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Abstract. We study a Păun’s conjecture concerning the unsolvability of
NP–complete problems by polarizationless P systems with active mem-
branes in the usual framework, without cooperation, without priorities,
without changing labels, using evolution, communication, dissolution and
division rules, and working in maximal parallel manner. We also analyse
a version of this conjecture where we consider polarizationless P systems
working in the minimally parallel manner.

1 Introduction

Every deterministic Turing machine working in polynomial time can be simu-
lated in polynomial time by a family of recognizing P systems using only basic 
rules, that is, evolution, communication, and rules involving dissolution [14]. If a 
decision problem is solvable in polynomial time by a family of recognizing P sys-
tems (using only basic rules), then there exists a deterministic Turing machine 
solving it in polynomial time [20]. As a consequence of these results, the class 
of all decision problems solvable in polynomial time by this kind of P systems 
is equal to the standard complexity class P [5]. For that reason, recognizing P 
systems constructing in polynomial time an exponential workspace, expressed in 
the number of objects, cannot solve NP–complete problems in polynomial time 
(unless P = NP).

Hence, in order to efficiently solve NP–complete problem by P systems it 
seems necessary to be able to construct an exponential workspace (expressed 
by the number of membranes) in polynomial time. These models abstract the 
way of obtaining new membranes through the processes of mitosis (membrane 
division) and autopoiesis (membrane creation).

P systems with active membranes (using division rules) have been successfully 
used to efficiently solve NP–complete problems. The first solutions were given 
constructing a P system associated with each instance of the problem due to the 
systems lack of an input membrane. Actually, we say that this kind of solutions 
are semi–uniform if the following is true: (a) there exists a deterministic Turing
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machine working in polynomial time which constructs the P system processing
an instance of the problem (we say the family of P systems associated with all
the instances is polynomially uniform by Turing machines); and (b) the instance
of the problem has an affirmative answer if and only if every computation of the
P system associated with it is an accepting computation (we say the P system
is confluent).

The first semi–uniform polynomial–time solutions of computationally hard
decision problems were given by Gh. Păun [11,12], C. Zandron et al. [20], S.N.
Krishna et al. [7], and A. Obtulowicz [8]. In 2003, P. Sosik [19] gave a semi–
uniform polynomial–time solution to QSAT, a well known PSPACE–complete
problem.

There is another way to solve decision problems by P systems when we con-
sider the possibility to have an input membrane in the systems in which we can
introduce objects before the system starts to work. In this case, all instances of a
decision problem having the same size (according to a prefixed polynomial time
criterion) are processed by the same system.

P systems with active membranes have also been successfully used to design
uniform polynomial–time solutions to some well-known NP–complete problems,
such as SAT [17], Subset Sum [15], Knapsack [16], Partition [6], and the Common
Algorithmic Problem [18].

All papers mentioned above deal with P systems with three polarizations using
only division of elementary membranes (in [19] also division for non–elementary
membranes are permitted), and working in the maximal parallelism in using
the rules, that is, in each step, the assignment of objects to the rules to be
applied is maximal, no further rule can be applied in any region. The number of
polarizations can be decreased to two [1] without loss of efficiency.

It seems clear that the usual framework of P systems with active membranes
to solve decision problems is too powerful from the complexity point of view.
Then, it would be interesting to analyse which features allows to P systems
with active membranes, but without polarizations, to still get polynomial–time
solutions to computationally hard problems, and what features, once removed,
only allows to obtain polynomial–time solutions to tractable problems, in the
classical sense.

The present paper is a contribution to the problem of describing borderlines
between tractability and intractability in terms of descriptional resources re-
quired in (recognizing) membrane systems using division rules.

The paper is organized as follows. In the next section we present the Păun’s
conjecture concerning polarizationless P systems with active membranes with
three electrical charges and working in the maximally parallel mode. Also we
provide some partial solutions to this conjecture by using the notion of depen-
dency graph associated with a P system. Section 3 is devoted to formulate a
new version of the Păun’s conjecture, addressing P systems working in the min-
imally parallel mode. We give some partial solutions to this new version. Some
conclusions and open problems are given in the last Section.



2 A Păun’s Conjecture

Usual P systems with active membranes use three electrical charges for mem-
branes, controlling the application of the rules which, basically, can be of the
following types: evolution rules, by which single objects evolve to a multiset of
objects, communication rules, by which an object is introduced in or expelled
from a membrane, maybe modified during this operation into another object,
dissolution rules, by which a membrane is dissolved, under the influence of an
object, which may be modified into another object by this operation, and mem-
brane division rules (both for elementary and non-elementary membranes, or
only for elementary membranes).

Definition 1. A P system with polarizationless active membranes of the initial
degree n ≥ 1 is a tuple of the form Π = (Γ, H, μ, M1, . . . ,Mn, R, ho), where:

1. Γ is the alphabet of objects;
2. H is a finite set of labels for membranes;
3. μ is a membrane structure, consisting of n membranes having initially neu-

tral polarizations, injectively labeled with elements of H;
4. M1, . . . ,Mn are strings over Γ , describing the multisets of objects placed in

the n initial regions of μ;
5. R is a finite set of developmental rules, of the following forms:

(a) [a → v]
h, for h ∈ H, a ∈ Γ, v ∈ Γ ∗ (object evolution rules).

(b) a[ ]h → [ b]h, for h ∈ H, a, b ∈ Γ (in communication rules).
(c) [a ]h → b[ ]h, for h ∈ H, a, b ∈ Γ (out communication rules).
(d) [a ]h → b, for h ∈ H, a, b ∈ Γ (dissolution rules)
(e) [a ]h → [ b ]h[ c ]h, for h ∈ H, a, b, c ∈ Γ (weak division rules for ele-

mentary or non-elementary membranes).
(a) ho ∈ H or ho = env indicates the output region (in this case, usually ho

do not appear in the description of the system).

Also, we can consider rules of the form [ [ ]h1 [ ]h2 ]h3 → [ [ ]h1 ]h3 [ [ ]h2 ]h3 , where
h1, h2, h3 are labels: if the membrane with label h3 contains other membranes
than those with labels h1, h2, these membranes and their contents are duplicated
and placed in both new copies of the membrane h3; all membranes and objects
placed inside membranes h1, h2, as well as the objects from membrane h3 placed
outside membranes h1 and h2, are reproduced in the new copies of membrane
h3. These rules are called strong division rules for non–elementary membranes.

Using the maximally parallel manner, at each computation step (a global clock
is assumed) in each region of the system we apply the rules in such a way that
no further rule can be applied to the remaining objects or membranes. In each
step, each object and each membrane can be involved in only one rule.

A halting computation provides a result given by the number of objects
present in region ho at the end of the computation; this is a region of the system
if ho ∈ H (and in this case, for a computation to be successful, exactly one
membrane with label ho should be present in the halting configuration), or it is
the environment if ho = env.



We denote by AM0 the class of recognizing polarizationless P systems with
active membranes, and we denote by AM0(α, β), where α ∈ {−d, +d} and β ∈
{−ne, +new, +nes}, the class of all recognizing P systems with polarizationless
active membranes such that: (a) if α = +d (resp. α = −d) then dissolution
rules are permitted (resp. forbidden); and (b) if β = +new or +nes (resp.
β = −ne) then division rules for elementary and non–elementary membranes,
weak or strong (respectively only division rules for elementary) are permitted.

The class of all decision problems solvable in uniform (resp. semi–uniform)
way, and in polynomial time by a family of recognizing membrane systems is
denoted by PMCR (resp. PMC∗

R)

Proposition 1. For each α ∈ {−d, +d}, β ∈ {−ne, +new, +nes}, and ε = ∗, λ,
we have:

1. PMCAM0(α,β) ⊆ PMC∗
AM0(α,β)

2. PMCε
AM0(α,−ne) ⊆ PMCε

AM0(α,+new)
3. PMCε

AM0(α,−ne) ⊆ PMCε
AM0(α,+nes)

4. PMCε
AM0(−d,β) ⊆ PMCε

AM0(+d,β)

where ε = ∗ (respectively ε = empty string) means that the complexity classes
are associated with semi–uniform (respectively, uniform) solutions.

At the beginning of 2005, Gh. Păun (problem F from [13]) wrote: My favorite
question (related to complexity aspects in P systems with active membranes and
with electrical charges) is that about the number of polarizations. Can the polar-
izations be completely avoided? The feeling is that this is not possible – and such
a result would be rather sound: passing from no polarization to two polarizations
amounts to passing from non–efficiency to efficiency.
That is, formally we can formulate the called conjecture of Păun as follows:
The class of all decision problems solvable in polynomial time by polarizationless
P systems with active membranes using evolution, communication, dissolution
and division rules for elementary membranes (working in the maximally parallel
mode) is equal to the class P

This conjecture can be expressed in terms of complexity classes in P systems as
follows: P = PMCAM0(+d,−ne) = PMC∗

AM0(+d,−ne)
Next, we study possible answers to the conjecture of Păun.

2.1 A Partial Affirmative Answer

Let us recall that using the concept of dependency graph associated with a P
system, a partial affirmative answer to the Păun’s conjecture can be given.

Let Π be a P system whose working alphabet is Γ and the set of labels is
H , and we denote by env the label of the environment. The dependency graph
associated with the system Π is the directed graph GΠ whose nodes are the
pairs (a, h) ∈ Γ × (H ∪ {env}) such that the object a in membrane (maybe the
environment) labelled by h either triggers a rule or it is produced by a rule, and
((a, h), (a′, h′)) is an arc in the graph if there exists a rule r of Π such that the



object a in membrane labelled by h produces the object a′ in membrane (maybe
the environment) labelled by h′ by the application of rule r.

It can be proved that there exists a deterministic Turing machine that con-
structs the dependency graph, GΠ , associated with Π , in polynomial time, that
is, in a time bounded by a polynomial function depending on the total number
of rules and the maximum length of the rules (see [4]).

Let ΔΠ be the set whose elements are the pairs (a, h) ∈ Γ × (H ∪{env}) such
that there exists a path (within the dependency graph) from (a, h) to (yes, env).
Having in mind that the reachability problem (see chapter 1 from [10]) can be
solved by a search algorithm running in polynomial (quadratic) time, there exists
a deterministic Turing machine that constructs the set ΔΠ in polynomial time,
that is, in a time bounded by a polynomial function depending on the total
number of rules and the maximum length of the rules (see [4]).

Let Π = {Π(n) : n ∈ N} be a family of recognizing P systems with input
membranes (not using dissolution rules) solving a decision problem X , in a uni-
form way. Let (cod, s) be a polynomial encoding associated with that solution.
An instance u of the problem will be accepted by the system Π(s(u)) with input
cod(u) if and only if there is an object a in a membrane h of the initial configu-
ration of the system such that there exists a path in the associated dependency
graph from (a, h) to (yes, env). As a consequence of the previous results we have
the following:

Theorem 1. For each β ∈ {−ne, +new, +nes}, we have P = PMCAM0(−d,β).

Similar characterizations of P can be obtained when we deal with semi–uniform
solutions in the framework of recognizing polarizationless P systems with active
membranes, and where dissolution rules are forbidden. The proofs are similar,
it is enough to consider the system Π(u), for each instance u of the decision
problem, instead of the system Π(s(u)) with input the multiset cod(u).

Theorem 2. For each β ∈ {−ne, +new, +nes}, we have P = PMC∗
AM0(−d,β).

2.2 A Partial Negative Answer

It has been shown ([4]) that the class of decision problems solvable in polyno-
mial time in a semi–uniform way by families of recognizing polarizationless P
systems with active membranes where dissolution rules are permitted, and us-
ing division rules for elementary and non–elementary membranes, contains the
standard complexity class NP.

Theorem 3. We have the following:

1. SAT ∈ PMC∗
AM0(+d,+nes)

2. NP ∪ co–NP⊆ PMC∗
AM0(+d,+nes)

Moreover, it has been obtained an efficient uniform solution for the QSAT–
problem ([2]) in this framework.



Theorem 4. We have the following:

1. QSAT ∈ PMCAM0(+d,+nes).
2. PSPACE ⊆ PMCAM0(+d,+nes).

Hence, in the framework of polarizationless P systems with active membranes
and working in the maximally parallel mode, dissolution rules play a crucial role
from the computational efficiency point of view. Specifically, if dissolution rules
are forbidden then it is not possible to solve NP–complete problems in polyno-
mial time (unless P = NP). Nevertheless, if dissolution rules are permitted then
it is possible to efficiently solve computationally hard problems.

That is, the Păun’s conjecture has a (partial) negative answer (assuming that
P �= NP). Nevertheless, the answer will be (partially) affirmative if dissolution
rules are forbidden.

3 A New Version of a Păun’s Conjecture

Recently, in [3] a more relaxed strategy of using the rules was introduced, the
so-called minimal parallelism: in each region where at least a rule can be applied,
at least one rule must be applied (if there is no conflict with the objects), without
any other restriction. This introduces an additional degree of non-determinism
in the system evolution.

P systems with active membranes working in the minimally parallel mode
means the following:

– All the rules of any type involving a membrane h form the set Rh, this means
all the rules of the form [a → v]h, all the rules of the form a[ ]h → [ b]h,
and all the rules of the form [a]h → z and [a]h → [ b]h[ c]h, with the same
h, constitute the set Rh.

– If a membrane h appears several times in a given configuration of the system,
then for each occurrence of the membrane we consider a different set Rh.

– Then, in each step, from each set Rh associated with each membrane labelled
by h ∈ H , from which at least a rule can be used, at least one rule must be
used (if there is no conflict with the objects; for example, if we have only
an object a in membrane h and we have an evolution rule [a → b]

h and a
send–in rule a[ ]h′ → [ c]h′ , being h′ the label of a membrane immediately
inside membrane h, then we can apply at least a rule from Rh and from Rh′ ,
but we will apply only one between these two rules).

Of course, as usual for P systems with active membranes, each membrane and
each object can be involved in only one rule, and the choice of rules to use and
of objects and membranes to evolve is done in a non-deterministic way. In each
step, the use of rules is done in the bottom-up manner (first the inner objects and
membranes evolve, and the result is duplicated if any surrounding membrane is
divided).

In this kind of P systems still universality and semi–uniform polynomial–time
solutions to SAT were obtained in the new framework by using P systems with
active membranes, with three polarizations [3].



Theorem 5. The SAT problem can be solved in a semi–uniform way and in a
linear time by polarization P systems with active membranes, without dissolution
rules and using (weak) division for non–elementary membranes, and working in
the minimally parallel mode.

Next, we define new classes of P systems related to AM0. Let α ∈ {−d, +d}, β ∈
{−ne, +new, +nes} and γ ∈ {m, M, md, Md}. Then we denote by AM0(α, β, γ)
the class of recognizing P systems with polarizationless active membranes such
that:

• α = +d: dissolution rules are permitted.
• α = −d: dissolution rules are forbidden.
• β = +new: division rules for elementary and (weak) non–elementary mem-

branes are permitted.
• β = +nes: division rules for elementary and (strong) non–elementary mem-

branes are permitted.
• β = −ne: only division rules for elementary membranes are permitted.
• γ = m: working in the minimally parallel mode.
• γ = md: working in the deterministic minimally parallel mode.
• γ = M : working in the maximally parallel mode.
• γ = Md: working in the deterministic maximally parallel mode.

Proposition 2. We have the following:

1. PMCε
AM0(α,β,md) ⊆ PMCε

AM0(α,β,m)
2. PMCε

AM0(α,β,m) ⊆ PMCε
AM0(α,β,M)

3. PMCε
AM0(α,β,Md) ⊆ PMCε

AM0(α,β,M)

where ε = ∗ or ε = empty string.

We can formulate the Păun’s conjecture in P systems working in the minimally
parallel mode.
The class of all decision problems solvable in polynomial time by polarizationless
P systems with active membranes using evolution, communication, dissolution
and division rules for elementary membranes (working in the minimally parallel
mode) is equal to the class P

This conjecture can be expresses in terms of complexity classes in P systems as
follows: P = PMCAM0(+d,−ne,m) = PMC∗

AM0(+d,−ne,m).
Next, we study possible answers to the new version of Păun’s conjecture.

3.1 A Partial Affirmative Answer

Let us recall that through the concept of dependency graph associated with a
P system, we have given a partial affirmative answer to the Păun’s conjecture
related with P systems working in the maximally parallel mode, and without
using dissolution rules.

Let us also recall that, in order to give that answer, the main property that
the dependency graph associated with a P system must satisfy is the following:



every computation of the system is an accepting computation if and only if there
exists an object a in an initial membrane (labelled by h) of the system such that
there exists a path (within the dependency graph) from (a, h) to (yes, env).

When a polarizationless P system with active membranes works in the min-
imally parallel mode, in each transition step we can think that objects are as-
signed to rules, non–deterministically choosing the rules and the objects assigned
to each rule, according to the semantic of the minimally parallel mode. The ob-
jects which remain unassigned are left where they are, and they are passed
unchanged to the next configuration (and belonging to the same membrane be-
cause dissolution rules are not permitted). So, the above property is satisfied by
the computations of this kind of P systems working in the minimally parallel
mode (without using dissolution rules) because we can pass from a node (a, h)
to another node (a′, h′) in the dependency graph if and only if there exists a
transition step producing (a′, h′) from (a, h).

Hence, we have a negative answer to the to the Păun’s conjecture related with
P systems working in the minimally parallel mode (deterministically or not), and
without using dissolution rules.

Theorem 6. P = PMCε
AM0(−d,β,md) = PMCε

AM0(−d,β,m), where ε = ∗ or
ε = empty string.

3.2 A Partial Negative Answer

Next, we give a semi–uniform linear–time solution to SAT by using polarization-
less P systems with active membranes working in the minimally parallel mode,
and now using dissolution rules.

Theorem 7. SAT can be solved in a semi–uniform way and in a linear time by
polarizationless P systems with active membranes, using evolution, communica-
tion, dissolution and (weak) division for non–elementary membrane rules, and
working in the deterministic minimally parallel mode.

Proof. Let ϕ = C1 ∧ · · · ∧ Cm be a propositional formula in conjunctive normal
form, such that each clause Cj , 1 ≤ j ≤ m, is of the form Cj = yj,1 ∨ · · · ∨
yj,kj , kj ≥ 1, for yj,r ∈ {xi, ¬xi | 1 ≤ i ≤ n}, and being {x1, . . . , xn} the set of
variables of ϕ. For each i = 1, 2, . . . , n, let us denote

t(xi) = {Cj | there is r, 1 ≤ r ≤ kj , such that yj,r = xi},

f(xi) = {Cj | there is r, 1 ≤ r ≤ kj , such that yj,r = ¬xi}.

That is, t(xi) (respectively, f(xi)) is the set of clauses which assume the value
true when xi is true (resp. when xi is false). Obviously, these sets have at most
m elements.

We construct a recognizing P system

Π(ϕ) = (Γ, H, μ, M0, M1, . . . ,Mm, Mp, Mq, Mr, Ms, Ms′ , R)



associated with the formula ϕ as follows:

Γ = {ai, fi, ti | 1 ≤ i ≤ n} ∪ {cj, dj | 1 ≤ j ≤ m} ∪ {pi | 1 ≤ i ≤ 2n + 7}
∪ {qi | 1 ≤ i ≤ 2n + 1} ∪ {ri | 1 ≤ i ≤ 2n + 5} ∪ {b1, b2, y, yes, no},

H = {0, 1, 2, . . . , m, p, q, r, s, s′},

μ = [s[s′ [p ]p[0[q ]q[r]r[1 ]1[2 ]2 . . . [m ]m]0]s′ ]s,

Mp = p1, Mq = q1, Mr = r1, M0 = a1, Ms = Ms′ = Mj = λ, (1 ≤ j ≤ m)

The set of evolution rules, R, consists of the following rules:

(a) [ pi → pi+1]p , for all 1 ≤ i ≤ 2n + 6
[ qi → qi+1]q , for all 1 ≤ i ≤ 2n

[ ri → ri+1]r , for all 1 ≤ i ≤ 2n + 4
(b) [ai]0 → [fi]0[ ti]0 , for all 1 ≤ i ≤ n

[ fi → f(xi)ai+1]0 and [ ti → t(xi)ai+1]0, for all 1 ≤ i ≤ n − 1,
[ fn → f(xn)]0 ; [ tn → t(xn)]0

(c) cj [ ]j → [ cj ]j and [ cj ]j → dj , for all 1 ≤ j ≤ m.

(d) [ q2n+1 ]q → q2n+1[ ]q ; [ q2n+1 → bm
1 ]0

(e) b1[ ]j → [ b1]j ; and [ b1]j → b2, for all 1 ≤ j ≤ m,
[ b2 ]0 → b2; [ p2n+7 ]p → p2n+7[ ]p ; [p2n+7 ]s′ → no[ ]s′ ; [no ]s → no[ ]s

[ r2n+5 ]r → r2n+5 ; [ r2n+5 ]0 → y[ ]0 ; [ y ]s′ → yes ; [yes ]s → yes[ ]s

An overview of the computation of Π(ϕ)

The rules of type (a) are used for evolving general counters pi, qi and ri

in membranes labelled by p, q and r, respectively, making possible the correct
synchronization.

In parallel with these rules, the non–elementary membrane 0 evolves by means
of the rules of the type (b). In step 2i − 1 (1 ≤ i ≤ 2n), object ai produces the
division of the membrane 0 (with fi, ti corresponding to the truth values false,
true, respectively, for variable xi). In step 2i we introduce inside membrane 0
the clauses satisfied by xi or ¬xi, respectively. Let us recall that when we divide
membrane 0, all inner objects and membranes are replicated. At the end of this
phase, all 2n truth assignments for the n variables are generated and they are
encoded in membranes labeled by 0.

In parallel with the process of membrane division, in the odd steps (until step
2n + 1), if a clause Cj is satisfied by the previously expanded variable, then the
corresponding object cj enters membrane j, by means of the first rule of the type
(c), producing their dissolution in the next step by means of the second rule of
that type and sending objects dj to membrane 0.

In step 2n + 2, in each membrane 0, the counters qi and ri follow evolving
and the second rule of the type (d) produces m copies of the object b1.

Thus, the configuration C2n+2 of the system obtained after 2n + 2 steps, con-
sists of 2n copies of membrane 0, each of them encoding a truth assignment
of the variables associated with ϕ, and containing the membrane q empty, the



membrane r with the object r2n+3, possible objects cj and dj , 1 ≤ j ≤ m, as
well as copies of only membranes with labels 1, 2, . . . , m corresponding to clauses
which were not satisfied by the truth assignment generated in that copy of mem-
brane 0. Also, in that configuration the membrane p contains the object p2n+3
and membranes s′ and s are empties.

Hence, formula ϕ is satisfied if and only if there is a membrane 0 where all
membranes 1, 2, . . . , m have been dissolved. In order to check this last condition,
we proceed as follows.

In step 2n+3 we use the first rule of the type (e) which introduces objects b1 in
each membrane j which has not been dissolved. In parallel, the counters p and r
follow evolving. In step 2n+4 objects b1 in membrane j (in each such membrane
appearing in the configuration C2n+2) dissolve these membranes producing object
b2 in membrane 0. Therefore, the presence of objects b2 in membrane 0 of the
configuration C2n+4 means that the truth assignment encoded by that membrane
makes the formula false.

In step 2n + 5 the counter r2n+5 exits from membrane r and, simultaneously,
each membrane 0 containing an object b2 is dissolved by the third rule of the
type (e). Hence, formula ϕ is satisfied if and only if in the configuration C2n+5
there exists a membrane 0 that has not been dissolved.

In step 2n + 6, the counter pi evolves to p2n+7 in membrane p, and if there is
a membrane 0 that has not been dissolved, the object r2n+5 sends to membrane
s′ an object y. On the contrary, only the counter pi evolves.

In step 2n + 7 the counter p2n+7 exits from membrane p to membrane s′, by
applying the first rule of the type (f). Moreover, in that step, if the formula ϕ is
satisfiable then an object y dissolves the membrane s′ by applying the sixth rule
of the type (f) producing an object yes in the skin, that in step 2n + 8 is sent
to the environment; and the system halts. On the contrary, if membrane s′ has
not been dissolved, in step 2n+8 by applying the second rule of the type (f) the
object p2n+7 exits from membrane s′ producing an object no in the skin, and in
step 2n + 9 sends to the environment an object no; then, the system halts.

The system Π(ϕ) uses 9n + 2m + 18 objects, m + 6 initial membranes, con-
taining in total 4 objects, and 8n + 4m + 21 rules. The length of any rule is
bounded by m + 3. Clearly, all computations stop (after at most 2n + 9 steps)
and all give the same answer, yes or no, to the question whether formula ϕ is
satisfiable.

Corollary 1. NP ∪ co–NP ⊆ PMC∗
AM0(+d,+new,md).

As a consequence of this result, we have polarizationless P systems with ac-
tive membranes, using dissolution rules and (weak) division for non–elementary
membranes, and working in the deterministic minimally parallel mode are able
to give semi–uniform solutions of NP–complete problems. That is, we have a
(partial) negative answer to the new version of the Păun’s conjecture.

The following picture describes the results obtained until now related to
Păun’s conjecture in both modes, where −u (resp. +u) means semi–uniform
(resp. uniform) solutions, −ne (resp. +ne) means using division only for elemen-
tary membranes (resp. division for elementary and non–elementary membrane,



strong in the maximal parallelism and weak in the minimal parallelism). Through
this graph, we try to specify whether or not it is possible to solve computation-
ally hard problems by recognizing P systems of the class associated with each
node. The direction of each arrow shows a relation of inclusion, and each blue
node provides an open question.
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4 Conclusions and Open Problems

A conjecture of Păun, related to the impossibility to solve NP–complete prob-
lems in polynomial–time by means of polarizationless P systems with active
membranes, is studied in this paper. Partial solutions are given within the usual
framework of P systems working in the maximally parallel mode. As a conse-
quence of the results obtained, the crucial role played by dissolution rules when
we try to solve computationally hard problems, is highlighted.

Besides, a new version of that conjecture is formulated, this time associated
to polarizationless P systems with active membranes working in the minimally
parallel mode. Other partial solutions also arise from this new version and once
again, dissolution rules are shown to be a singular ingredient which gives a
borderline between efficiency (the possibility of solving computationally hard
problems using feasible membrane computing resources) and non–efficiency.

Finally, we propose some open problems.



1. NP ∪ co–NP ⊆ PMCε
AM0(+d,−ne,m)?

2. NP ∪ co–NP ⊆ PMCAM0(+d,+new,md)?
3. PMCAM0(α,β,m) ⊆ PMCAM0(α,β,Md)?
4. Consider other ingredients in the framework AM0(−d, β, γ) that permit to

solve NP–complete problems.
5. Study the computational efficiency of the class AM0 with evolution rules

with length 2 (or with communication rules without evolution of objects).
6. Study the computational efficiency of the class AM0 without evolution

rules (or without communication rules).
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