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Abstract. The aim of our paper is twofold. On one hand we prove the
ability of polarizationless P systems with dissolution and with division
rules for non-elementary membranes to solve NP-complete problems in
a polynomial number of steps, and we do this by presenting a solution to
the Subset Sum problem. On the other hand, we improve some similar
results obtained for different models of P systems by reducing the number
of steps and the necessary resources to be of a logarithmic order with
respect to k (recall that n and k are the two parameters used to indicate
the size of an instance of the Subset Sum problem).

As the model we work with does not allow cooperative rules and
does not consider the membranes to have an associated polarization,
the strategy that we will follow consists on using objects to represent
the weights of the subsets through their multiplicities, and comparing the
number of objects against a fixed number of membranes. More precisely,
we will generate k membranes in log k steps.

1 Introduction

This paper is the continuation of a series of results on Complexity Classes in 
Membrane Computing that are trying to establish the relevance, in terms of 
computing power, of each one of the possible features of a P system (see [3]).

The Subset Sum problem is a well-known NP-complete problem which can be 
formulated as follows: Given a finite set A, a weight function, w : A → N, and a  
constant k ∈ N, determine whether or not there exists a subset B ⊆ A such that 
w(B) = k. It has been a matter of study in Membrane Computing several times, 
being mainly used to prove the ability of different P system models in order to 
solve problems from the NP class in a polynomial time.

This speed-up is achieved by trading space for time, in the sense that the 
considered models allow that an exponential amount of membranes can be pro-
duced by a P system in a polynomial number of steps. For example, solutions 
to the Subset Sum problem working in a number of steps which is linear with 
respect to the parameters n and k have been designed using P systems with 
active membranes [9], using tissue P systems with cell division [2], and using P 
systems with membrane creation [4].
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In this paper we work with P systems using division of non-elementary mem-
branes and dissolution rules. Our aim goes beyond adding this P system model
to the above mentioned list; we improve previous complexity results by solving
the Subset Sum problem in a linear number of steps with respect to n and log k.
We also improve the pre-computation process, as the initial resources are also
bounded by log k.

The paper is structured as follows: in the next section we present the formal
framework, i.e., we recall the definition of recognizing P systems, the P system
model used along the paper is settled and the class PMCAM0(+d,+ne) is pre-
sented. In Section 3, our design of the solution of the Subset Sum problem is
presented and some conclusions are given in the last section.

2 Formal Framework

In this paper we are using cellular systems for attacking the resolution of decision
problems. This means that for each instance of a problem that we try to solve,
we are only interested in obtaining a Boolean answer (Yes or No). Therefore,
the P system can behave as a black box to which the user supplies an input
and from which an affirmative or negative answer is received. This is indeed the
motivation for defining the concept of recognizing P systems (introduced in [13]).

2.1 Recognizing P Systems

Let us recall that a decision problem, X , is a pair (IX , θX) where IX is a language
over an alphabet whose elements are called instances and θX is a total Boolean
function over IX . If u is an instance of the problem X such that θX(u) = 1
(respectively, θX(u) = 0), then we say that the answer to the problem for the
instance considered is Yes (respectively, No).

Keeping this in mind, recognizing P systems are defined as a special class of
membrane systems that will be used to solve decision problems, in the framework
of the complexity classes theory. Note that this definition is stated informally,
and it can be adapted for any kind of membrane system paradigm.

A recognizing P system is a P system with input and with external output
having two distinguished objects yes and no in its working alphabet such that:

– All computations halt.
– If C is a computation of Π , then either the object yes or the object no (but

not both) must have been released into the environment, and only in the
last step of the computation.

2.2 The P System Model

The power of membrane division as a tool for efficiently solving NP problems in
Membrane Computing has been widely proved. Many examples of designs of P
systems solving NP-complete problems have been proposed in the framework of
P systems with active membranes with two polarizations and three polarizations



and in the framework of P systems with non-elementary membrane division.
The key of such solutions is the creation of an exponential amount of workspace
(membranes) in a polynomial time.

In the literature, one can find two quite different rules for performing mem-
brane division. On the one hand, in [7], P systems with active membranes were
presented. In this model new membranes were obtained through the process of
mitosis (membrane division). In these devices membranes have polarizations, one
of the “electrical charges” 0, −, +, and several times the problem was formulated
whether or not these polarizations are necessary in order to obtain polynomial
solutions to NP–complete problems. The last result is that from [1], where one
proves that two polarizations suffice.

P systems with active membranes have been successfully used to design (uni-
form) solutions to well-known NP–complete problems, such as SAT [13], Subset
Sum [9], Knapsack [10], Bin Packing [11], Partition [5], and the Common Algo-
rithmic Problem [12].

The syntactic representation of membrane division rule is

[ a ]e1
h → [ b ]e2

h [ c ]e3
h (1)

where h is a label, e1,e2 and e3 are electrical charges and a,b and c are objects.
The interpretation is well-known: An elementary membrane can be divided into
two membranes with the same label, possibly transforming some objects and
changing the electrical charge. All objects present in the membrane except the
object triggering the rule are copied into both new membranes.

In [6], a variant of this rule was used in which the polarization was dropped:

[ a ]h → [ b ]h [ c ]h. (2)

In both cases (with and without polarizations) the key point is that the mem-
branes are always elementary membranes. In the literature, there also exist rules
for the division of non-elementary polarizationless membranes, as

[ [ ]h1 [ ]h2 ]h0 → [ [ ]h1 ]h0 [ [ ]h2 ]h0 (3)

where h0, h1 and h2 are labels. There exists an important difference with respect
to elementary membrane division: in the case of (3), the rule is not triggered by
the occurrence of an object inside a membrane, but by the membrane structure
instead. This point has a crucial importance in the design of solutions, since a
membrane can be divided by the corresponding rule even if there are no objects
inside it.

According to the representation (3), the membrane h0 divides into two new
membranes also with label h0 and all the information (objects and membranes)
different from membranes h1 and h2 inside is duplicated.

In this paper we use a type of membrane division which is syntactically equiv-
alent to (2)

[ a ]h → [ b ]h [ c ]h, (4)

but we will consider a semantic difference; the dividing membrane can be ele-
mentary or non-elementary and after the division, all the objects and membranes



inside the dividing membrane are duplicated, except the object a that triggers
the rule, which appears in the new membranes possibly modified (represented
as objects b and c).

In this paper we work with a variant of P systems with active membranes
which we call with weak division, and that does not use polarizations.

Definition 1. A P system with active membranes with weak division is a P sys-
tem with Γ as working alphabet, with H as the finite set of labels for membranes,
and where the rules are of the following forms:

(a) [ a → u ]h for h ∈ H, a ∈ Γ , u ∈ Γ ∗. This is an object evolution rule,
associated with a membrane labelled with h: an object a ∈ Γ belonging to
that membrane evolves to a multiset u ∈ Γ ∗.

(b) a [ ]h → [ b ]h for h ∈ H, a, b ∈ Γ . An object from the region immediately
outside a membrane labeled with h is introduced in this membrane, possibly
transformed into another object.

(c) [ a ]h → b [ ]h for h ∈ H, a, b ∈ Γ . An object is sent out from membrane
labeled with h to the region immediately outside, possibly transformed into
another object.

(d) [ a ]h → b for h ∈ H, a, b ∈ Γ : A membrane labeled with h is dissolved in
reaction with an object. The skin is never dissolved.

(e) [ a ]h → [ b ]h [ c ]h for h ∈ H, a, b, c ∈ Γ . A membrane can be divided into
two membranes with the same label, possibly transforming some objects. The
content of the membrane is duplicated. The membrane can be elementary or
not.

These rules are applied according to the following principles:

– All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by only one rule (chosen in a non–
deterministic way), but any object which can evolve by one rule of any form,
must evolve.

– If at the same time a membrane labeled with h is divided by a rule of type
(e) and there are objects in this membrane which evolve by means of rules
of type (a), then we suppose that first the evolution rules of type (a) are
used, and then the division is produced. Of course, this process takes only
one step.

– The rules associated with membranes labeled with h are used for all copies
of this membrane. At one step, a membrane can be the subject of only one
rule of types (b)-(e).

Let us note that in this framework we work without cooperation, without prior-
ities, with weak division, and without changing the labels of membranes.

In this paper we work within the model of polarizationless P systems using
weak division of non-elementary membranes and dissolution. Let AM0(+d, +ne)
be the class of such systems.



2.3 The Class PMCAM0(+d,+ne)

Definition 2. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) : n ∈ N} of recognizing P systems from
AM0(+d, +ne) if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine working in polynomial time which
constructs the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

such that:
− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an

input multiset of the system Π(s(u));
− the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and, moreover, it
performs at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u),
then θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each
u ∈ IX , if θX(u) = 1, then every computation of Π(s(u)) with input
cod(u) is an accepting one.

In the above definition we have imposed to every P system Π(n) a confluent
condition, in the following sense: every computation of a system with the same
input multiset must always give the same answer. The pair of functions (cod, s)
is called a polynomial encoding of the problem in the family of P systems.

We denote by PMCAM0(+d,+ne) the set of all decision problems which can
be solved by means of recognizing polarizationless P systems using division of
non-elementary membranes and dissolution in polynomial time.

3 Designing the Solution to Subset Sum

In this section we address the resolution of the problem following a brute force
algorithm, implemented in the framework of recognizing P systems from the
AM0(+d, +ne) class. The idea of the design is better understood if we divide
the solution to the problem into several stages:

– Generation stage: for every subset of A, a membrane labeled by e is generated
via membrane division.

– Calculation stage: in each membrane the weight of the associated subset is
calculated (using the auxiliary membranes e0, . . . , en).

– Checking stage: in each membrane it is checked whether the weight of its
associated subset is exactly k (using the auxiliary membranes ch).

– Output stage: the system sends out the answer to the environment, according
to the result of the checking stage.



Let us now present a family of recognizing P systems from the AM0(+d, +ne)
class that solves Subset Sum, according to Definition 2.

We shall use a tuple (n, (w1, . . . , wn), k) to represent an instance of the Subset
Sum problem, where n stands for the size of A = {a1, . . . , an}, wi = w(ai), and
k is the constant given as input for the problem. Let g : N×N → N be a function
defined by

g(n, k) =
(n + k)(n + k + 1)

2
+ n

This function is primitive recursive and bijective between N × N and N and
computable in polynomial time. We define the polynomially computable function
s(u) = g(n, k).

We shall provide a family of P systems where each P system solves all the in-
stances of the Subset Sum problem with the same size. Let us consider the binary
decomposition of k, Σi∈I2i = k, where the indices i ∈ I indicate the positions
of the binary expression of k where a 1 occurs. Let I ′ = {1, . . . , �log k�} − I
be the complementary set, that is, the positions where a 0 occurs. This binary
encoding of k, together with the weight function w of the concrete instance, will
be provided via an input multiset determined by the function cod as follows:

cod(u) = cod1(u) ∪ cod2(u),

where cod1(u) = {{bwi

i : 1 ≤ i ≤ n}} and
cod2(u) = {{cj : j ∈ I}} ∪ {{c′j : j ∈ I ′}}

Next, we shall provide a family Π = {Π(g(n, k)) : n, k ∈ N} of recognizing
P systems which solve the Subset Sum problem in a number of steps being of
O(n + log k) order. We shall indicate for each system of the family its initial
configuration and its set of rules. We shall present the list of rules divided by
groups, and we shall provide for each of them some comments about the way
their rules work.

Let us consider an arbitrary pair (n, k) ∈ N × N. The system Π(g(n, k)) is
determined by the tuple (Γ, Σ, μ, M,R, iin, i0), that is described next:

• Alphabet:

Γ = Σ ∪ {b+
i , b−i , b=

i , di, d
+
i , d−i , pi, qi : i = 1, . . . , n}

∪ {g0, . . . , g2�log k�+2, h0, . . . , h2�log k�+2n+8, l0, . . . , l2�log k�+2n+10}
∪ {v0, . . . , v2�log k�+2n+12}
∪ {w0, . . . , w2�log k�+2n+18}
∪ {x0, . . . , x2�log k�+2n+15, z0, . . . , z2�log k�+2n+7}
∪ {s, yes, no, T rash}

• Input alphabet: Σ(n, k) = {b1, . . . , bn, c0, . . . , c�log k�, c′0, . . . , c
′
�log k�}.

The initial configuration consists of n + �log k� + 9 membranes, arranged as
shown in Figure 1. Formally, the membrane structure μ is

[[[[[[ n. . . [[[[[ ]ch . . . [ ]ch]a1 ]a2 ]e0 ]e1
n. . . ]en ]a3 [ ]c]a4 ]e]f ]skin
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Fig. 1. Initial Configuration

where there are exactly �log k� + 1 copies of membrane [ ]ch.
Roughly speaking (more precise explanations will be given for the rules), we

can classify the membranes according to their role as follows:

– n+2 membranes that take care of the generation stage, namely those labeled
by e0, e1, . . . en and e.

– �log k� + 3 membranes that take care of preparing and implementing the
checking stage, namely those labeled by ch, a1 and a2.

– 4 membranes that take care of the answer stage, handling and synchronizing
the results of the checking, namely those labeled by a3, a4, c and f .

• The initial multisets are:

M(f) = {{w0}}; M(e) = {{g0}}; M(a4) = {{v0}}; M(a3) = {{h0}};

M(c) = {{x0}}; M(a1) = {{z0}}; M(ch) = {{l0}}

M(skin) = M(a2) = M(e0) = · · · = M(en) = ∅

• The input membrane is iin = e0, and the output region is the environment
(i0 = env).

First task: generate k membranes ch. At the beginning of the computation,
k membranes ch will be generated inside the innermost region of the structure.

The strategy works as follows:

1. Initially, there are �log k� membranes ch in the region a1, and the input
multiset is located in region e0 (recall that cod2(u) consists of �log k� objects
ci or c′i representing the binary encoding of k).

2. In the first �log k� steps, the objects from cod2(u) get into membrane a2 (the
objects enter one by one membrane a2). Simultaneously, the counter zi is
evolving inside membrane a1 and dissolves it at the �log k� step.

3. Thus, in the next step each element from cod2(u) will go inside a mem-
brane ch (all objects go in parallel into different membranes in a one-to-one
manner).



4. Objects c′i will dissolve the membranes where they enter, while each object
ci will generate by division 2i membranes ch.

5. After at most �log k� further steps all divisions have been completed, and
the number of membranes ch is exactly k.

Membrane a2 will not be divided until the generation and weight calculation
stages have been completed, acting as a separator between objects from cod1(u)
and membranes ch.

Set (A1). ci[ ]a2 → [ci]a2

c′i[ ]a2 → [c′i]a2

ci[ ]ch → [ci]ch

c′i[ ]ch → [c′i]ch

[c′i ]ch → Trash

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

for i ∈ {0, . . . , �log k�}.

Set (A2). [c0 → Trash]ch

[ci]ch → [ci−1]ch [ci−1]ch for i = 1, . . . , �log k�
[zi → zi+1]a1 for i = 0, . . . , �log k� − 1
[z�log k�]a1 → z�log k�+1
[gi → gi+1]e for i = 0, . . . , 2�log k� + 1
[g2�log k�+2 → d1s]e

In the last step of this stage, the counter gi produces the objects d1 and s
which will trigger the beginning of the next stage.

Set(B). [wi → wi+1]f
[vi → vi+1]a4

[hi → hi+1]a3

[xi → xi+1]c
[li → li+1]ch

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

for i ∈ {0, . . . , 2�log k� + 2}.

[zi → zi+1]a2 for i ∈ {�log k� + 1, . . . , 2�log k� + 2}.

The rest of the counters simply increase their indices in this stage. (See Fig. 2.)
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Fig. 2. Time 2�log k� + 3



Second task: generate 2n membranes e. Objects di residing inside mem-
brane(s) e will produce n consecutive divisions, thus yielding 2n copies of
membrane e. To each one of them, a subset of A is associated in the follow-
ing way: after each division, the membranes where object pi occurs correspond
to subsets of A containing ai, and conversely, membranes where qi occurs will
be associated with subsets not containing ai.

Set (C). [di]e → [d+
i ]e[d−i ]e for i = 1, . . . n

[d+
i → pidi+1]e for i = 1, . . . n − 1

[d−i → qidi+1]e for i = 1, . . . n − 1
[d+

n → pn]e
[d−n → qn]e

Membrane divisions take place every two steps, so in the (2�log k�+2n+2)-th
step there will be 2n membranes e.

Set (D). s [ ]ai → [s]ai for i = 3, 4
s [ ]ei → [s]ei for i = 0, . . . , n

[s]e0 → Trash

pj [ ]ai → [pj]ai for i = 3, 4 j = 1, . . . , n

pj [ ]ei → [pj ]ei for j = 1, . . . , n i = j, . . . , n

[pi → qi]ei for i = 1, . . . , n

qj [ ]ai → [qj ]ai for i = 3, 4 j = 1, . . . , n

qj [ ]ei → [qj ]ei for j = 1, . . . , n i = j, . . . , n

[qi]ei → Trash for i = 1, . . . , n

While the divisions are being carried out, objects s, pj and qj , for j = 1, . . . , n,
travel into inner membranes (recall that whenever membrane e gets divided, the
internal nested structure of membranes ei is duplicated). In the (2�log k�+n+2)-
th step, an object s arrives to every membrane e0. This object dissolves the
membrane in the next step, and therefore in the (2�log k� + n + 3)-th step we
find inside every membrane e1 the multiset cod1(u), and in this moment the
weight calculation stage begins (see rules in Set (E)).

As we said before, objects pj and qj are traveling into inner membranes, until
they reach ej . This is done in such a way that in the (2�log k� + n + 3)-th step
there is in each membrane e1 either an object p1 or an object q1, in addition to
the multiset cod1(u).

Before going on, let us state two points. First, recall that in the input multi-
set, introduced in e0 at the beginning of the computation, there are w(ai) copies
of bi, for i = 1, . . . , n. Second, let us note that objects qi dissolve membrane ei

immediately after arriving to it, while objects pi take two steps to dissolve mem-
brane ei (first they are transformed into qi and in the next step the dissolution
takes place).



Set (E). [b1 → b+
1 ]e1

[bi+1 → b−i+1]ei for i = 1, . . . , n − 1
[bi+2 → b=

i+2]ei for i = 1, . . . , n − 2
[bi+3 → b=

i+3]ei for i = 1, . . . , n − 3
[b+

i → b0]ei for i = 1, . . . , n

[b+
i → Trash]ej for i = 1, . . . , n − 1, j = i + 1

[b−i → b+
i ]ei for i = 2, . . . , n

[b−i+1 → b+
i+1]ei for i = 1, . . . , n − 1

[b=
i → b+

i ]ei for i = 3, . . . , n

[b=
i+1 → b−i+1]ei for i = 2, . . . , n − 1

[b=
i+2 → b−i+2]ei for i = 1, . . . , n − 2

[b+
n → Trash]a3

The basic strategy consists on allowing objects bi to get transformed into
objects b0 only if the element ai ∈ A belongs to the associated multiset.

Let us summarize informally the evolution of objects bi for all possible cases.
Recall that in the (2�log k� + 2)-th step, the counter gi produces an object s in
membrane e:

– At step t = 2�log k� + 3 object s enters in en and either d+
1 or d−1 appear in

each one of the two existing copies of membrane e.
– At step t = 2�log k� + 4 object s enters in en−1 and either p1 or q1 appear

in membranes e.
– At step t = 2�log k�+5, after the second division has been carried out, there

are 4 membranes labeled by e. Object s enters in en−2 (this happens in all
4 copies) and p1 or q1 get into en (there are two of each).

– . . .
– At step t = 2�log k�+n+3 object s arrives into e0, and p1 or q1 enter in e2.
– At step t = 2�log k� + n + 4 object s dissolves e0 (and hence objects bi are

moved to e1), and p1 or q1 arrive into e1.
– At step t = 2�log k� + n + 5 objects b1, b2 and b3 have been transformed

in b+
1 , b−2 and b=

3 , respectively, and they will be located either in e1 (if the
membrane contained an object p1) or in e2 (if there was an object q1 in e1).
Besides, in the same step p2 or q2 get into e2.

– At step t = 2�log k� + n + 6
• Objects b+

1 evolve to b0 (if they were in e1) or to Trash (if they were in
e2).

• Objects b−2 evolve to b+
2 .

• Objects b=
3 have been transformed into b−3 (both those that were in e2

and those in e1).
• All the objects bα

i (i = 1, . . . , n and α ∈ {+, −, =}) will be located either
in membrane e2 (if the latter contained an object p2) or in e3 (if there
was an object q2 in e2).

• Besides, in this moment p3 or q3 get into e3.
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The design has been adjusted in such a way that in the moment when objects
pi and qi arrive into membranes ei it happens that the objects bα

j (j = i, . . . , n
and α ∈ {+, −, =}) are located in ei in half of the membranes or in ei+1 in the
rest of membranes. In the next step there will be objects b+

i in ei only for those
cases where there was an object pi, and hence the weight of element ai ∈ A
should be added to the weight of the associated multiset (that is, w(ai) copies
of b0 will be produced in those membranes).

Set (F). [wi → wi+1]f
[vi → vi+1]a4

[hi → hi+1]a3

[xi → xi+1]c
[zi → zi+1]a2

[li → li+1]ch

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

for i ∈ {2�log k� + 3, . . . , 2�log k� + 2n + 6}.

[z2�log k�+2n+7]a2 → Trash

The rest of the counters simply increase their indices during this stage. At the
end of the stage, in the (2�log k�+2n+7)-th step, zi will dissolve all membranes
a2. Therefore, in the next step we have 2n membranes labeled by e, and inside
them (more precisely, inside membranes a3) we have multisets of objects b0
encoding the weights of all possible subsets B ⊆ A (each membrane encodes a
different subset) and also exactly k copies of membrane ch, see Fig. 3.

Third task: compare k to the weight of each subset. We shall focus next
on the checking stage. That is, the system has to check in all membranes a3 if
the number of objects b0 (encoding the weight of the associated subset) matches
or not the parameter k (represented as the number of membranes ch). This task
is performed by the following set of rules (for the sake of simplicity, we denote
β = 2�log k� + 2n + 8):

Set (G). b0 [ ]ch → [c∗]ch

[b0 → u1]a4

[c∗]ch → Trash

[hβ ]a3 → Trash



At the step t = β, objects b0 get into membranes ch, and simultaneously
membrane a3 is dissolved. There are three possible situations:

1. There are exactly k objects b0. In this case at step t = β + 1 there will not
be any object b0 remaining, and all membranes ch have been dissolved.

2. The number of objects b0 is lower than k. In this case at step t = β +1 there
will not be any object b0 remaining, but there will be some membranes ch
that have not been dissolved (because no object b0 entered them).

3. The number of objects b0 is greater than k. In this case there are some
objects b0 that could not get inside a membrane ch (recall that the rules are
applied in a maximal parallel way, but for each membrane only one object
can cross it at a time).

In the second case, inside each membrane ch that has not been dissolved the
rules [lβ+1 → lβ+2]ch and [lβ+2]ch → u2 are applied in the steps t = β + 1 and
t = β + 2, respectively. Hence at step t = β + 3 there will be an object u2 in a4.

In the third case, the exceeding objects b0 may, nondeterministically, either
get into a membrane ch (avoiding that the dissolution rule is applied to that
membrane) or evolve into object u1. Irrespectively of the nondeterministic choice,
we know that there will be no more objects b0 in a4 at step t = β + 2.

Of course, during this stage the rest of the counters continue evolving:

Set (H). [lβ+i−1 → lβ+i]ch for i = 0, 1, 2
[vβ+i−1 → vβ+i]a4 for i = 0, . . . , 4
[xβ+i−1 → xβ+i]c for i = 0, . . . , 7
[wβ+i−1 → wβ+i]f for i = 0, . . . , 10

The next set of rules guarantees that in every membrane where the weight of
the associated subset was different from k (and only in such membranes) there
will be some objects u3.

Set (I1). [ui → ui+1]a4 for i = 1, 2
[lβ+2]ch → u2

[lβ+2 → u3]a4

[c∗ → u3]a4

These objects u3, being in membrane a4, will go into membranes c and dissolve
them. We have here a similar situation as before, as there may be several objects
u3 willing to go into a membrane c. The counter vi takes care of dissolving
membrane a4 so that any exceeding object u3 will be moved to membrane e and
subsequently transformed into Trash.

Set (I2). u3 [ ]c → [u4]c
[vβ+4]a4 → Trash

[u3 → Trash]e
[u4 → u5]c
[u5]c → Trash



Final task: answer stage. Therefore, only in the branches where the number
of objects b0 were equal to k we have a membrane c inside membrane e at step
β + 7. Besides, we also have a counter wi evolving in membrane f :

– If the instance of the Subset Sum problem has an affirmative answer, i.e., if
there exists a subset of A whose weight is k, then in the step β + 7 there
will be a membrane e with a membrane c inside and an object xβ+7 in it.
This object will produce an object yes which will dissolve his way out to the
environment.

On the contrary, if the instance has a negative answer, then there will not
exist any membrane c in the system in the step β + 7 and the object yes
will not be produced. Hence, the membrane f will not be dissolved by yes
and when the counter wi reaches wβ+10, an object no will appear and will
be sent to the environment.

The set of rules is the following one:

Set (J). [xβ+7]c → yes
[yes]e → yes

[yes]f → yes

[yes]skin → yes [ ]skin

[wβ+10]f → no

[no]skin → no [ ]skin

Consequently, if the answer is affirmative the P system halts after β+11 steps
and otherwise after β + 12 steps.

4 Conclusions

In this paper we have combined different techniques for designing P systems in
order to get a uniform family of P systems that solves the Subset Sum problem
in the framework of P systems with weak division, with dissolution and without
polarization. The main contribution of this paper is related to the Complexity
Theory of P systems. The best solution of the NP-complete problem Subset
Sum in any P system model up to now was linear in both input parameters
n and k. In this paper we show that the dependency on k can be significantly
reduced, since we show a solution where the resources and the number of steps
are of a logarithmic order with respect to k.
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12. Pérez-Jiménez, M.J., Romero–Campero, F.J.: Attacking the Common Algorithmic
Problem by Recognizer P Systems. In: Margenstern, M. (ed.) MCU 2004. LNCS,
vol. 3354, pp. 304–315. Springer, Heidelberg (2005)
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