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Abstract. We perform extensive experiments with coflowing liquids in
microfluidic devices and provide a closed expression for the drop size as a
function of measurable parameters in the jetting regime that accounts for the
experimental observations; this expression works irrespective of how the jets are
produced, providing a powerful design tool for this type of experiments.
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1. Introduction

The generation of emulsions is an area of active research due to its countless technological
applications (see [1]–[5] for detailed reviews). Recent fabrication methods rely on microfluidics,
as this technology provides great control over fluid flow and mixing of components. In many
situations, the dispersed phase flows inside a coaxial coflow of the continuous phase; this
provides several advantages with respect to using a quiescent bath [6]–[9]: (i) control of the drop
size by appropriate tuning of the coflow properties; (ii) reduced coalescence between drops, in
the absence of surfactants; and (iii) increased production frequency [10]–[17].

There are two major types of microfluidic devices that improve the drop or bubble
generation process by making use of an outer, coaxial coflow: (i) those in which both streams
flow through a small orifice, referred to as flow-focusing devices [15], [18]–[20] and (ii) those in
which both streams flow in parallel, typically referred to as coflowing devices [10]–[14], [21].
The latter can also be classified in terms of the confinement provided by the outer bounding
channel; there are situations where this confinement is significant [16, 22, 23], and situations
where it is not [14, 21, 24, 25]. Despite these differences, the focus of all these studies is on
understanding the transition between the dripping and the jetting regimes [26]–[28]. Dripping
is characterized by the fact that no long jets of the dispersed phase are formed. Thus, drops are
generated right at the tip of the injection tube. By contrast, when jetting occurs, the dispersed
phase forms long liquid jets and consequently, drops are emitted right at the tip of the liquid
thread.

In the absence of confinement effects, two different types of jetting regimes have been
identified [21]: the narrowing and widening regimes. These names simply reflect the shape
adopted by the jet in either regime. The narrowing jets are formed when the viscous stresses
on the interface due to the outer stream overcome surface tension confinement forces, or
equivalently, when the capillary number based on the outer velocity, Uo = Qo/D2

o , and outer
viscosity, µo, is Cao = µoUo/σ & O(1), with σ the interfacial tension between the two liquids.
Since in these situations, the outer velocity is larger than the inner velocity, the jet stretches,
thus narrowing downstream by a certain amount. The widening jets are produced in a different
way; they result when the stresses due to the flow of the inner stream at the interface overcome
surface tension confinement forces. This can happen when the Weber number of the inner fluid
satisfies the condition: Wei = 8ρi Q2

i /(π
2σ D3

i )& 1, with Qi and ρi the inner-fluid flow rate and
density, respectively, and Di the inner diameter of the injection tube. In this situation, the inner
stream usually flows faster than the outer stream; consequently, these jets are decelerated as they
move downstream, resulting in their widened shape.

In this paper, we extend the criterion needed to induce the formation of a widening jet and
show that the condition Wei > 1 is only applicable if the Reynolds number of the inner fluid,
Rei, is also larger than one. In the opposite limit, when Rei < 1, the Weber number no longer
reflects when a jet is formed. In this case, we find that the appropriate criterion is provided by the
capillary number of the inner fluid; jetting occurs when Cai > 1. More importantly, we provide
here a general expression to estimate the drop size in either regime as a function of measurable
parameters; this shows that despite the differences between these regimes, the drop size is
governed by a unique scaling relationship. Our experiments confirm this prediction, which can
thus be used to design coflow experiments aimed at obtaining droplets with a particular size
distribution. This capability coupled to the possibility of multiplexing [29] could contribute to
the widespread use of this methodology.
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Figure 1. (a) Close up view of the tapered portion of the injection tube. Note
that the untapered portion adjusts to the inner side of the outer squared capillary
tube. (b) Coflowing device operated in the widening regime [21], characterized
by a long liquid jet growing in diameter downstream of the injection tube. The
definitions of the different variables used in the text are also indicated here.

The rest of the paper is structured as follows. The experimental setup is described in
section 2. Section 3 is devoted to the analysis of the experimental results; we review the scaling
of the drop size in the narrowing regime, provide the need to extend the current criterion to
induce the formation of a widening jet, and derive and experimentally validate a simple equation
to calculate the drop size in both narrowing and widening regimes. Finally, we conclude in
section 4.

2. Experimental setup

Our experimental device is made of two coaxially aligned capillary tubes, as shown in figure 1.
The inner capillary tube is cylindrical, with a tip tapered to an inner diameter Di that is varied
between 40 and 60 µm and an outer diameter of approximately 80 µm. The outer capillary tube
has a square cross section; coaxial alignment of the tubes is achieved by matching the outer
diameter of the untapered portion of the inner capillary to the inner dimension of the square
capillary, Do = 1 mm, as shown in figure 1(a). At this length scale, which is below the capillary
length, the effects of gravity are negligible. Therefore, the orientation of the experimental
device with respect to that of gravity is irrelevant. Nonetheless, all experiments were aligned
horizontally. Although the flow in the square tube is not axisymmetric, since the tip is centered
and Di � Do, the local flow around the tip should be approximately axisymmetric. Both liquids
are injected through syringe pumps (Harvard Apparatus PHD2000). For visualization and
measurement purposes, we use a high-speed video camera Phantom V7.1, working between
2000 and 51 000 fps.
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Figure 2. Example of the stretching regime [21], characterized by the ejection
of a liquid jet with a diameter decreasing downstream. In the case illustrated in
this figure, which shows a cone-jet transition, the coflowing device is operated
under the tip-streaming regime, firstly described numerically by Suryo and
Basaran [16]. The outer capillary number is Cao = 4.32, Qi/(Uo D2

i ) < 3 × 10−3

and the inner flow rate is decreased from bottom to top. Picture taken from Marin
et al [29].

The liquids we employ are deionized water, glycerol and different polydimethylsiloxane
(PDMS) oils, with viscosities varying between 1.5 and 100 cP; by interchanging the different
liquids we can vary the viscosity ratio, µi/µo, from 0.1 to 20. The surface tension between the
different liquids, σ , slightly varies around 40 mN m−1.

3. Experimental results and scaling

3.1. Revision of the narrowing regime

It is well established that when the capillary number of the outer fluid in a coflow experiment
exceeds a threshold value of order unity, a long liquid jet emerges from the injection tube
[21, 29]. If in addition, Qi/Uo D2

i � 1, the diameter of the liquid jet is much smaller than that
of the injection tube, as illustrated in figure 2. In this situation, drops with sizes down to one
micron can be obtained [29].

Within this narrowing regime, if the inner-fluid flow rate is kept constant while Uo

increases, the diameter of the ejected jet decreases [21, 29]. This results from the low Reynolds
numbers in these experiments, which guarantee the effective diffusion of momentum across the
whole section of the jet. As a result, the inner-liquid and outer-liquid velocities become equal
some distance downstream of the injection tube and the jet diameter simply results from

πd2
j

4
Uo = Qi → dj =

(
4Qi

πUo

)1/2

. (1)

The thin jets observed in this narrowing regime are convectively unstable and consequently,
the size of the drops obtained from their break-up, dd, can be deduced from the mass balance:
πd3

d/6 = π 2d3
j /4k∗, with k∗(µi/µo, Oh) the dimensionless wavenumber corresponding to the
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maximum growth rate of sinusoidal capillary perturbations and πdj/k∗ its corresponding
wavelength. Here, Oh = µi/

√
ρiσ dj/2 is the Ohnesorge number based on the material

properties of the inner fluid, expressing the relative importance of viscous and inertial
timescales [30]. Since k∗ depends weakly on Oh for relatively large values of this parameter,
as shown in the appendix (figure 12), it is sensible to write k∗

= k∗

t (µi/µo), with k∗

t the
wavenumber of maximum growth rate in the limit, firstly considered by Tomotika [31], of
Oh → ∞. With these considerations, we obtain

dd =

(
144

π

)1/6

(k∗

t )
−1/3

(
Qi

Uo

)1/2

, (2)

which has been confirmed experimentally for a wide range of viscosity ratios [29].
This equation can be obtained using an alternative way of reasoning. Indeed, the drop

volume can be obtained from the mass balance
π

6
d3

d = Qi f −1
= Qi T, (3)

with f the drop formation frequency and T the corresponding period. We can approximate
the period of drop formation by the time needed to elongate the jet a distance equal to the
wavelength of maximum growth rate, T = πdj/(k∗Up), where Up is the velocity of the jet at its
most downstream position, as shown in figure 1(b). By combining this result with equation (3),
we obtain [21, 29]

π

6
d3

d = Qi
πdj

k∗Up
→

dd

Di
=

1

Di

(
6Qi dj

k∗ Up

)1/3

. (4)

Since Up = Uo for the narrowing jets considered so far, this equation (4) is identical to
equation (2).

3.2. Revisiting the dripping to jetting transition in the widening regime

A different kind of jet, referred to as widening jet [21], is obtained if the inner momentum
overcomes surface tension confinement forces: Wei & O(1). Generally, for these jets, Uo �

Qi/D2
i and thus, the jet is decelerated by the action of the shear stress exerted by the outer

stream, leading to the observed jet widening, as shown in figure 1(b). We emphasize here that
the condition for formation of these jets, Wei = 8ρi Q2

i /(π
2σ D3

i )& 1, only applies when, in
addition, Rei = 2ρi Qi/(πµi Di)& 1. If this is not fulfilled, the condition Wei & O(1) no longer
predicts the dripping-to-jetting transition, as shown in figure 3(a), where we plot the values of
the Weber number of the inner fluid for which we observe a jetting behavior; even for Wei < 1,
there are jets that form. In these cases, Rei < 1, as shown in figure 3(b). Interestingly, for these
jets, the capillary number of the inner fluid is larger than one, Cai = 4µi Qi/(π D2

i σ)& 1. We
thus divide our data into two sets depending on whether the inner Reynolds number is smaller
or larger than one. When Rei > 1, we observe jetting if Wei > 1, as shown in figure 4(a).
However, when Rei < 1, widening jets form when Cai > 1, as shown in figure 4(b). As a
result, widening jets can form either driven by inertial or viscous forces of the inner fluid;
depending on Rei, they form when either Wei or Cai is larger than a threshold number,
which is close to unity. Our results thus extend the dripping-to-jetting criteria [21] to cases
where Rei < 1.

New Journal of Physics 11 (2009) 075021 (http://www.njp.org/)
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Figure 3. (a) Values of the Weber number evaluated at the exit of the injection
tube, Wei = 8ρi Q2

i /(π
2σ D3

i ). All the experiments considered in this study
lie within the widening regime [21] in spite some of the values of Wei are
much smaller than unity. (b) Values of the inner Reynolds number, Rei =

2ρi Qi/(πµi Di), at the exit of the injection tube. Numbers in the legend indicate
inner/outer viscosities in centipoise.

Figure 4. (a) Values of the Weber number evaluated at the exit of the
injection tube, Wei for those experiments in which Rei > 1. (b) Values
of the inner capillary number evaluated at the exit of the injection tube,
Cai = 4µi Qi/(π D2

i σ) for those experiments in which Rei < 1. Thus, in
order for widening jets to be generated, either Wei & 1 and Rei & 1 or
Cai & 1 and Rei . 1. Numbers in the legend indicate inner/outer viscosities in
centipoise.
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Q =200 ml/ho Q =500 ml/hoa) b)

Figure 5. (a) and (b) These pictures illustrate the effect of increasing the outer
flow rate while keeping constant the inner flow rate, Qi = 10 ml h−1. The outer
flow rate increases from left (Qo = Uo D2

o = 200 ml h−1) to right (Qo = Uo D2
o =

500 ml h−1). The values of the outer and inner viscosities are, respectively,
µo = 5 cP and µi = 50 cP. (c) Drop size as a function of the outer flow rate
for a fixed value of the inner flow rate, Qi = 10 ml h−1 and various inner/outer
viscosities. Observe that the effect of increasing the outer flow rate is, in all cases,
to decrease drop size.

3.3. Unified scaling for the drop size

In the widening-jet regime, we observe that the drop diameter decreases as the coflow velocity
increases, as shown in figures 5(a) and (b). This trend is consistent with what has been observed
previously for both the narrowing and widening regimes [21, 29], and independent of the values
of the inner and outer viscosities, as shown in figure 5(c).

We also observe that the drop size increases with the inner-fluid flow rate, for µi = 1 cP and
µo = 10 cP, as shown by the images in figure 6, which correspond to two different values of Qi;
this is consistent with previous results too [21]. However, when µi = 10 cP and µo = 1 cP, we
observe that the drop size is reduced if Qi is increased, as shown by the images in figure 7, which
correspond to two different values of Qi. The viscosities of both inner and outer liquids thus play
a relevant role in determining the drop-size dependence with Qi. Our experiments indicate that
dd increases with Qi when the outer viscosity is sufficiently larger than that of water, irrespective
of the viscosity ratio, as shown in figure 7(c), where we show data corresponding to µi/µo = 0.1,
1 and 10, all exhibiting the same behavior. By contrast, when the viscosity of the outer fluid is
∼ 1 cP, the drop size decreases with Qi, as also shown in figure 7(c).

To understand these observations, let us consider the drop formation period in equation (3).
Similarly to bubble formation, this time corresponds to the time required to convect the inner
fluid a distance λ at a velocity Up, tconv = λ/Up, plus the time required to collapse or pinch
the liquid thread, tpinch: T = tconv + tpinch [17], where λ is taken as the distance traveled by the
downstream location of the jet within two consecutive pinch-off events, as shown in figure 8.

New Journal of Physics 11 (2009) 075021 (http://www.njp.org/)
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Q =12 ml h–1
i
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Figure 6. (a) and (b) These pictures illustrate the effect of increasing Qi while
keeping the outer flow rate constant (Qo = 400 ml h−1). The inner flow rate
increases from left (Qi = 12 ml h−1) to right (Qi = 20 ml h−1). The values of the
outer and inner viscosities are, respectively, µo = 10 cP and µi = 1 cP.

The pinch-off time depends on the Ohnesorge number. For Oh � 1, it is of the order of the
capillary time, tpinch ∼ tc = (ρi D3

i /σ)1/2, while for Oh & O(1), it is of the order of the viscous
diffusion time, tpinch ∼ tvisc = µi Di/σ . Therefore, either

T ∼
λ

Up

1 +
Di

λ

(
ρi U 2

p Di

σ

)1/2
 , if Oh � 1, (5)

or

T ∼
λ

Up

(
1 +

Di

λ

(
µi Up

σ

))
, if Oh & O(1). (6)

In our experiments, the second term in the right-hand side of these equations is much
smaller than unity. This implies that irrespective of the Ohnesorge number, the process of
extending the liquid ligament a distance λ is much slower than the break-up time of the liquid
thread:

tconv � tpinch H⇒ f ∝ Up/λ. (7)

The scaling of dd thus depends on how λ and Up scale with the different control parameters
in the problem. For Up, when the outer fluid viscosity is large compared to that of water, we
find that Up ' Uo, as shown in figures 9(a) and (b), where we plot Up/Uo versus Qi and Qo,
respectively. As a result, f ∝ λ/Uo, as in the case of bubble formation in the presence of a liquid
coflow [13, 17] or for the case of drop formation in the narrowing regime [21, 29]. However,

New Journal of Physics 11 (2009) 075021 (http://www.njp.org/)
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Q=10 ml/hi Q =20 ml/hi(a) (b)

Figure 7. (a) and (b) These pictures illustrate the effect of increasing Qi

(Qi = 10 ml h−1 in (a) and Qi = 20 ml h−1 in (b)) while keeping the outer
flow rate constant (Qo = 300 ml h−1). µo = 1 cP and µi = 10 cP. Contrary to
the case depicted in figure 6, drop size decreases when the inner flow rate is
increased. (c) Dependence of drop diameter on Qi for a fixed value of Qo and
various inner/outer viscosities. Observe that the trends are different depending
on the values of the inner and outer viscosities. Numbers in the legend indicate
inner/outer viscosities in centipoise.

λ

d j

∼λ

Up

∼π
d

/kj
*

Figure 8. Picture showing the definition of dj, jet diameter at the location where
drops are emitted, and λ, axial distance traveled by the tip of the jet from
two consecutive pinch-off events. As discussed in the text, the value of λ can
approach the wavelength of the maximum growth rate of capillary perturbations,
πdj/k∗.
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Figure 9. Ratio Up/Uo, with Up the velocity at the tip of the drop (see figure 1)
as a function of Qi and Qo for various inner/outer viscosities. See the discussion
in the main body of the text.

when the outer viscosity is similar to that of water, Up exhibits dependence on both Uo and Qi, as
shown in figure 9. This experimental observation can be qualitatively explained in terms of the
viscous–stress balance on the jet surface. If we assume that the jet surface travels at a speed Us,
the continuity of shear stresses at the interface demands that µi (Ui − Us)/Di ∼ µo(Us − Uo)/δ,
with Ui = 4Qi/(π D2

i ) the average inner-fluid velocity and δ ∼ Di
√

µo/(ρoUs Di) the thickness
of the shear layer, which we schematically represent in figure 10. From this last equation, we
obtain an estimate for Us:

Us ∼
Uo + (µi/µo) × (δ/Di) Ui

1 + (µi/µo) × (δ/Di)
. (8)

Based on this equation, we see that in the limit (µi/µo) × (δ/Di) � 1, Us ' Uo and
consequently, Up ' Uo, since in this case the differences between the interfacial and outer
velocities are negligible. However, when the outer-fluid viscosity is not so large, then (µi/µo) ×

(δ/Di)& O(1) and, due to the fact that Ui � Uo, Us ∼ Ui[(µi/µo) × (δ/Di) + Uo/Ui]/[1 +
(µi/µo) × (δ/Di)]& O(Uo). Under these circumstances, the inner stream drags the outer fluid
creating a strong velocity gradient adjacent to the jet interface, as schematically shown in
figure 10(b). Since the outer velocities in the neighborhood of the jet interface are larger than Uo,
Up is also larger than Uo. As Qo increases, however, this difference decreases and Up approaches
Uo, as shown in figure 9(b). In addition, since Us grows with Ui, so does Up, also consistent with
our observations, as shown in figure 9(a).

Despite this qualitative agreement with our model, we have not been able to find a
simple way of expressing Up as a function of the control parameters, other than solving the
Navier–Stokes equations, which would have to be done numerically. Under confinement [22],
the presence of the outer walls attenuates the growth of capillary waves and both the inner and
outer velocity profiles are able to reach the parallel Poiseuille solution, simplifying the problem.
In our experiments, this is not the case and the larger growth rate of the capillary waves disrupts
the jet before the velocity profiles reach this analytic solution. Therefore, the velocities of the

New Journal of Physics 11 (2009) 075021 (http://www.njp.org/)
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Figure 10. Sketch showing the effect of the shear exerted by the inner stream on
the outer stream. Depending on the value of the outer viscosity, the interfacial
velocities, Us are (a) similar to Uo if µo � µi or (b) considerably larger than Uo

if µi � µo.

inner and outer streams evolve in the axial direction in a nontrivial manner and so does the jet
tip velocity Up.

To obtain the appropriate scaling for λ, we take into account that the pinch-off process
is driven by surface tension. Indeed, in order for surface tension to break a cylindrical
piece of liquid into spherical drops, the wavelength of the growing, unstable mode, λv, must
satisfy the condition λv > πdj, with dj the jet diameter upstream the location where the drops
form [32]–[34] (see figure 8). In addition, tpinch � tconv. As a result of these two ingredients,
we can consider that right after a drop has been formed, the wavelength of the corrugations
on the jet surface, shown in figure 8, is such that k = πdj/λv > 1. Therefore, during the first
instants of drop formation, surface tension smoothen all capillary waves. However, since the
front of the jet is elongated at a velocity Up, the wavelength of the corrugations increases in
time and thus, k decreases. When k ' 1, the liquid jet is close to being unstable and is prone to
break into drops, however, the growth rates for k ' 1 are very small (see figure 11 for details)4.
Consequently, k continues to decrease in time until the growth rate of capillary perturbations is
significant, namely, until k ' k∗. Since tpinch is so short compared to tconv, the pinch-off process
only represents a small fraction of the period for drop formation, T , and breakup essentially
takes place instantaneously as soon as λ ' πdj/k∗. Therefore, the drop formation period can be
approximated by the time needed to elongate the jet a distance equal to λ = πdj/k∗. As a result:

f =
Up

λ
=

k∗(Oh, µi/µo) Up

πdj
. (9)

4 The dimensionless wavenumber k is continuously decreasing in time as a consequence of the elongation imposed
by the outer coflow. The elongation process starts from a value k > 1, and, thus, during the instants in which the
‘effective’ wavenumber is close to 1, which is the limit of stable/unstable disturbances, it is expected that the neck
connecting the drop and the jet experiences oscillations.
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Since continuity demands that π/6 d3
d = Qi f −1, the drop diameter is given by:

dd

Di
=

1

Di

(
6 Qi dj

k∗ Up

)1/3

, (10)

which is the same as equation (4) used to calculate the diameter of the drops generated in the
narrowing regime. We thus arrive at the relevant conclusion that the drop size is given by the
same equation either in the widening or narrowing regimes; the only difference resides in how
k∗, dj and Up depend on the control parameters.

For the widening jets, the best approach to obtain k∗ would be to solve the dispersion
relation corresponding to the capillary perturbations evolving in a geometry which is between
a cylinder and a spherical droplet. Moreover, these capillary perturbations develop within
coflowing streams with shear. Therefore, contrary to the simplified analysis in the appendix,
which assumes that the geometry is cylindrical, that there is no relative motion between both
streams and that perturbations decay at infinity in the radial direction, a rigorous dispersion
relation describing wave evolution in the case of widening jets, should take into account all
the real effects enumerated above. Nevertheless, this refinement in the calculation of k∗ would
necessarily imply simplifications since, for instance, the precise geometry of the transition
region between the jet and the drop is not known a priori. Thus, we adopt here the simplest
approach and calculate k∗ through equation (A.1), which gives the dimensionless wavenumber
corresponding to the maximum growth rate. Note that in the case of widening jets the values of
Oh are not too large and thus the simplification k∗

' k∗

t , assumed for the case of the narrowing
jets, is not applicable, as shown in figure 12(a).

Finally, we need to estimate dj. While for the narrowing jets we can use equation (1), for
the widening jets this is not possible, since the inner stream velocity never equals the outer
stream velocity, Uo. This results from the fact that for these jets, the flow is locally absolutely
unstable [25, 34], implying that at some axial location, the speed of the capillary disturbances
becomes similar to the speed at which they are convected downstream. Therefore, the jet breaks
before the inner velocity of the jet can become equal to the outer-fluid velocity. Based on this
fact, we will estimate the value of dj from the condition Ui = dj/tpinch, with Ui = 4Qi/(πd2

j ) the
(approximate) propagation velocity of capillary disturbances and with dj/tpinch the characteristic
velocity at which perturbations grow in time. By using that tpinch = 1/(i n∗)(ρi/µi)(dj/2)2 (see
appendix), with (in∗) the maximum value of the growth rate, and the definition of Oh, we
arrive at:

Oh−2

in∗

µi dj

2σ
=

πd3
j

4Qi
. (11)

Note that equation (11) needs to be solved iteratively since in∗ is also a function of dj through
its dependence on Oh. This maximum growth rate depends on Oh, as shown in figure 12(b) for
different viscosity ratios; it appreciably decreases as Oh increases.

Equipped with the theoretical description of k∗, Up and dj, we can critically test the drop
size dependence predicted by equation (10). We thus plot the experimental dimensionless ratio
dd/Di as a function of (6Qi dj/(D3

i k∗ Up))
1/3, as shown in figure 13(a), where we measure Up

directly from the experiments, and in figure 13(b), where we use Up = Uo when µo > 5 cP.
Remarkably, when doing so, all the data collapses onto the same mastercurve, irrespective of
whether dd increased or decreased with Qi, and for a large number of µi and µo combinations.
We obtain that the spread of the data is ±25% (figure 13(a)) and ±35% (figure 13(b)) with
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Figure 11. Dispersion relation curves for different values of the Ohnesorge
number and values of the inner and outer viscosities µi = 1 cP and µo = 10 cP.
Note that the wavelength of maximum amplification of capillary disturbances,
k∗, varies very slightly with Oh. Moreover, note that perturbations with
wavenumbers k ' 1, possess growth rates close to zero.

respect to the mean. In addition, there is a linear relation between these variables, consistent
with our expectations. By performing a linear fit of the data, we obtain:

dd

Di
= 0.97

1

Di

(
6Qid j

k∗Up

)1/3

− 0.22 , (12)

dd

Di
= 0.9

1

Di

(
6Qi dj

k∗Up

)1/3

+ 0.75 , (13)

for figures 13(a) and (b), respectively. The slopes of the linear fits are close to one and the
ordinates are close to zero, in further agreement with equation (10).

In spite of the relative errors in figure 13, we have shown that equations (12) and (13) can be
used to approximately predict the drop size, even for the largest values of (6Qi dj/(D3

i k∗Up))
1/3,

which correspond to drop sizes that are close to the outer geometrical dimension of the device.
As a result, our conceptual description of the drop formation mechanism in coflowing liquids is
correct, unifying the so-called narrowing and widening regimes in terms of the drop size.

4. Conclusions

We have studied in detail the process of drop formation from long, widening jets, in microfluidic
coflowing devices [21]. By changing the values of the control parameters, which include inner-
fluid and outer-fluid viscosities and flow rates, we have extended the criterion for jetting to occur
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Figure 12. (a) Variation of the wavenumber of maximum growth rate k∗ as a
function of the Ohnesorge number and for different values of the inner/outer
viscosities. (b) Variation of the maximum growth rate in∗

= in(k∗) as a function
of the Ohnesorge number and for different values of the inner/outer viscosities.

Figure 13. Experimentally measured drop diameters dd/Di as a function of
the parameter (6Qi dj/(D3

i k∗Up))
1/3. In both graphs, the slope of the linear

regression fit to the experimental data is very close to 1, which is the
experimental prediction given in equation (10). The relative errors, however, are
±30%. Since the maximum experimental error occurs in the measurement of
the tip velocity but is only of the order of ∼ 10%, the dispersion is attributable to
necessary simplifications in the way the wavelength of maximum growth rate and
the tip velocity, Up, are calculated. Numbers in the legend indicate inner/outer
viscosities in centipoise.
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as a function of the Reynolds number of the inner fluid. When Rei > 1, our results indicate
that jetting occurs if Wei > 1, consistent with previous experiments [21], while for Rei < 1,
the correct measure to predict the transition from dripping to jetting is not Wei, but rather the
capillary number of the inner fluid; jetting occurs in this case when Cai > 1.

By combining experiments and modeling, we have arrived at the conclusion that the
physical idea underlying drop generation in both narrowing and the widening regimes [21] is
the same: the period of drop formation is given by the time required to elongate the jet a distance
equal to the wavelength of maximum growth rate. From a quantitative point of view, we have
obtained that the size of the drops, dd, generated either in the narrowing or in the widening
jetting regimes can be calculated, with relative errors of about ±30%, using a simple model
relating dd to the dimensionless wavenumber corresponding to the maximum growth rate, k∗, to
the jet diameter, dj, and to the velocity of the most downstream point in the jet, Up. As a result,
the only difference between the drop size generated in either the narrowing or widening regimes
is the way k∗, dj and Up depend on the control parameters.

For the narrowing jets, since the values of the Ohnesorge number are usually moderate
or large, and due to the small variation of k∗ with Oh, we can approximate k∗ by k∗

t , which is
the wavenumber corresponding to the maximum growth rate in the limit Oh → ∞ considered
by Tomotika [31]. For the widening jets, this simplification in the determination of k∗ is not
applicable since the values of Oh are not large enough.

Additionally, in the case of the narrowing jets, dj = (4Qi/π D2
i )

1/2 and Up = Uo, while
for widening jets, Up = Uo ' Qo/D2

o only if the viscosity of the outer fluid is large enough;
otherwise it needs to be determined experimentally. For these jets, we have obtained the value
of dj by using the fact that these jets break-up through an absolute instability, implying that the
relevant capillary velocity can be approximated by the inner-fluid, average velocity; using this
fact and the approximate pinch-off time, we have estimated the jet diameter.

Our results provide a general description of the drop formation mechanism in coflowing
liquids for both the narrowing and widening regimes through a unique relation for the drop size.
This understanding can aid future experimental approaches to the generation of emulsions using
coflowing devices.
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Appendix A. Solution of the generalized Tomotika’s dispersion relation

Both the wavenumber of maximum growth rate k∗ and the maximum value of the growth rate in∗

of capillary sinusoidal perturbations of the form ein̄t+k̄ z propagating along a fluid cylinder which
is surrounded by an infinite mass of another liquid, is reiteratively used in the main body of the
paper. Thus, for clarity, we reproduce here the dispersion relation F(in, k, Oh, µi/µo) = 0, first
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deduced by Tomotika [31] and first solved numerically by Meister and Scheele [30]:∣∣∣∣∣∣∣∣∣∣

I1(k) I1(k1) K1(k) K1(k2)

k I0(k) k1 I0(k1) −kK0(k) −k2K0(k2)

2(µi/µo)k2 I1(k) (µi/µo)(k2 + k2
1)I1(k1) 2k2K1(k) (k2 + k2

2)K1(k2)

F1 F2 F3 F4

∣∣∣∣∣∣∣∣∣∣
= 0, (A.1)

where

k̄ = kdj/2, (A.2)

Oh =
µi√

ρiσdj/2
, (A.3)

n̄ =
µi

ρi(dj/2)2
n, (A.4)

k1 =

√

k2 + in, (A.5)

k2 =

√
k2 + in

µi

µo

ρo

ρi
, (A.6)

F1 = ik2 µi

µo
[I0(k) + I2(k)] − n

µi

µo
I0(k) +

(k2
− 1)k

nOh2

µi

µo
I1(k), (A.7)

F2 = ik1k
µi

µo
[I0(k1) + I2(k1)] +

(k2
− 1)k

nOh2

µi

µo
I1(k1), (A.8)

F3 = −ik2[K0(k) + K2(k)] + n
ρo

ρi

µi

µo
K0(k), (A.9)

and

F4 = −ik2k[K0(k2) + K2(k2)]. (A.10)

Given a dimensionless wavenumber k, a viscosity ratio µi/µo, a density ratio ρi/ρo ' 1
and a value of the Ohnesorge number Oh, we have solved equation (A.1) using Mathematica.
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