

= d2θ̇g + ws3

(
Y2 − A−1

2 h2
)

+ d4Tg , (42)

where hi are the functions hi in the new coordinates, for
i = 1, 2. The system (40)–(42) highlights the perturbed
part of the system and, in turn, the time-scale separation.
Thus, if the equilibria of Y1 and Y2 are asymptotically stable
with ε1 = ε2 = 0, then, it is reasonable to expect that
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Figure 5: Block diagram of the wind turbine.

their respective solutions will reach an O(ε1) and O(ε2)
neighbourhood of the origin during the boundary-layer
transient. Therefore, the stability analysis of the whole system
(40)–(42), or (20)–(22), is reduced to the stability analysis of
the reduced system (35). Moreover, the existence of ε1 and ε2

such that this simplified analysis can be done is guaranteed if
the matrices Ai, i = 1, 2, are Hurwitz and under some mild
assumptions of smoothness. The following proposition states
formally the utility of the approach.

Proposition 5. Consider the wind turbine system given by
system (20)–(22). Suppose that the equilibrium of the reduced
system (22) is exponentially stable with a specific control law
on Tg . Then, for any Hurwitz matrices Ai, i = 1, 2, there exist
ε∗2 > ε∗1 > 0 such that for ε1 < ε∗1 and ε2 < ε∗2 the equilibrium
of the whole system (20)–(22) is exponentially stable.

Proof. The proof is based on the iterative application of
Theorem 11.4 of [15].

4. Observer Design for the Turbine
Flexible Modes

This section describes how the above developed wind turbine
model and singular perturbation decomposition can be

employed to estimate the system states and its potential for
control applications.

Currently, most control algorithms depend on measure-
ments from turbine structure and drive train for use in the
control feedback [5]. Nonetheless, many advanced control
techniques rely on the use of measurements that are not
typically available for control. For example, most of the
time wind turbines operate under the below-rated power
conditions, on what is usually termed as region I of operation
[1]. This regime of operation happens at wind speeds lower
than the rated one, VN , and is characterized in that the
available wind power is lower than the maximum the turbine
is designed to extract. Therefore, the usual generation
objective in this region is maximizing power extraction
preventing mechanical loads from exceeding certain bounds.

To maximize power extraction the turbine must be
driven to operate on the maximum efficiency curve. The
power extracted from the turbine can be expressed as

Pa = 1
2
ρπR2Cp

(
λ,β

)
v3, (43)

where

λ = θ̇rR

v
(44)
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is the so-called tip speed ratio, θ̇r is the rotor speed, v is
the wind speed, R is the rotor radius, β is the blade pitch
angle, and ρ is the air density. Thus, the power extracted
from the wind, Pa, is proportional to v3, the surface of
the aerodynamic disc, and the so-called power coefficient,
Cp. The values of Cp as a function of λ and β are usually
numerically obtained using blade-element moment theory
for every specific blade profile (see, e.g., the code WT-PERF
[17] developed by NREL for more details on the subject).

The coefficient Cp(λ,β) in (43) has a single maximum,
Cp,opt, for specific optimal tip-speed ratio, λopt, and optimal
pitch angle, βopt, such that

Cp,opt = Cp

(

λopt,βopt

)

. (45)

A common strategy to maximize power extraction in
region I consists in fixing the blade pitch angle to its optimal
value, βopt, while regulating the turbine speed to keep the
tip-speed ratio as close as possible to λopt manipulating the
generator torque Tg . In other words, the control action, Tg ,
is designed to make the rotor speed tracks

θ̇r,opt =
λoptv

R
. (46)

It is worth noticing that θ̇r,opt depends only on the wind
speed v as λopt is a constant and known value. Nonetheless,
wind speed remains an unknown and fluctuating value
that cannot be effectively measured in practice. The reason
is that the wind exhibits in general a time-varying full-
field turbulent behaviour that cannot be summarized by
a single magnitude on a specific point of the rotor disc.
From this point of view, single anemometer measurements
usually employed on top of turbine nacelle provides useful
information for the trend of the average wind profile but
cannot be efficiently used for control.

This problem is classically circumvented resorting to
control techniques that do not require wind measurements
for control. For instance, in [18] an indirect speed control
strategy is formulated, based on the fact that a wind turbine
is stable around any point of the optimal aerodynamic
efficiency curve. With this idea, the controller is designed
to track a constant, not estimated torque that approximates
the optimal torque versus θ̇r curve. Adaptive control has
also been employed in this context to design a controller
that copes with unknown and not directly measurable
wind speeds. Thus, in [19] a nonlinear adaptive control
algorithm is devised such that the controller tracks an
specified reference shaft speed in the presence of eventual
model uncertainties.

Nonetheless, these methods exhibit low performance in
presence of full-field turbulent winds, which has motivated
the development of alternative methods to obtain indirect
measurements of the wind, as in [20], where a Kalman filter
is used to estimate the aerodynamic torque Tr and used as a
reference for a linear torque tracking controller, or [8], where
the aerodynamic torque estimated again with a Kalman filter
is employed to infer an estimation of the effective wind speed
impinging the rotor, and therefore used for control design.

This work proposes to extend the application of observers
to also estimate the flexibility components of the wind
turbine, that is, blades and tower deflection. These magni-
tudes are intimately related to the structural loads of the
turbine and therefore to its lifespan. The problem of fatigue
damage in wind turbines has been classically circumvented
from the control point of view, using controllers tuned for
smooth operation preventing the excitation of dangerous
structural frequencies. This solution certainly leaves room
for energy capture improvement, as the wind resources are
not exploited to its fullest. The adoption of this solution
is motivated, among other reasons, by the absence of
measurements of the structure deformations, that could be
employed for feedback in control.

4.1. Observer Design and Control Considerations. The time-
scale separation principle applied on the model of the wind
turbine in (20)–(22) can be exploited to design an observer
structure to estimate the flexible degrees of freedom of the
model, namely Z1.

Assuming the time-scale separation principle applies or,
alternatively, that the drive train torsion can be discarded, an
extended subsystem model can be built on the assumption
that the rotor axial force, FT , is driven by a white noise of
known variance. Note that FT is the component of the wind
over the turbine aerodynamic disc that mainly is responsible
for the blades out of plane deflection and the fore-aft tower
displacement, and as the aerodynamic torque, Tr cannot
be directly measured. Under this assumption, FT can be
appended as an additional state of the plant, from (20),
yielding

d

dt

⎡

⎣
ε1Z1

FT

⎤

⎦ =
⎡

⎣
A1 ωf1

0 0

⎤

⎦

⎡

⎣
Z1

FT

⎤

⎦ +

⎡

⎣
ωg1

0

⎤

⎦θ̇g +

⎡

⎣
0

1

⎤

⎦ξ. (47)

This structure could be in principle employed to build
a standard Kalman filter to provide an estimate of the plant
subspace Z1 together with FT , provided an appropriate input
is fed to the filter. In this case, and as remarkable difference
with the estimators employed for the aerodynamic torque,
Tr , the filter cannot reconstruct the plant states just on the
information of the rotor speed. This fact can be easily verified
by checking the observability of system (47) together with

system (22) with θ̇g as an input.
From a physical point of view, this fact makes perfect

sense, as we have checked that both systems, (20) and
(22), can be uncoupled on a time-scale separation principle,
yielding that subspace Z1 is only marginally observable from

input θ̇g . This fact makes necessary the introduction of
an additional input to the system that provides enough
information for the filter to reconstruct the states of (47),
without the need of implementing additional sophisticated
and/or expensive measurement devices on the turbine.
Careful consideration of the possibilities suggested the intro-
duction of an accelerometer on top of the turbine nacelle,
which provided fore-aft tower acceleration measurement.
Current state-of-the-art solid state accelerometers are cheap
yet effective and reliable for the task at hand. This additional
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measurement can be easily incorporated to system (47)
considering an additional equation as

y = H ·
[

a5 a6 a1 a2 a7

]
⎡

⎣
Z1

FT

⎤

⎦, (48)

where parameters are defined as in equation (17) and H
represents the tower height. In other words, the nacelle fore-

aft acceleration is approximated in the model as H · θ̈.

Remark 6. Despite this additional input, it can be checked
that the overall system observability condition (checking for
instance that the observability matrix of the system is full
rank [21]) for system (47) and (48) fails. It is interesting,
nonetheless, to analyze the structure of the observable and
unobservable subspaces of the system, a task that can be
performed resorting to standard linear control techniques
[21]. Thus, a closer look at the problem reveals that FT is the
only state not observable from the newly introduced input,
while Z1 can be reconstructed. This allows us to build a
Kalman filter on the observable subspace of (47) where state
FT is removed.

3.1. Reduced Dynamics. This section provides some results
on the performance of the flexible-modes filter described
above. Simulations were performed with the fatigue, aero-
dynamics, structures and turbulence (FAST) code developed
by NREL. It is an aeroelastic wind turbine simulator that
uses an assumed mode method to model flexible blades and
tower components. A multibody model is employed for other
components.

In these simulations the AWT, three-bladed WP 1.5 MW
wind turbine provided by NREL was selected. This turbine
features a hub height of 42 m, with 33.25 m length blades and
variable speed-variable pith control capabilities.

In order to reflect realistic operation conditions, the
study has been performed considering a 16DOF model,
taking into account flexibility associated with torsional
motion between the generator and hub/rotor together with
fore-aft tower flexibility and out-of-plane blade flapping.
Experiments have been developed for full-field turbulent
wind profile with 12 m/s average speed, while a simple PI
control has been applied on the control part to make the
turbine operate at constant 5 rad/s despite wind fluctuations.

Figures 6 and 7 show, respectively, the estimated and
measured (from simulation) deflection of tower and blades.
For the blades, FAST simulator provides three distinct values,
one for each blade, so an average of these values has been
taken to be compared to the single blade deflection DOF
available from the estimator model. It can be observed
that the estimated values for the tower deflection are quite
accurate in general, collecting the main dynamics of the
system both in amplitude and average frequency. Tracking of
the blade deflection is nonetheless more inaccurate, though
the main trend is correctly reproduced. These results should
not surprise us, as the information employed to reconstruct
the flexible states, the nacelle fore-aft acceleration (see
Figure 8), is directly linked to the tower DOF. The blade
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Figure 6: Estimated fore-aft tower deflection versus measured
(simulated) fore-aft tower deflection.
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Figure 7: Estimated out-of-plane averaged blade deflection versus
measured (simulated) out-of-plane averaged blade deflection.

deflection DOF is much more difficult to estimate first
because the linear model employed to build the filter fails to
collect all dynamical effects present in the aerodynamic disc
and second because the nacelle fore-aft acceleration is only
indirectly linked to the behaviour of the blades.

Nonetheless, it is worth to mention that for general con-
trol purposes, perfect tracking of these signals is not required.
Relevant information about load effects on the structure
can be extracted from the main frequencies of oscillation
together with their maximum amplitudes, and these data
are reasonably well approximated by the estimation structure
proposed.
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Table 5: Parameters for the model (20)–(22).

Parameters Value Parameters Value

a1
− m3c11

m1m4n2
g

b1
m2c11

m1m4n2
g

a2

m2c22

m1m4n2
g

b2 − c22

m4n2
g

a3

m2c23

m1m4n2
g

b3 − c23

m4n2
g

a4

m2c23

m1m4n3
g

b4 − c23

m4n3
g

a5
− m3k1

m1m4n2
g

b5
m2k1

m1m4n2
g

a6

m2k3

m1m4n2
g

b6 − k3

m4n2
g

a7

N(m3H cos θeq −m2rb cosφeq)

m1m4n2
g

z1
c23d1

m4z3

b7
−N(m2H cos θeq −m1rb cosφeq)

m1m4n2
g

z2
d1z2

z3

z6

d1

m4z3
z3 d1

z7
−d1d4

z3ng
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Figure 8: Measurement of the accelerometer on the nacelle
(simulated).

5. Conclusion

In this work, a model for wind turbines taking into account
the flexibility and torsional forces has been developed. The
common and worth assumption of a reduced mechanical

model of order one is justified through a time-scale sep-
aration based on the singularly perturbed structure of the
system. The identification of the key parameters for the
decoupling and some new insights for the design and control
of the wind turbine are given. Moreover, the singularly
perturbed structure together with the fore-aft acceleration
in the the nacelle as an available output allows us to design
a new estimator for the whole flexible modes of the wind
turbine, that is, tower and blades.

Appendices

A. Parameters for Model (17)–(19)

The corresponding parameters are given in Table 4.

B. Definitions and Parameters for the Model
(20)–(22)

The corresponding matrices of the equations (20)–(22) have
been defined as

ΣZ1 :A1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0

0 0 0 1

a5 a6 a1 a2

b5 b6 b1 b2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ws1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0

0 0

0 a3

0 b3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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wg1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

a4

b4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, wf1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

a7

b7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

ΣZ2 :A2 =
⎡

⎣
0 1

z5 z2

⎤

⎦, ws2 =
⎡

⎣
0 0 0 0

0 0 0 z1

⎤

⎦,

wg2 =
⎡

⎣
0

z3

⎤

⎦, wr =
⎡

⎣
0

z6

⎤

⎦, wt =
⎡

⎣
0

z7

⎤

⎦,

Σ
θ̇g

:ws3 =
⎡

⎣
d3

d1

⎤

⎦

T

.

(B.1)

and its corresponding parameters are given in Table 5.
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