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Summary. This paper gives a version of the parallel bitonic sorting algorithm of
Batcher, which can sort N elements in time O(log2 N). When applying it to the 2D
mesh architecture, two indexing functions are considered, row-major and shuffled row-
major. Some properties are proved for the later, together with a correctness proof of
the proposed algorithm. Two simulations with P systems are proposed and discussed.
The first one uses dynamic communication graphs and follows the guidelines of the mesh
version of the algorithm. The second simulation requires only symbol rewriting rules in
one membrane.

1 Introduction

P systems, introduced in [19], are powerful computational models, with non-
deterministic as well as parallel features. Deterministic P systems can be also
considered, and the power of their parallel features compared against the power
of other computational models which enjoy parallelism. Along this line we refer
to previous work, which relates P systems with parallel networks of processors,
functioning according to the SIMD paradigm (Single Instruction Multiple Data
machines), in [8], [9], for shuffle-exchange networks, and in [6] for 2D mesh net-
works. The comparison was approached by designing P systems which simulate
the functioning of a specific architecture, when solving a specific problem. In [7]
the general features of this type of approach were abstracted, giving a “blueprint”
for the design of a class of deterministic P sytems, with dynamic communication
graphs, which simulate a given parallel architecture, functioning to implement a
given algorithm.

Among the choices to be made for the problem to solve, the static sorting im-
poses itself, being a central theme in computer science. Although it is well known
that comparison-based sorting algorithms require at least O(N log N) comparisons
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to sort N items, performing many comparisons in parallel can reduce the sorting
time. This paper analyses the bitonic sorting algorithm, one of the fastest parallel
sorting algorithms where the sequence of comparisons is not data-dependent. The
bitonic sorting network was discovered by Batcher [3], who also discovered the net-
work for odd-even sort. These were the first networks capable of sorting N elements
in time O(log2 N). Stone [24] maps the bitonic sort onto a perfect-shuffle inter-
connection network, sorting N elements by using N processors in time O(log2 N).
Siegel [23] shows that bitonic sort can also be performed on the hypercube in
time O(log2 N). The shuffled row-major indexing formulation of bitonic sort on
a mesh-connected computer is presented by Thompson and Kung [25]. They also
show how the odd-even merge sort can be used with snakelike row-major indexing.
Nassimi and Sahni [16] present a row-major indexed bitonic sort formulation for
a mesh with the same performance as shuffled row-major indexing.

Static sorting algorithms have been developped and proposed also in the P
systems area. Among the first approaches, made independently, we mention [2]
and [4], [5]. The problem of sorting with P systems occupies Chapter 8, [1], of the
monograph [10].

We analyze in this paper a version of the bitonic sorting algorithm of Batcher,
and its implementation on the 2D mesh architecture. Section 2 introduces the
mesh topology and the model of computation. In 2.2 we begin the formal study
of indexing functions, and we stress their importance for the passing to a network
architecture. (Some similar work has been done in [12] and [13], but we develop our
own formalism.) In 2.3 we present the algorithm, and the main result, Theorem
1, whose Corrolary is the correctness proof of the algorithm. Other results in
this subsection, like Lemma 3, and the Remarks, are subsequently used to prove
assertions about the algorithm, and, in Section 3, about the simulations with P
systems.

Section 3 is devoted to the presentation of two different simulations of the algo-
rithm with P systems. The first simulation uses dynamic communication graphs,
as in [7]. A generative approach to the sequence of graphs used to communicate
values between the membranes is a novel feature. The second simulation, uses only
one membrane, and symbol rewriting rules.

2 Preliminaries: The bitonic sort on the 2D-mesh

2.1 Model of Computation

The presentation of the bitonic sort on the 2D-mesh architecture is made here
based mainly on the paper [25]. It is the same algorithm as in [21], but with
more emphasis on the routings necessary to compare elements situated at greater
distances on the mesh. Also, some restrictions imposed in [25], will be elimi-
nated, or re-examined, since they were dictated by their explicit connection to
the ILLIAC IV-type parallel computer. In general, our references to parallel ma-
chines/architectures will be at the level of generalization to be found for instance
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in [21]. We also found it useful to formalize properly some aspects related to the
indexing function.

Let us assume as in [25] that we have a parallel computer with N = n × n
identical processors, disposed in a 2D-mesh structure. A processor is connected to
all of its four vertical or horizontal neighbors, except for the processors situated
on the perimeter, which have at most two or three neighbors, as no “wrap-around
connections“ are permitted.

Another assumption is that it is a SIMD (Single Instruction Multiple Data)
machine. During each time unit, a single instruction is executed by a set of proces-
sors. In what follows, only two processor registers and two instructions are needed.
For inter-processor data moves, we will use a routing instruction which copies the
value of a register to a register of a neighbor processor. The second instruction is
the internal comparison between the values of the two registers of a processor.

We define tR the time for one-unit distance routing step, and tC the time
required for one comparison step. Concurrent data movement is allowed, as long
as it is in the same direction; also any number of parallel comparisons can be made
simultaneously.

2.2 The sorting problem and indexing functions

We assume to have an indexing function on the processors that is a one-to-one
mapping from {0, 1, . . . , n− 1} × {0, 1, . . . , n− 1} onto {0, 1, . . . , N − 1} and that
initially N integers are loaded in the N processors. Therefore the sorting problem
is defined as moving the jth smallest element to the processor indexed by j, for
all j ∈ {0, 1, . . . N − 1}.

Let I : {0, 1, . . . , n − 1} × {0, 1, . . . , n − 1} −→ {0, 1, . . . , N − 1} denote an
indexing function. Two indexing schemes are the following:

(i) Row-major indexing. This is illustrated in Figure 1, and we denote it by I =
RM .

(ii)Shuffled row-major indexing. This is illustrated in Figure 2, and we denote it
by I = sRM .

In order not to make the notation cumbersome, we let the same letter, say
i, stand for an integer in {0, 1, . . . , n − 1}, and for its binary representation as
a string. For n = 2k, as the case will be, i will be a binary string of length k.
Whenever necessary, we complete with zeroes (obviously, to the left) to obtain
strings of the same length. (When we refer to bits of such a string, we count from
1 to n, starting from right to left, such that the “first” bit will be that of the least
significant digit, and so forth. However, when we write such a string, we will write
it with bits numbered from right to left.)

Consider the following definitions:

Definition 1. The row-major indexing function RM is defined by RM(i, j) = ij,
where in the right hand-side we have denoted by ij the string concatenation of the
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Fig. 1. Row-major indexing scheme for a 4× 4 mesh

binary representations of the integers i and j, after they have been brought to the
same length.

More precisely, for every k, we have the bijections

RMk : {0, 1, . . . , 2k − 1} × {0, 1, . . . , 2k − 1} −→ {0, 1, . . . , 22k − 1},
defined by

RMk(i1i2 · · · ik, j1j2 · · · jk) = i1i2 · · · ikj1j2 · · · jk.

Let sh (from ’shuffle’) stand generically for the family of bit-shuffle functions
shk : {0, 1, . . . , 22k − 1} −→ {0, 1, . . . , 22k − 1}, defined by

shk(i1i2 · · · ikj1j2 · · · jk) = i1j1i2j2 · · · ikjk.

This is a bijection, with the obvious inverse

ushk(i1j1i2j2 · · · ikjk) = i1i2 · · · ikj1j2 · · · jk,

where ush comes from ’un-shuffle’. In the following we will drop the index k
whenever it is clear from the context.

Definition 2. The shuffled row-major indexing function sRM is defined by sRM(i, j) =
sh(ij), where in the right hand-side we have denoted by ij the string concatenation
of the binary representations of the integers i and j, after they have been brought
to the same length, and sh is the appropriate bit-shuffle function.

More precisely, for every k, we have the bijections

sRMk : {0, 1, . . . , 2k − 1} × {0, 1, . . . , 2k − 1} −→ {0, 1, . . . , 22k − 1},
defined by

sRMk(i1i2 · · · ik, j1j2 · · · jk) = shk(i1i2 · · · ikj1j2 · · · jk) =

= i1j1i2j2 · · · ikjk.
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Fig. 2. Shuffled row-major indexing scheme for a 4× 4 mesh

Lemma 1. For every i, j1, j2 ∈ {0, 1, . . . , 2k − 1} with j1 < j2, we have that
sRM(i, j1) < sRM(i, j2). Analogously, for every i1, i2, j ∈ {0, 1, . . . , 2k − 1} with
i1 < i2, we have that sRM(i1, j) < sRM(i2, j).

Proof. The proof is immediate, from the definition of sRM . ¤

Let us consider the following general definition:

Definition 3. We call indexing function on the 2k × 2k mesh a bijection

Ik : {0, 1, . . . , 2k − 1} × {0, 1, . . . , 2k − 1} −→ {0, 1, . . . , 22k − 1}.

The problem of sorting on a 2k × 2k mesh is obviously related to an in-
dexing function I: given a family of values (Pij)ij , to sort them means to sort
the corresponding ’linear’ family (PI(i,j))I(i,j), i.e., to find the permutation σk of
{0, 1, . . . , 22k − 1} such that (PσI(i,j))σI(i,j) is ascending (or descending).

Furthermore, when designing or implementing sorting algorithms on the 2D
mesh, through an indexing function I they will be translated into algorithms for
sorting a linear set, (PI(i,j))I(i,j). But, the linear version of the algorithm, for
sorting say an array 〈P0, . . . , P22k−1〉, has to be such that its translation into 2D-
mesh operations be admissible. By this last word we mean to obey certain rules
for the functioning of the 2D mesh as a network of processors. One such rule
is the possibility of a processor to communicate only with its neighbours. Other
rules may involve simultaneous communication with neighbours: a processor may
communicate with two neighbours simultaneously, provided they are on the same
line or column, and that, if the same register is involved, the old value is read and
communicated while the new value is written. Still further rules may involve the
parallel functioning of the network: communications in parallel may be allowed
only if either only lines or only columns are involved at one parallel step.

The above mentioned restrictions can be formulated in a formal manner, lead-
ing to a notion of good indexing function, but this is beyond the scope of this
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paper. Let us just say for now, that, if the linear version of the algorithm performs
a comparison between Pr and Ps, then PI−1(r) and PI−1(s) must be neighbours in
the 2D mesh topology. Since the linear version of the algorithm is also parallel,
whole pairs of families must be mapped by I−1 into adjacent families, and the last
ones are naturally the adjacent lines or columns of the mesh. This justifies to a
certain degree results present in this paper such as Lemma 3.

The choice of the indexing function Ik = sRMk provides the connection be-
tween the bitonic sorting algorithm as presented in [21] and the bitonic sorting
network of [14] and Figure 3.

Let us also note that both RMk
−1 and sRMk

−1 are easy to compute. For a
linear index r = i1i2 · · · ikj1j2 · · · jk,

RMk
−1(r) = RMk

−1(i1i2 · · · ikj1j2 · · · jk) =

= (i1i2 · · · ik, j1j2 · · · jk) = (r div 2k, r mod 2k),

and similarly for sRMk
−1.

2.3 The bitonic sorting algorithm

In Batcher’s bitonic sorting network [3] of order n, the input is a bitonic se-
quence a of n/2 increasing elements followed by n/2 decreasing elements. These
two sequences are merged by first applying n/2 comparators to a0 and an/2, a1

and a(n/2)+1, ... an/2 and an−1. This first-phase partitions the elements into two
bitonic sequences of n/2 smaller elements and of n/2 larger elements. These two
bitonic sequences are further sorted by applying two bitonic merging networks of
size n/2 to each sequence. A bitonic sorting network for 16 elements appears in
Figure 3.

Lemma 2. [3] Given a bitonic sequence 〈a1, a2, . . . , a2n〉 the following hold.

1. d = 〈min{ai, an+i}n
i=1〉 = 〈min{a1, an+1},min{a2, an+2}, . . . , min{an, a2n}〉 is

bitonic.
2. e = 〈max{ai, an+i}n

i=1〉 = 〈max{a1, an+1},max{a2, an+2}, . . . , max{an, a2n}〉
is bitonic.

3. max(d) < min(e).

By an abuse of notations, we shall refer to a sequence of processors as
the sequence of integers stored in one designated register A of the proces-
sors at a certain moment. Similarly, we shall use min / max{Pi, Pj} meaning
min / max{Pi[A], Pj [A]} and refer to such operations as a comparison and inter-
change of values between processors Pi and Pj .

We shall give a generic algorithm for Batcher’s bitonic sorter on an array
〈P0, . . . , P22k−1〉 of processors, independent of the indexing function used. The
algorithm (as illustrated in Figure 3 for k = 2) will consist of 2k stages, num-
bered from 1 to 2k. After each Stage i, the sequence 〈P2ij , . . . , P2ij+2i−1〉 with
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Fig. 3. A bitonic sorting network of size 16

0 ≤ j ≤ 2k−i − 1 will be an ascending sequence for all j even, and a descending
sequence, for all j odd.

Input: an array 〈P0, . . . , P22k−1〉 of processors
Output: the sequence 〈P0, . . . , P22k−1〉 is ascending

Stage(i)
for t ← i downto 1 do

// compare processors with indices differing on bit t
forall j ← 0 to 22k−t − 1 in parallel do

if 2tj div 2i is even then order = ascending
else order = descending
Merge(2tj, 2tj + 2t − 1, order)

end

Bitonic-Sort
for i ← 1 to 2k do

Stage(i)

end
Algorithm 1: Bitonic sort on an array of 22k processors

Given a bitonic sequence of processors 〈P1, P2, . . . , P2n〉, by Merge(1, 2n, ascending)
we mean an operation which yields the sequence:
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〈min{P1, Pn+1}, min{P2, Pn+2}, . . . , min{Pn, P2n},

max{P1, Pn+1}, max{P2, Pn+2}, . . . , max{Pn, P2n}〉.
Analogously, a call to Merge(1, 2n, descending) produces

〈max{P1, Pn+1}, max{P2, Pn+2}, . . . , max{Pn, P2n},

min{P1, Pn+1}, min{P2, Pn+2}, . . . , min{Pn, P2n}〉.
Theorem 1. After each Stage i, the sequence 〈P2ij , . . . , P2ij+2i−1〉, 0 ≤ j ≤ 2k−i−
1 will be an ascending sequence for all j even, and a descending sequence, for all
j odd.

Proof. We shall reason by induction on i. For the base case i = 1 it is immediate
that the statement holds. Now let the statement be true for i and show that is it
also true for i + 1.

First, t = i + 1 and 0 ≤ j ≤ 2k−i−1 − 1. The sequence S for the i + 1 case can
be written as

S = 〈P2i+1j , . . . , P2i+1j+2i−1〉 =

〈P2i2j , . . . , P2i2j+2i−1, P2i(2j+1), . . . , P2i(2j+1)+2i−1〉.
From the induction hypothesis, we have that the sub-sequence

S1 = 〈P2i2j , . . . , P2i2j+2i−1〉

is ascending as 2j is even for any j, and that

S2 = 〈P2i(2j+1), . . . , P2i(2j+1)+2i−1〉

is descending as 2j +1 is odd for any j. Therefore, the whole sequence S is bitonic.
At this point we apply the Merge operation on S, and get S′ = S′1S

′
2.

By Lemma 2 we have that S′1 and S′2 are both bitonic. Moreover, when doing
an ascending merge, max(S′1) < min(S′2) and when doing a descending merge,
min(S′1) > max(S′2). This ensures that the two sequences are relatively ordered
and can be sorted independently in parallel.

For 1 ≤ t < i+1 the Merge operations are the same as in a merging network.
We note that for all 2i+1j ≤ l < 2i+1(j + 1), l div 2i+1 = j and therefore all
subsequent Merge operations for t < i + 1 on these processors will have the same
order as when t = i + 1. ¤

Corollary 1. Given a sequence 〈P0, . . . , P22k−1〉 of processors, Algorithm 1 is cor-
rect.

Proof. The proof is immediate by Theorem 1. At Stage k we have j = 0 and hence
the sequence 〈P0, . . . , P22k−1〉 is ascending. ¤
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Lemma 3. Given a 2k × 2k 2D-mesh indexed with the function sRM and using
Algorithm 1, for any two processors x = 2tj + l and y = 2tj + l + 2t−1, with
0 ≤ l ≤ 2t−1 − 1, 1 ≤ t ≤ i, and 0 ≤ j ≤ 2k−t − 1, which compare and interchange
values inside a call of the form Merge (2tj, 2tj +2t−1, order), the following hold:

(i) the binary representations of x and y differ only on bit t;
(ii)if t is even then x and y reside on the same vertical line of the mesh; if t is

odd they are on the same horizontal line;
(iii)the distance on the mesh between x and y is 2dt/2e−1;
(iv)all processors situated on the same line between x and y are involved in the

same Merge operation (i.e., have indices between 2tj and 2tj + 2t − 1).

Proof. (i) Since x = 2tj + l and l ≤ 2t−1 − 1, we have that l contributes to bits 1
to t− 1 and that 2tj contributes to bits t+1 to 2k. Therefore bit t of x is 0. Simi-
larly, since y = x+2t−1, bit t of y is 1, and all other bits are the same as those of x.

(ii) We apply the ’un-shuffle’ function to x and y and get ush(x) = i1j1 and
ush(y) = i2j2. By the definition of sRM we have that the i is the row index, while
j is the column index. From i) we have that x and y differ on bit t, and hence the
following two cases hold: t is even and i1 6= i2, j1 = j2, or t is odd and i1 = i2,
j1 6= j2. In the first case x and y are on the same column, and in the latter, they
are on the same row.

(iii) Using the notations above, let us assume that t is even and i1 6= i2,
j1 = j2. If x and y differ on bit t, then i1 and i2 will differ on bit t/2, and therefore
|i1 − i2| = 2t/2−1. From ii) x and y are on the same line of the mesh and the
distance between them is |i1 − i2| = 2t/2−1. Similarly, when t is odd and i1 = i2,
j1 6= j2, we have that j1 and j2 differ on bit dt/2e. As before, the distance between
x and y is 2dt/2e−1.

(iv) Consider again the case t even and i1 6= i2, j1 = j2. We have to show
that for all numbers i with i1 ≤ i ≤ i2, we have 2tj ≤ sRM(i, j1) ≤ 2tj + 2t − 1.
But since i1 ≤ i ≤ i2, form Lemma 1, we have that x ≤ sRM(i, j1) ≤ y, which
concludes our proof as 2tj ≤ x and y ≤ 2tj + 2t − 1. Analogously for t odd. ¤

2.4 Applying the bitonic sorting algorithm to the 2D-mesh

Thompson and Kung [25], and Orcutt [18] showed that Batcher’s bitonic sorting
algorithm can be applied to sorting on a mesh-connected parallel computer, once
the indexing function is chosen. In [25] it is noted that a necessary condition for
optimality is that a comparison-interchange on the jth bit be no more expensive
than the (j + 1)th bit, for all j. From (iii) of Lemma 3 we have that the “shuffled
row-major” indexing scheme satisfies such condition, and leads to a complexity of
(14(n− 1)− 8 log n)tR + (2 log2 n + log n)tC .

The algorithm for a 4× 4 is illustrated below and in Figure 4, where by “well
ordered” we reffer to the corresponding comparison directions from Figure 3.
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Stage 1 Bitonic sort on pairs of adjacent 1× 1 matrices by the comparison inter-
change indicated, result: “well ordered” 1× 2 matrices. Time: 2tR + tC .

Stage 2 Bitonic sort on 1× 2 matrices, result: 2× 2 matrices. Time: 4tR + 2tC .
Stage 3 Bitonic sort on 2× 2 matrices, result: 2× 4 matrices. Time: 8tR + 3tC .
Stage 4 Bitonic sort on the two 2× 4 matrices. Time: 12tR + 4tC .

At each stage of Algorithm 1, we have a comparison and interchange of values
between two processors. We have seen in Lemma 3 that using the sRM indexing
function, these two processors will sit on the same vertical or horizontal line of the
mesh. In the cases when they are not directly connected, they will have to route
their values through neighbour processors, residing on the shortest path between
(i.e., the line of the mesh on which they are placed). At each Stage i, we will
have a comparison and interchange between processors whose indices differs only
on bit t, with 1 ≤ t ≤ i. Keeping in mind the parallel structure of our machine,
the merging operation becomes a merging of square or rectangular portions of the
mesh. Therefore, using the sRM indexing, the Merge operation defined previously
becomes a Merge operation on sub-arrays of processors situated on the same line
of the mesh. We denote such operation compare-interchange.

For a better understanding of the way a call Merge (2tj, 2tj + 2t − 1, order)
(1 ≤ i ≤ 2k, 1 ≤ t ≤ i, 0 ≤ j ≤ 2k−t − 1) is translated to the 2k × 2k mesh
topology, we shall make the following observations:

Remark 1. The portion of the mesh will have dimensions 2t−dt/2e × 2dt/2e (i.e.,
2t−dt/2e rows and 2dt/2e columns). This is true since 2t processors are involved in
the Merge and from Lemma 3 the maximal length of the sub-arrays involved in
the Merge situated on the same line is 2 · 2dt/2e−1.

Remark 2. For t even, we have a merging of square portions of the mesh of size
2t/2 × 2t/2 and the compare interchange operations are done between processors
residing on the same column of the mesh, For t odd we have a merging of rectan-
gular portions of the mesh of size 2dt/2e−1 × 2dt/2e, and the compare interchange
operation are done between processors residing on the same row of the mesh.

Let us see what are the necessary routings for the case for t = 1 (the proces-
sors are directly connected since 2dt/2e−1 = 1). Consider a call of the form
Merge(x, x + 1, order) Let processors Px and Px+1 have the two registers de-
noted by A and B. Then the first instruction performed is a routing from Px[A] to
Px+1[B]. Next, perform a comparison operation in processor Px+1, and store the
minimum/maximum in register B. Finally, route back to Px the value of the B
register of Px+1, with a total time is 2tR + tC . The pseudo-code is written below,
where by compare(Px+1, ascending|descending) we understand an internal com-
parison in processor Px+1, which places the minimal/maximal value in register B.
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Input: index x and sorting order order
Output: the sequence 〈Px, Px+1〉 is ordered w.r.t. order

route(Px[A], Px+1[B])
compare(Px+1, order)
route(Px+1[B], Px[A])

Algorithm 2: Compare-interchange operation for adjacent processors

Let us now see what is the case when we have to merge an array a of 2i proces-
sors situated on the same line of the mesh, indexed from 0 to 2i − 1, and such
that Pa[j] is neighbour with Pa[j+1] for all 0 ≤ j < 2i − 1. The basic idea is that
we have to shift the values of the first half of the array in the B registers of the
second half, perform a comparison operation in parallel in these processors, and
then shift back the minimal/maximal values. Hence a total time of 2itR + tC .

Input: array of indices a, integer i, and sorting order order
Output: the sequence 〈Pa[0], Pa[1], . . . , Pa[2i−1]〉 is ordered w.r.t. order

compare-interchange(a, i, order)
forall j ← 0 to 2i−1 − 1 in parallel do

// route left one unit in the B registers
route(Pa[j][A], Pa[j+1][B])

for k ← 1 to 2i−1 − 1 do
// shift the values to the second half of the array
forall j ← 0 to 2i−1 − 1 in parallel do

route(Pa[j+k][B], Pa[j+1+k][B])

forall j ← 2i−1 to 2i − 1 in parallel do
// compare internally
compare(Pa[j], order)

for k ← 2i−1 − 1 downto 1 do
// shift back the results
forall j ← 0 to 2i−1 − 1 in parallel do

route(Pa[j+k+1][B], Pa[j+k][B])

forall j ← 0 to 2i−1 − 1 in parallel do
// final routing back in the A registers
route(Pa[j+1][B], Pa[j][A])

end

Algorithm 3: Compare-interchange operation for an array of neighbour proces-
sors situated on the same line of the mesh
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3 Modeling with membranes

Given the embedded parallel structure of a P system, modeling a 2D-mesh is a
natural and straightforward approach. In what follows, we will present two such
systems.

3.1 A P system with dynamic communication of 2D-mesh type

The first P system we introduce is along the same general lines as the model pro-
posed in [6]. For each processors Pi, i ∈ {0, 1, . . . , 22k−1} we will have an associated
membrane which we denote i. The two registers A and B of each processors are
coded by two different symbols, say a and b. The number of occurrences of a rep-
resents the value of the A register, and analogously for b. Similarly to tissue-like P
systems, we will have a collection of elementary membranes, connected by certain
graphs, at certain moments of their evolution in time. The graphs we will consider
will be sub-graphs of the total graph of the 2D-mesh network, also sub-graphs of
the identity graph of the 2D-mesh network.

Basically, we have to model:

– Patterns of specific internal processing in each processor: these will be modeled
by symbol rewriting rules.

– Patterns of communication between processors.

In a slightly different manner from [8] or [9], we shall refer to the communica-
tion graph associated to a given architecture with the following conventions: the
vertices of the graph are the processors, and the edges (in our case not oriented as
communications between processors are both ways) are the network connections
characteristic of the architecture.

In the case of the 2k × 2k 2D-mesh with the sRM indexing function, let Gtotal

be the underlying communication graph composed of all edges necessary to the
architecture. We introduce the following notation for the set of vertices of Gtotal:

V (Gtotal) = {0, 1, . . . , 22k − 1}.

Hence, the set of edges is

E(Gtotal) = {(sRM(i, j), sRM(i, j + 1), ) | 0 ≤ i ≤ 2k − 1, 0 ≤ j ≤ 2k − 2}
⋃

{(sRM(i, j), sRM(i + 1, j)) | 0 ≤ i ≤ 2k − 2, 0 ≤ j ≤ 2k − 1}.
Note that at a certain step of the sorting algorithm not all edges are involved

in communication. Therefore we shall call active sub-graphs of Gtotal those graphs
containing only such edges. We introduce also the identity graph, with

V (Id) = {0, 1, . . . , 22k − 1},

E(Id) = {(sRM(i, j), sRM(i, j)) | 0 ≤ i ≤ 2k − 1, 0 ≤ j ≤ 2k − 1}
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for modeling internal processing steps.
As in [6], the P system which we shall consider in the sequel, departs from the

classical P systems in two respects:

– The connections between individual membranes of a P system, µ, which was a
tree-like structure of membranes (see [19]), and which in tissue-like P systems
becomes a graph structure, is now, a sequence of graphs.

– The rules of a P system, usually associated to membranes, will now be associ-
ated to communication graphs between membranes.
a) We simulate the internal computations performed by a subset of processors

by the action of symbol or object rewriting rules, at work simultaneously
inside the corresponding subset of membranes. We will associate such rules
to the corresponding active subsets of Id.

b) We simulate the exchange of data performed by the processors with com-
munication rules (symport/antiport rules) between membranes. The com-
munication rules will be associated to the active sub-graphs of Gtotal.

In order to describe the evolution of a P system which simulates the behavior
of the bitonic sorting algorithm in the 2D-mesh architecture, we will use pairs
[graph, rules]. We have graph a sub-graph of Gtotal or Id and rules a mapping
from the set of all edges of graph, E(graph), to the set of all symbol/object
rewriting rules for routing or comparison operations.

Let Rµ be the finite sequence of pairs [graph, rules] which simulates Algorithm
1, such that: (i) if E(graph) ⊆ E(Id) then its rules are rewriting rules; (ii) if
E(graph) ⊆ E(Gtotal) then its rules are communication rules.

In order to give such a sequence, we have to closely follow Algorithm 1. In a
very intuitive manner, for every Stage(i), 1 ≤ i ≤ 2k , and for every comparison
on bit t, i ≥ t ≥ 1 we will have a sequence of graphs. From Lemma 3, the Merge
operations executed in parallel in Algorithm 1 involve disjoint sub-matrices of the
mesh and have the same length, therefore they can also be executed in parallel
when implementing them on a 2D-mesh or P system.

To be more precise, let us analyse a call of the form Merge(2tj, 2tj + 2t −
1, order). From Remarks 1-2 we know that the dimensions of the sub-matrix of
the mesh involved in the Merge are 2dt/2e×2t−dt/2e. Hence the maximal sequence
of processors situated on the same line which compare and interchange values in
a Merge operation has length 2dt/2e. Using the observations made on Algorithm
3, for each Merge operation, we will need a sequence of 2dt/2e + 1 graphs. The
first 2dt/2e−1 route values in the destination membranes for comparison, then we
have an application of the identity graph Id for internal comparisons, and another
sequence of 2dt/2e−1 graphs to route back the results. Another important aspect is
that for a comparison on bit t, the processors which compare values are the same
at every stage, only that the order is different. Therefore, we will have the same
communication graphs for routing operations, only that the pair [Id, rules] will be
different at each Stage(i).
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Let us denote as below the projection of the first and second argument of
sRM−1. These represent the row and column indices, respectively, of a processors
indexed with r ∈ {0, 1, . . . , 22k − 1}.

sRM−1
row, sRM−1

col : {0, 1, . . . , 22k − 1} → {0, 1, . . . 2k − 1}
Then, the right / down neighbors of r (defined whenever possible) are:

right(r) = sRM(sRM−1
row(r), sRM−1

col (r) + 1)

down(r) = sRM(sRM−1
row(r) + 1, sRM−1

col (r))

In order to give an algorithm independent of the parity of bit t, denote (when-
ever possible):

nextt(r) =

{
right(r), if t odd;
down(r), if t even.

Remark 3. The indices of the first processors on every line l (i.e., the smallest
indices on every line l) in a Merge(2tj, 2tj+2t−1, order) are sRM(sRM−1

row(2tj)+
l, sRM−1

col (2
tj)), with 0 ≤ l ≤ 2t−dt/2e − 1.

Consider two adjacent processors Px and Py which need to interchange val-
ues. The three possible routing operations are: route(Px[A], Py[B]), route(Px[B],
Py[B]), route(Px[B], Py[A]). The implementation with rewriting and communi-
cation rules of the first operation follows the lines: rewrite a → a∗ into membrane
x, apply the communication rule (a∗, out) along the edge (x, y), which transports
all the a∗ symbols from membrane x into y, and then in membrane y rewrite a∗

back to the desired symbol, in this case a∗ → b. We give below a specification of
a sequence [graph, rules] accomplishing this routing operation.

[Id1, rules1], [G, rules], [Id2, rules2], such that (rAB)
Id1 ⊆ Id, (x, x) ∈ E(Id1), rules1((x, x)) = {a → a∗},
G ⊆ Gtotal, (x, y) ∈ E(G), rules((x, y)) = {(a∗, out)},
Id2 ⊆ Id, (y, y) ∈ E(Id2), rules2((y, y)) = {a∗ → b}.

Similarly, an operation route(Px[B], Py[A]) is specified as:

[Id1, rules1], [G, rules], [Id2, rules2], such that (rBA)
Id1 ⊆ Id, (x, x) ∈ E(Id1), rules1((x, x)) = {b → b∗},
G ⊆ Gtotal, (x, y) ∈ E(G), rules((x, y)) = {(b∗, out)},
Id2 ⊆ Id, (y, y) ∈ E(Id2), rules2((y, y)) = {b∗ → a}.
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In the case of a route(Px[B], Py[B]), only one communication graph is needed.
The reason for not having supplementary rewritings is that such routings are done
in parallel. The value from Px[B] is routed to Py[B] in parallel with the routing
of Py[B] to a B register of a neighbor processors. Hence the number of symbols b
in membrane y is the desired one Px[B].

[G, rules], such that (rBB)
G ⊆ Gtotal, (x, y) ∈ E(G), rules((x, y)) = {(b, out)}.

Consider now an internal comparison operation in processor Px, compare(Px,
order) which places max(Px[A], Px[B]) in register B if the order is ascending, or
in register A if the order is descending. This can be formalised as:

[Id′, rules], such that Id′ ⊆ Id, (x, x) ∈ E(Id′), (C)

rules((x, x)) =

{
{ab → ab, a → b, b → b}, if order is ascending,
{ab → ab, a → a, b → a}, if order is descending.

For all s = 0, 2dt/2e−1−1 denote with Gt
s (sub-graphs of Gtotal) the communication

graphs which simulate all parallel routing operations when comparing of bit t, in
Algorithm 1.

From the above considerations and the steps illustrated in Algorithm 3, we in-
troduce the following algorithms: Algorithm 4 to generate the edges of a communi-
cation graph, and Algorithm 5 to generate sub-graphs of the Id where comparisons
are to be performed:

Input: integers k, t
Output: communication graphs Gt

s, for all s = 0, 2dt/2e − 1

set all E(Gt
s) ← ∅

for j ← 0 to 22k−t − 1 do
// for every Merge operation
for l ← 0 to 2t−dt/2e − 1 do

// for every line in the Merge operation
for s ← 0 to 2dt/2e−1 − 1 do

// for each communication graph
node = sRM(sRM−1

row(2tj) + l, sRM−1
col (2

tj) + s)
for q ← 1 to 2dt/2e−1 do

// add the 2dt/2e−1 edges
E(Gt

s) ← E(Gt
s)∪{(node, nextt(node))}

node = nextt(node)

Algorithm 4: Generating all communication graphs Gt
s to compare on bit t
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Input: integers k, t
Output: internal processing graphs Idt

set all E(Idt) ← ∅
for j ← 0 to 22k−t − 1 do

// for every Merge operation
for l ← 0 to 2t−dt/2e − 1 do

// for every line in the Merge operation
node = sRM(sRM−1

row(2tj) + l, sRM−1
col (2

tj) + 2dt/2e−1)
for q ← 1 to 2dt/2e−1 do

E(Idt) ← E(Idt) ∪ {(node,node)}
node = nextt(node)

Algorithm 5: Generating internal processing graphs Idt to compare on bit t

Let us denote with Gµ the sequence of graphs simulating the algoritm. Then
Gµ can be obtained also algoritmically, using Algorithm 6:

set Gµ ← λ
for i ← 1 to 2k do

// compare interchange on bit t
for t ← i downto 1 do

// route to the second half
for s ← 0 to 2dt/2e−1 − 1 do

Gµ ← Gµ ·Gt
s

// compare internally
Gµ ← Gµ · Idt

//route back to the first half
for s ← 2dt/2e−1 − 1 downto 0 do

Gµ ← Gµ ·Gt
s

Algorithm 6: Generating the sequence of graphs Gµ for simulating the bitonic
sorting algoritm on the 2k × 2k 2D mesh

where by λ we denote the empty sequence, and by “·” we denote the concate-
nation of two sequences.

The above algorithms could be easily modified to produce a the finite se-
quence Rµ of pairs [graph, rules] which simulates Algorithm 1. Keeping in mind
the way routing and comparison operations are transformed into communication
and rewriting rules of a P system (rAB, rBA, rBB, C), every time when adding
an edge (x, y) to a graph G (subgraph of Gtotal or Id), the appropriate image
rules((x, y)) should be specified.
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3.2 Bitonic sorting in one membrane

We propose here a simulation of the bitonic sorting, which uses only one mem-
brane. We will use (cooperative) symbol rewriting rules. The cooperation will be
’minimal’, i.e., of degree two, since we follow closely the algorithm, and thus the
whole process is based on comparators.

Consider an alphabet with 22k symbols, V = {v0, v1, · · · v22k−1}. We will call
it the primary alphabet.

We will consider also auxiliary alphabets, which we will specify in the sequel,
in order to achieve sorting by rewritings.

We want to sort in ascending order the sequence of distinct integers

〈x0, x1, · · ·x22k−1〉,

codified over V as the multiset

w = v0
x0v1

x1 · · · v22k−1
x22k−1 .

We want to design a P system which, by rewritings acting in a maximal parallel
manner and competing for objects, produces, from the initial configuration w, the
configuration

wf = v0
σ(x0)v1

σ(x1) · · · v22k−1
σ(x22k−1),

where σ is the permutation which yeilds the total order, i.e., such that σ(x0) <
σ(x1) < · · · < σ(x22k−1).

Consider the alphabet V as ordered, by the natural order given by the indices,
and let v = v0v1 · · · v22k−1 be the alphabet word (see [1]), i.e., the word obtained
by concatenating the letters of V in their natural order. We call extended alphabet
words over V , all words in V ∗ in which all the letters appear in their natural order.
Note that both w and wf , the initial and the final configuration of our P system,
are extended alphabet words. Actually, all the intermediate configurations over V
will be of this type.

Let Mj(u) denote the multiplicity of letter vj in a word u ∈ V ∗. Then

w = v0
x0v1

x1 · · · v22k−1
x22k−1 = v0

M0(w) · · · v22k−1
M22k−1(w).

Consider first the case n = 2 (k = 0). We have 2 integers codified over {v0, v1}
as an extended alphabet word. Consider the auxiliary alphabets

• {a, b}, for writing sources of a comparator
• {c+, d+}, for writing targets of a ⊕-comparator
• {c−, d−}, for writing targets of a ª-comparator

Consider the rules:

C⊕ = {v0 → a, v1 → b} ∪ {ab → c+d+, a → d+, b → d+} ∪ {c+ → v0, d
+ → v1}.
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The first group rewrites all v0s to as and v1s to bs, the second group performs
the comparison and produces the ascending order, and the last group rewrites back
into the original alphabet. We have the sequence of configurations

v0
x0v1

x1 → ax0bx1 → c+min(x0,x1)d+max(x0,x1) → v0
min(x0,x1)v1

max(x0,x1).

Similarly, the rules:

Cª = {v0 → a, v1 → b} ∪ {ab → c−d−, a → c−, b → c−} ∪ {c− → v0, d
− → v1},

achieve a descending comparator, generating the sequence of configurations

v0
x0v1

x1 → ax0bx1 → c−
max(x0,x1)d−

min(x0,x1) → v0
max(x0,x1)v1

min(x0,x1).

Lemma 4. On a two-letter alphabet, starting from an initial configuration w =
v0

x0v1
x1 , by applying rules in C⊕ we obtain wf such that (Mi(wf ))i is ascending,

and by applying rules in Cª we obtain wf such that (Mi(wf ))i is descending. ¤
Note that rules C⊕ simulate a Merge(0, 1,+), and Cª a Merge(0, 1,−).
We now want to simulate a whole family of merge operations done in parallel.
We take 2 auxiliary alphabets, S+ and S− to codify sources of + or − com-

parators, and another pair, T+ and T−, to codify outputs (targets) of + or −
comparators. We label them in a bijective correspondence with V .

S+ = {s0
+, · · · s+

22k−1
},

T+ = {t0+, · · · t+
22k−1

},
and similarly for −. (For the time being, only 4 copies of the initial alphabet.
We will probably need 4 different copies for every stage, in order to keep them
independent.)

At Stage (1) we have to simulate Merge(2j, 2j + 1, order), for all 0 ≤ j ≤
22k−1 − 1, where order = + for all j even, and order = − for all j odd.

This is equivalent to:

• Rewrite all symbols of V into start symbols for appropriate comparators, using
the sets of rules

{v2j → s2j
+, v2j+1 → s2j+1

+ | 0 ≤ j ≤ 22k−1 − 1 , j even}∪
∪{v2j → s2j

−, v2j+1 → s2j+1
− | 0 ≤ j ≤ 22k−1 − 1 , j odd}.

• Apply in parallel the rewritings of symbols which correspond to the simulations
of the comparators:

{s2j
+s2j+1

+ → t2j
+t2j+1

+, s2j
+ → t2j+1

+, s2j+1
+ → t2j+1

+ |

0 ≤ j ≤ 22k−1 − 1 , j even}
⋃

∪{s2j
−s2j+1

− → t2j
+t2j+1

−, s2j
− → t2j

−, s2j+1
− → t2j

− |
0 ≤ j ≤ 22k−1 − 1 , j odd}.
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• Rewrite back all symbols of T ’s into V .

{v2j ← t2j
+, v2j+1 ← t2j+1

+ | 0 ≤ j ≤ 22k−1 − 1 , j even}∪

∪{v2j ← t2j
−, v2j+1 ← t2j+1

− | 0 ≤ j ≤ 22k−1 − 1 , j odd}.
The general scheme is as follows:
Input: an extended alphabet word w over V
Output: the extended alphabet word wf over V , such that 〈Mi(wf )〉i is

ascending

Sim-Stage(i)
for t ← i downto 1 do

Take 4 extra copies of the start and the terminal alphabets, S+
t , S−t ,

T+
t , T+

t , different for each value of t. For t’s smaller than i we can
re-use the alphabets of previous stages.
forall j ← 0 to 22k−t − 1 in parallel do

if 2tj div 2i is even then order = ascending
else order = descending
// Simulate the calls Merge(2tj, 2tj + 2t − 1, order)
(WF) Rewrite all symbols in V with the appropriate symbol in
S+

t ∪ S−t .
(C) Apply the rewritings which simulate the appropriate
comparators.
(WB) Rewrite back all symbols in T+

t ∪ T−t to symbols of V .

end

Sim-Bitonic-Sort
for i ← 1 to 2k do

Sim-Stage(i)

end
Algorithm 7: Simulating bitonic sort on an alphabet of 22k letters V

The calls to Merge(2tj, 2tj + 2t − 1, order) are equivalent to parallel calls to
Merge(x, y, order), where x and y are like in Lemma 3. The same result ensures
us that, both the rewritings which feed the comparators, and the rewritings which
implement the comparators can be done in parallel. For Merge(x, y, order = −),
we use

{sx
−sy

− → tx
−ty

−, sx
− → tx

−, sy
− → tx

−}.
We propose the following sets of rules for simulating iteration t at Sim-

Stage(i):

(WF)Rewritings to S’s, with ∗ =

{
+, if 2tj div 2i is even,
−, if 2tj div 2i is odd,

{vx → sx
∗ ∈ St

∗ | x ∈ [2tj, 2tj + 2t−1), 0 ≤ j ≤ 22k−t+1 − 1}.
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(C)Rewritings which simulate the comparators, for appropriate pairs of indices:

{sx
+sy

+ → tx
+ty

+, sx
+ → ty

+, sy
+ → ty

+ |
x ∈ [2tj, 2tj + 2t−1), y = x + 2t−1, 0 ≤ j ≤ 22k−t − 1},

{sx
−sy

− → ty
−tx

−, sx
− → tx

−, sy
− → tx

− |
x ∈ [2tj, 2tj + 2t−1), y = x + 2t−1, 0 ≤ j ≤ 22k−t − 1}.

(WB)Rewritings from T ’s:

{vx ← tx
∗ ∈ Tt

∗ | x ∈ [2tj, 2tj + 2t−1), 0 ≤ j ≤ 22k−t+1 − 1}.

4 Conclusions and open problems

We have presented a bitonic sorting algorithm which can be implemented on a 2D
mesh of processors. The dependence between its performance and the choice of the
indexing function still remains to be fully explored. However, we believe that we
have proved some results which explain the choice of sRM as a “good” indexing
function.

We have not yet found in the literature a formal proof of the correctness of
bitonic sorting, an equivalent, or an analogue of our Theorem 1.

Much work remains to be done concerning the proposed simulations with P
systems. The first simulation, derived in a “straightforward” manner from the
functioning of the algorithm on the mesh, is inspired from work in [6], [8], [9],
and [7], where the general framework was abstracted. It introduces a generative
approach to the sequence of communication graphs, a feature to be explored in
subsequent work. The second one is at the opposite pole: it requires no routings
of values at all, just an appropriate codification of the symbols. It is in this area
that other versions of the algorithm could be implemented, independent of the
topology of a given structure, and the parallel features of the P systems can be
compared against those of other computational devices.
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