Metadata, citation and similar papers at core.ac.uk

Provided by idUS. Depésito de Investigacion Universidad de Sevilla

SIAM J. NUMER. ANAL. (© 2010 Society for Industrial and Applied Mathematics
Vol. 48, No. 3, pp. 1013-1037

LONG-TERM STABILITY ESTIMATES AND EXISTENCE OF A
GLOBAL ATTRACTOR IN A FINITE ELEMENT APPROXIMATION
OF THE NAVIER-STOKES EQUATIONS WITH NUMERICAL
SUBGRID SCALE MODELING*

SANTIAGO BADIAT, RAMON CODINAT, AND
JUAN VICENTE GUTIERREZ-SANTACREU?

Abstract. Variational multiscale methods lead to stable finite element approximations of the
Navier—Stokes equations, dealing with both the indefinite nature of the system (pressure stability) and
the velocity stability loss for high Reynolds numbers. These methods enrich the Galerkin formulation
with a subgrid component that is modeled. In fact, the effect of the subgrid scale on the captured
scales has been proved to dissipate the proper amount of energy needed to approximate the correct
energy spectrum. Thus, they also act as effective large-eddy simulation turbulence models and allow
one to compute flows without the need to capture all the scales in the system. In this article, we
consider a dynamic subgrid model that enforces the subgrid component to be orthogonal to the
finite element space in the L2 sense. We analyze the long-term behavior of the algorithm, proving
the existence of appropriate absorbing sets and a compact global attractor. The improvements
with respect to a finite element Galerkin approximation are the long-term estimates for the subgrid
component, which are translated to effective pressure and velocity stability. Thus, the stabilization
introduced by the subgrid model into the finite element problem does not deteriorate for infinite time
intervals of computation.
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1. Introduction. The dynamics of Newtonian incompressible flows is governed
by the Navier—Stokes equations, a dynamical system that consists in a set of non-
linear partial differential equations with a dissipative structure. For two-dimensional
problems, the energy of this system has been proved to be bounded by the data (ex-
ternal forces and initial conditions) for all times. It is also possible to bound the
H'(Q)-norm of the fluid velocity, which, together with the Rellich-Kondrachov theo-
rem, allows one to prove that any fluid velocity orbit converges to a finite-dimensional
set, the so-called global attractor, as the time variable goes to infinity (see [28, 53]).
Fractal and Hausdorff dimensions of the global attractor have been estimated using
Lyapunov exponents in dimension 2 and 3 [20, 29].

An accurate numerical approximation of the Navier—Stokes equations should
mimic their long-term behavior. For direct numerical simulation (DNS), a crude
Galerkin approximation using inf-sup stable finite elements admits a numerical global
attractor, whose dimension has been estimated in [44]. The convergence of the
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numerical global attractor to that of the Navier—Stokes equations has been analyzed
in [35]. Similar results have been proved for finite differences [56].

The finite element approximation of the Navier—Stokes equations for large Rey-
nolds numbers (Re) presents two main difficulties that can make their numerical ap-
proximations meaningless: one is the indefinite nature of the system, and the other is
the stability loss due to convection dominant regimes. The first problem can be cured
by using appropriate velocity-pressure finite element spaces satisfying a discrete ver-
sion of the Ladyzhenskaya—Babuska—Brezzi condition (see [8]). These finite element
pairs are usually called inf-sup stable elements and do not include many spaces that
would be interesting for their simplicity and/or efficiency. When using Galerkin ap-
proximations and finite elements, the only way to solve the velocity stability loss is
to capture all the spatial scales of the flow, i.e., to reduce the computational mesh
size up to the Kolmogorov microscale Ako1, below which are the smallest dissipative
structures of the flow. This approach, known as direct numerical simulation, requires
in dimension 3 O(Re2‘25) mesh nodes. Unsurprisingly, this dimension is also related
to the dimension of the continuous global attractor (see [20, 29, 53]). The memory
usage grows so fast with respect to Re that DNS computations are unaffordable in
most industrial applications, even at moderate Reynolds numbers. Anyway, DNS is
a valuable tool in theoretical turbulence research: it allows a deeper understanding
of this phenomenon and helps to validate turbulence models. At this point, let us
also mention the nonlinear Galerkin method, which consists in a modification of the
Galerkin formulation with the aim of better approximating the attractor for long-term
analyses (see, e.g., [52, 45, 2, 50]). To approximate the attractor, inertial manifolds (or
approximate inertial manifolds) have been developed (see, e.g., [27, 54]). Numerical
results supporting this approach for long-term analyses can be found in [22, 40, 41].

Both pressure instability and velocity stability loss for convection dominant
regimes can be solved by using finite element stabilization techniques (see, e.g., [9, 38,
13, 15, 19, 3]). In fact, stabilization is essential for the finite element approximation
of high Re flows. The common feature of this family of algorithms is to introduce
consistent terms to the formulation that would improve the stability properties of the
numerical system without spoiling accuracy. Initially, these stabilization techniques
were developed without a sound motivation until they were justified by a multiscale
decomposition of the continuous solution into resolved (finite element) and unresolved
(subgrid) scales. Using this decomposition in the variational form of the problem and
modeling the effect of the subscales into the finite element problem, we end up with
numerical methods that exhibit enhanced stability properties. We refer to [37, 39]
for a detailed exposition of this approach, coined the variational multiscale (VMS)
method. Applied to the Navier-Stokes equations, stabilized finite elements lead to
stable formulations without the need to represent all the scales of the flow. Thus,
coarser meshes can be used, drastically reducing the computational effort of DNS.

VMS subgrid scale models have been motivated by numerical purposes (stability
and convergence of the numerical algorithms), but they have also been proved to
introduce a numerical dissipation that approximates well the physical dissipation at
the unresolved scales [31, 15, 19, 36, 21, 47, 5, 10]. Thus, these methods can be
understood as large-eddy simulation turbulence models that properly account for the
effect of the smaller universal scales on the large scale motions of the flow that can
be captured by the mesh (see, e.g., [49]).

The outline of the article is as follows. In section 2, we state the continuous
problem and the basic results that describe its long-term behavior. In section 3 we
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consider the semidiscrete in space finite element Galerkin approximation and how
to stabilize it using our favored VMS subgrid model. For the VMS formulation, we
prove existence and uniqueness of solutions. In section 4, we prove the existence
of an absorbing set in LZ(Q)7 with particular emphasis on the new bounds due to
stabilization. Finally, in section 5, we prove the existence of an absorbing set in
H'(Q) and a numerical global attractor in the two-dimensional case. We end up with
some conclusions in section 6.

2. Problem statement.

2.1. Notation. Let Q be any open set of R?, d = 2 or 3. As usual, LP(Q)
denotes the space of pth-power integrable real-valued functions defined on €2, whereas
L>(Q) is the space of essentially bounded real-valued functions. This space is a
Banach space endowed with the norm ||v||zs(q) = ([ [v(x)[P dx)'/? (or ||v]| ) =
ess SUPycq [v(X)], respectively). In the particular case p = 2, LQ(Q) is a Hilbert space
with the inner product

On the other hand, L}, () contains all the real-valued functions defined on £ which
belong to LP(w) for any compact subset w of the open set Q.
For m a nonnegative integer and p > 1, we define the classical Sobolev spaces as

WmP(Q) = {v e LP(Q); 0*v € LP(Q) Y |k| < m},

associated to the norm

HU”WmvP(Q) = Z HakaL:D(Q ,
0<|k[<m
where k is a multi-index; we will write this norm in compact form as || - ||;n,p. In the

particular case p = 2, W™2(Q) is denoted by H™(f2), which is a Hilbert space with
the obvious inner product and its associated norm || - ||,,. We will use boldface letters
for spaces of vector functions.

Let C§°(£2) be the space of infinitely differentiable functions with compact support
in 2. We denote by D(2) the topological space of test functions in Q. Its dual space,
the space of distributions, is denoted by D'(Q2). The closure of D(Q) in W™P(Q) is
defined by Wi (Q) (analogously, H"* () when p = 2). The dual space of W;"*(£2) is
identified by W~"4(), q being the conjugate index to p, i.e., % + % = 1; analogously,
we define H~™ as the dual space of H™ (). In general, duality pairings will be
indicated by the symbol (-, -). We will make use of the following space of vector fields:

H(div 0,Q) == {v € L*(Q) such that V- v =0, v-n =0 0n 9Q},

where n is the outward normal to 2 on 09.

Let —0o < a < b < +o00, and let X be a Banach space. Then LP(a, b; X) denotes
the space of X-valued functions on (a,b) such that f: | f(s)]%ds < oo forl<p<oo
Or esSSUPge(q) || f(8)][x < oo for p = oco. C([a,b]; X) is the space of continuous X-
valued functions such that sup,cj, 4 [[f(t)[|x < oco. Analogously, D'(a,b; X) is the
space of functions such that their X-norms have a distributional sense in (a,b).
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Finally, L?(2)/R is the quotient space of L?(2) functions and a constant with
the norm [|p| 2oy = infeer |p+ ¢|| = [|p — [, p(x)dx]|.

In what follows, C' denotes a positive constant independent of the physical pa-
rameters but possibly depending on the size of the domain 2. When dealing with the
finite element problem, C' also will be independent of the mesh size h. The value of C'
may be different at different occurrences. We will use the notation A 2 B and A < B
to indicate that A > CB and A < CB, respectively, where A and B are expressions
depending on functions that in the discrete case may depend on h as well.

2.2. The continuous problem. Let Q be a bounded, open set of R%, d = 2
or 3, and let (0,7) be the time interval, with 7" < co. We denote by @ = 2 x (0,7
the cylindrical space-time domain. The flow of a viscous, incompressible, Newtonian
fluid is described by the Navier—Stokes equations:

(2.1a) V-u=0 inQ.

{ ou+ (u-Viu—vAu+Vp=1f inQ,

The unknowns are the fluid velocity u(x,t) : @ — R and the fluid pressure p(x,t) :
@ — R. The physical parameter v > 0 is the kinematic viscosity, and f is the external
volume force applied to the fluid confined in . These equations are supplemented
with the initial condition u(x,0) = ug in Q and the homogeneous Dirichlet boundary
condition u(x,t) = 0 on 9. We can also state the Navier—Stokes equations in weak or
variational form. We seek for [u(x,t), p(x,t)] € L?(0,T; H}(Q)) x D'(0,T; L*(Q)/R)
such that

%(u7 v) + {(u-V)u,v) + v(Vu,Vv) — (p,V -v) = (f,v),

(2.:2b) (¢,V-u)=0

in D'(0,T), for any [v,q] € H(Q) x L*(Q)/R, satisfying also the initial condition.

The problem is posed with ug € Ho(div 0,9) and force term f € L2(0, 7, H ' (Q)).
Existence and uniqueness for (2.2) is an open problem in three dimensions. There

are some partial results, such as the existence of weak solutions; problem (2.2) has at
least one weak solution that satisfies the energy inequality (Leray inequality)

1 K 1 K
G+ v [ 9utx s) Pds £ 5 aGe,0) + [ (£6x,), ulx, ),
0 0

which implies
t 1 t
23)  JubetlP v [ [VaGeo)ds S 5 [ e ds + un(x o)
0 0

Thus, u € L2(0,T; Hy(Q)) N L>®(0,T; L*(2)) for all 0 < T' < 0o, under the regularity
of the data indicated above.
Pressure stability can be obtained from the inf-sup condition
(¢, V-v)

(2.4) inf sup e > 8 >0,
a€L?(Q) veHL(Q) gVl

which is a consequence of the surjectivity of the divergence operator from H, é (Q) to
L?(Q) (see [42]). Even for the linear transient Stokes problem, in the most general
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setting in which the problem is well-posed, pressure stability in time is unclear (see
[23]). Most of the mathematical analyses of the transient Navier—Stokes equations
are obtained using divergence-free velocity spaces that allow one to get rid of the
pressure [51, 33, 34]. However, in some engineering applications pressure values are
more important than fluid velocities, e.g., in fluid-structure interaction phenomena.
The previous results can be meaningless since the right-hand side of (2.3) can blow
up as t — co. Thus, new results have been obtained in order to understand the long-
term behavior of (2.2). Let us assume that problem (2.1) is well-posed for all ¢ > 0
and f is time-independent. We can describe this autonomous infinite-dimensional
dynamical system by means of the semigroup {S(t)}:>0, i.e., the family of operators

S(t) : L*(Q) — L*(Q), up(x) — u(x,1), t>0.

The orbit associated to a given initial value is the set | J,~, S(t)ug. In dimension 2, it is

known that the transient Navier-Stokes equations exhibit an absorbing set B C L*(f2);
ie., for any uy € L?(Q) there exists a time value t,(ug) such that Uise, S()ug C B
(see [53]). In fact, it is also possible to prove that there exists an absorbing set in
H'(Q). Due to the compactness of the H'(Q) ball in L*(Q), S(t) turns out to be
uniformly compact. In the asymptotic regime ¢ — oo, it has been proved that all
the orbits are attracted by a compact set A of finite dimension, the global attractor
[28, 53].

3. Finite element approximation.

3.1. The Galerkin problem. From now on, we assume that €2 is a subset of
R? (d = 2 or 3) having a polygonal or polyhedral Lipschitz-continuous boundary, and
{Th}n>0 is a quasi-uniform family of triangulations of Q, that is, Q = Uge7; K, with
mesh size h = maxge7, hi, hx being the diameter of element K.

In order to get a conforming finite element approximation of the Navier—Stokes
problem, we consider conforming finite element spaces Vj, C H (1)(9) and Qpn C
L?(2)/R for velocity and pressure, respectively, with the optimal interpolation prop-
erties (see, e.g., [7]). In particular, we assume the following.

AssuMPTION 3.1. The finite element spaces Vi, and Qy, satisfy

(3.1a) 1161% v —=vuls S *|Vllgi for j=1,2 and s=0,1,
Vh h

3.1b inf — <h .

(3.1b) onf lg = anll < Rllgll )

To simplify the exposition, we will consider Q;, C C°(€2). Otherwise, interelement
boundary terms involving pressure jumps would be required (see, e.g., [4]).

We will consider the basis {¢; }i=1,...n, and {m;}i=1,..n, for Vj, and Qp, respec-
tively. Thus, n, and n, denote the space dimension for V}, and Q5.

For quasi-uniform partitions, there is a constant C},,, independent of the mesh
size h (the maximum of all the element diameters), such that

(3.2) [Vunllrz(x) < Cinvh™ Honllz2ry, 1AW L2y < Cinwh™ I VoR |l 22(r)

for all finite element functions v, defined on K € Ty,. These inequalities can be used
for scalars, vectors, or tensors.

We use the skew-symmetric form of the convective trilinear form (see [51] and
[11] for related numerical aspects), so that instead of the nonlinear term in (2.2a) we
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1
b(up, v, w) = ((up - V)vp, w) + 3 (V-up, vy - w).

Let us denote by P, (-) and Pg, (-) the L?(£2)-orthogonal projections onto V}, and
Qn, respectively, with optimal interpolation properties. We also denote by Pi-(:) :=
Id(-) — Py (-) the projection onto V-, the space L?(Q)-orthogonal to Vj,. Then, the
semidiscrete problem in space consists in finding [up, ps] € H*(0,T; Vi) x L*(0,T; Q)
such that

(3.3) (5tuh, Vh) +b (uh, up, Vh) + V(Vuh, Vvh) — (ph, V- Vh) = <f, Vh>,
(3.4) (qn, V -up) =0,

a.e. in time for any [vx, qn] € Vi, X Qp, also satisfying an initial boundary condition
up,(0) = upp. Analogously to the continuous problem, it is easy to prove that the
semidiscrete system (3.3) satisfies

t 1 t
[un(x, )] +V/O IVun(x, 5)[*ds < ;/O I£]2 1 ds + [[un(x, 0)%.

Pressure stability for the Galerkin approximation of the Navier—Stokes equations
cannot be attained from energy bounds. In order to mimic the mathematical struc-
ture of the continuous problem, we can build velocity-pressure finite element spaces
satisfying a discrete inf-sup condition

(3.5) inf sup (an, V- vh)

>p">0
an€Qunvyev, llanllllvalll ’

where * is uniform with respect to h. Obviously, the discrete inf-sup condition is not
a direct consequence of (2.4). In fact, some interesting velocity-pressure pairs, such
as equal-order velocity-pressure approximations, fail to satisfy this condition, because
B* > 0 is not uniform with respect to h, leading to pressure instabilities.

3.2. A singularly perturbed problem. It is well known that the Galerkin
finite element approximation of the Navier-Stokes equation (3.3) exhibits numerical
instabilities for large Reynolds numbers, where the Reynolds number is defined as

Re = E,
v
where U and L are characteristic velocity and length scales used in the adimension-
alization of the system.!

For the continuous problem, the second term on the left-hand side of (2.3) rep-
resents the dissipation of kinetic energy. The larger scales of turbulent flows contain
most of the kinetic energy of the system, which is transferred to smaller scales via
the nonlinear term by an inertial and essentially inviscid mechanism. This process
continues creating smaller and smaller scales until forming eddies in which the viscous

I This definition is not fully satisfactory in turbulent flows, since there is no suitable characteristic
velocity for the definition of the Reynolds number. This definition, as well as other notions about
turbulence introduced below, is vaguely used with the aim of giving a physical explanation of the
energy pile-up for the Galerkin method (see also [49, 46] for a physical viewpoint of turbulence). We
refer to [24, 48] for a precise mathematical description of these concepts.
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dissipation of energy finally takes place, i.e., v||Vu(x, s)||? becomes dominant. This
process is known as the energy cascade (see [26] for a mathematical description of this
phenomenon and [49] for a physical one). Even for high Re, the viscous dissipative
term of the continuous problem in (2.1) becomes dominant at the smallest scales of
the flow; viscous effects extract energy from the system at the smallest scales, “killing”
any fluctuation under a certain level, the Kolmogorov microscale Ako1 (see [43, 46]).

From a numerical point of view, Ako1 is obviously related to the number of nodes
that are needed in a DNS computational mesh, since all the scales of the flow must
be captured in such computations. When the computational mesh is substantially
coarser than a DNS mesh, the smallest scales have a size h > Ako; i.e., they belong
to the inertial range. On the other hand, following the energy cascade, the energy
from larger scales is transferred to the smallest scales. Since eddies in the range
O(h) are much larger than the dissipative eddies that exist at Kolmogorov scales,
kinetic energy is essentially not dissipated in this range. The viscous dissipation term
v||[Vuy||? never becomes important and, as a result, the smallest scales exhibit an
energy pile-up (see [32, 10]), leading to space instabilities.

3.3. Scale splitting and approximation of the subgrid scales. The formu-
lation we analyze in this work belongs to the framework of VMS methods, the key idea
being a decomposition of the unknowns into a resolvable, finite element component
and an unresolvable, subgrid scale component. The splitting for the velocity can thus
be written as u = uy + u, an approximation being required for the subgrid scale ve-
locity. For the pressure we will assume that its subgrid component is p = 0, since the
contribution obtained from this component is not essential for the good performance
of the algorithm (see, e.g., [14]).

Using VMS stabilized finite element approximations, we get numerical methods
with enhanced stability properties for which there is the hope that they can act as
turbulence models. Pressure stability does not rely on a discrete inf-sup condition,
and fluid velocity bounds remain effective at high Re for mesh sizes h > Ako1, placed
in the inertial range. Furthermore, the effect of the unresolved scales, i.e., scales in
the range (0, h), on the captured scales is properly modeled, in particular, the viscous
dissipation that takes place at the smallest unresolved scales (0, Ako1). In fact, it has
been proved that the energy spectra of VMS-based algorithms approximate accurately
the continuous spectra up to O(h) scales (see [31, 19, 47, 5]).

We do not include here the motivation of these algorithms, which can be found
elsewhere (see [15, 37, 39]). The particular feature of the VMS formulation analyzed
herein is the fact that we consider the subgrid velocity to be L2-orthogonal to the
finite element velocity and dynamic; by dynamic model we mean that the subgrid
time derivatives are properly accounted for. We refer the interested reader to [13, 15]
for a discussion about the benefits of using orthogonal subscales and to [3, 17, 19, 47]
for some works showing the gain from using dynamic subgrid scales.

Let us describe our finite element approximation. For the sake of conciseness in
the following exposition, let us introduce the operator

1
N(uh,vh) = (up - V)vp + i(V SUp) V.

In order to state the problem, we introduce the subgrid velocity component 1,
which is modeled as

(3.6) ora+ 7 a = —P(N(up,up) + Vpp),
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where 771 is an approximation to —vAw + u - Vi and the right-hand-side is the
projection of the residual of the finite element component (see Remark 3.2). We
compute the so-called stabilization parameter 7 as

Csv  Ccllunllo.e -1
3.7 — _ AL RS Ltk .
(8.7) ! ( Ea h|Q|

Cs are C, are algorithmic constants independent of physical and numerical parameters
that are usually motivated from the analysis of one-dimensional tests (see, e.g., [14]).
In the following, we assume that 2 < ¢ < co. For practical purposes, a nonconstant
7(x) is usually implemented, in which the global velocity norm is replaced by its
pointwise modulus. The use of a variable stabilization parameter introduces some
technical complications in the numerical analysis that have been faced in [16] for the
linearized Oseen problem.

In (3.6) we can identify the two key features of our formulation: the L? orthogo-
nality enforced by the projection in the right-hand side and the dynamic model due
to the fact that it is an ordinary differential equation. The subscale model is very
cheap, since it is a local problem at every finite element of the triangulation. In its
numerical implementation, the subgrid component will be simply evaluated by using
(3.6) at every integration point of every finite element. See [18] for different aspects
related to the implementation of the orthogonal projection.

Let us consider the subgrid space

V = span{P;-(N(¢;,8,)), Pi- (Vi) }

fori,j=1,...,ny, and k =1,...,n,. We can easily see that the dimension A, of 1%
is less than or equal to n2 4+ n, < co. So, V C L?*(Q) is a finite-dimensional space,
and we could explicitly construct a basis {é)i}i:17,,,,ﬁu using, e.g., a Karhunen—Loeve
decomposition. We denote the L?(2)-orthogonal projection onto V with P(.).

Thus, let us consider the following finite element approximation of the Navier—
Stokes equations using a VMS dynamic orthogonal subgrid model: find u;, €
HY(0,T;V3), pr € L2(0,T;Qp), and 2t € H'(0,T; V) such that

(atuha Vh) + b (uha up, Vh) +v (vuhv vVh)

(3.8a) —(pn, V- vi) = b(up,vp, ) = (f,va),
(3.8b) (0,1, %) + b (up,up,v) + 71 (4,v) + (Vpp, V) = 0,
(3.80) (qh, V. uh) - (ﬁ, th) =0

which hold a.e. in (0,7") and for any v, € V3, v € V, and g, € Q. These equations
are supplemented with the initial condition

(39) uh(()) = Uoh, ﬁ(O) = ﬁo.

It will be shown later that this problem admits a unique solution in the spaces chosen.
It has to be noted that the spatial boundedness is not necessarily uniform in h.

The initialization of the discrete problem can be obtained by the following pro-
jection problem: find ugy € V3, ug € ‘7, and &, € @y, such that

(won, vr) — (§n, V- vi) = (o, vp) Vv € Vi,
(0, V) + (VEn, V) = (ug, V) Vvev,
(V -uon, qrn) — (Van,1p) =0 Y oqn € Qn.
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The nice feature of this choice is the fact that the initial velocity components satisfy
(3.8¢), which can have important effects on the stability of the fully discrete problem
(see [12]).

We can easily see that the pointwise and weak subgrid equations, (3.6) and (3.8b),
respectively, are equivalent. Equation (3.8b) can be written as P(d;a1 + 7~ 't1) =
—P(N(up,,u) + Vpp). So, using the fact that 7~ is space-independent, we easily
recover (3.6). We will use the weak formulation for the subsequent analysis. As far
as we know, a weak formulation of the subgrid model is new.

REMARK 3.1. The u-dependent term on the left-hand side of (3.8a) and (3.8¢c)
stands for the effect of the subgrid scales on the finite element component. The first
one gives enhanced velocity stability, whereas the second provides pressure stability, as
we shall see.

REMARK 3.2. In general, for a residual-based stabilized method, the right-hand
side of (3.8b) includes the force and the viscous terms in order to have a consistent
method; i.e., it must be

(£,9) = b(wp,up, V) = (Vpn, ¥) + Y (vAu,, ¥), .
K€7—h

The subscript K in the last term indicates that the Laplacian is considered inside every
finite element separately. It is obvious that the viscous term vanishes for piecewise lin-
ear approximations. However, for higher order polynomial approzimations, this term
and the force term do not vanish. In the following, we perform the analysis omitting
these two terms. The resulting method has been proved to be optimally convergent,
using the fact that V is orthogonal to Vi,. We refer to [3, 16] for more details.

Let us denote by Vi, the space Vi, @ V and by J, the finite-dimensional space of
functions v that are the sum of a finite element function v;, € V} and a subgrid scale
function v € V satisfying the constraint (gn,V - v4) — (¥, V) = 0 for any ¢, € Qp.
In particular, let us define u, := uy, + . We make the following assumption.

ASSUMPTION 3.2. The finite-dimensional space J* is not reduced to the null
element.

This assumption is very mild, and is satisfied for equal-order finite element spaces
for velocity and pressure (see [3]). However, it prevents the pressure space from being
arbitrarily large.

3.4. Preliminary results. In the next lemma, we prove existence and unique-
ness for system (3.8), inspired by the ideas in [33] for the Galerkin approximation
(3.3) under the compatibility condition (3.5).

LEMMA 3.1. The semidiscrete problem (3.8) has a unique solution that satisfies
w, € C([0,T]; L*(Q)) and its time derivative dyu. € L(0,T; L*(Q)) for any T > 0.

Proof. We can eliminate the pressure in the stabilized semidiscrete problem (3.8)
in a similar fashion as for the Galerkin approximation (see [33]). Since V, NV =
{0}, the decomposition of any function v, € J, into its finite element and subgrid
components, Py (v,) and P(v.), respectively, is unique. System (3.8) can now be
stated as follows: find u,(t) € H'(0,T; J.) such that

(3.10) (Opus, vi) + b (Pr(uy), Pr(us), vi) + v (VP (), VP, (vy))
+ 77 (P(us), P(vi)) = b(Py(w.), Pu(vi), P(w.)) = (£, Pu(v.))

for any v. € J,, a.e. in (0,7), with the initial condition u.(0) = ugp + Go. Using
the theory of ordinary differential equations, we can prove that in fact u.(t) and
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Opu,(t) are square integrable functions in some time interval [0,¢5) for ¢5 > 0 small
enough, since (f, P, (v.)) belongs to L2(0,t,) for t, < oo (see, e.g., [51, Theorem 3.1,
Chapter 3]). On the other hand, u. € C([0,t); L*(2)), dsu. € L*(0,ty; L*(Q)) (see
[61, Lemma 1.1, Chapter 3]). Thus, the initial condition is meaningful. Now, we are
in a position to test (3.10) against u,. By using the fact that

b(Pp(u.), Pr(u.), us) = b(Pp(u.), Pr(u.), P(u.)) = 0,

which comes from the skew-symmetry of b, and treating the time derivative term
using [51, Lemma 1.2, Chapter 3|, we get

(1) LSl oA )2+ )] < O P,
and so |u.(t)]| S fot [If(s)]|=1ds + ||uso|| (see also [33]). This energy bound allows
us to extend the regularity results for u, over the whole time interval [0, T] (see [51,
Theorem 3.1, Chapter 3] for more details).

Given u,(t), the problem for the pressure now reads as follows: find pp(t) € Qp,
such that

(3.12) (Ph, V - Pu(v.)) = (P(v.), Vi)
= (B, vi) + v (VP (w), VB (V) + 71 (P(u.), P(v.))
+b(Pu(u.), Pu(u.), vi) = b(P(u.), Pu(va), P(u.)) = (£, Pu(v.))

a.e. in (0,7T) for any v, € V. Since the right-hand side is square integrable in (0,T),
so is pr. We have that VQ;, C Vi and J. = (VQp)* NV, (where the orthogonality
is understood in the L? sense) by construction of these finite-dimensional spaces. On
the one hand, problem (3.12) for any v, € VQy, is equivalent to that of finding a
prn € Qp solution of the finite element approximation of a Laplacian problem with
Neumann boundary conditions, whose existence and uniqueness is easily obtained
(see, e.g., [30]). On the other hand, for v. € J, both the left-hand side and the
right-hand side of (3.12) vanish, yielding the identity 0 = 0. Thus problem (3.12) has
a unique solution (u.,pp). This proves the lemma. d

Let us prove some preliminary results that will be needed in the following sections.
First, we analyze the approximation properties of the VMS stabilized finite element
approximation of the steady Stokes problem using orthogonal subscales. The Stokes
problem reads as follows: find a € H§(Q) N H*(Q) and ¢ € L3(Q)/RN HY(Q) such
that

(3.13a) —vAa+Vp=g infQ,
(3.13b) V-a=0 in Q

for any g € L* (©2). Let us make the following assumption, which is known to be true
when € satisfies some regularity properties (see, e.g., [30]).

ASSUMPTION 3.3. The solution of system (3.13) satisfies the elliptic regularity
assumption

(3.14) vijallz + flell < [lgll

The stabilized finite element approximation of the Stokes problem, using orthog-
onal subscales, reads as (see [3]) follows: find a;, € V3, ¢ € Qp, and & € V such
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that

(3.15a) v (Vap, Vvi) = (on, V- vi) = (8, vn),

(3.15D) (qn, V -ap) — (&, Van) =0,

(3.15¢) 7,1 (&, V) + (Ven, V) = (8,V),

where 7,1 = Chz” and V is designed as before, but without the contribution from

the convective term in the Navier-Stokes equations, i.e., V := span{ P;-(Vmy)}, for
k=1,...,n,

LEMMA 3.2 (error estimates for (3.15)). Let us assume that Assumption 3.3
holds. Then, the solution (an,pp,a) of problem (3.15) and the continuous solution
(a,¢) of problem (3.13) satisfy the error estimates

1
(3.16) V2||V(a—ah)||+—||a||+ H@ enll S %Hgll-

Proof. We indicate the finite element component of the error functions with

en = Py(a) —ap, = Pq,(v) -
Subtracting the weak form of system (3.13) and (3.15), we obtain the error system
(3.17a) v(Ven, Vvy) — (Un, V- vy) = (E, vi),
(3.17b) (V-en,qn) + (&, Van) = (€2, qn),
with

(€ vn) == —v(V(a— Pu(a)), VVvi) + (¢ = P, (¢), V- Vi),
(

(€% aqn) == —(V-(a—Pu(a)),qn) -
Let us rewrite the subscale equation as follows:

Csv . - - .
(3.18) w2 (@ V) = (V(PQ,(¢) = vn)¥) = (g = VFq, (¢),V) = (&, v).

We denote by €;(v) := |[v— Py (v)|;, where |-|; denotes the seminorm in H*(2). We can
easily bound the right-hand side of system (3.17)—(3.18) using integration by parts
and invoking the momentum equation in (3.13a) as follows:

(€1vn) 5 (vher(a) + v deolp)) vt Vvl
(€% an) SvEheo(a)v™ 2 k| B (Van)
(€%,9) S w2 (vl|Aal| + | V(e = Po, (@))) v2h |9
Let us define the interpolation and consistency error function
E(h) :=v3h eo(a) + viei(a) + hv? || Aal| + v 3e0(p) + v~ 361 ().

Now, we take vy, = ey, qn = ¥n, and v = a in (3.17)—-(3.18), respectively. We obtain

Vo .
(3.19) v||Ven|? + ﬁH'@lH2 S E(h) <V2 Vel +oT IIP#V%H + —|a|>
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We can find a bound for hu_%”PhLVd)hH using the subscale equation (3.15¢) in its
pointwise sense and (3.13a), getting

(3.20)

1P (Von)|| < 72

v v

13l +llg = Vel +1V(e = Po, (¥l < 75 l1all + vliAall + [ Vell,

where we have used the H!(Q)-stability of P,(-) for quasi-uniform meshes (see [7]).
This expression is now incorporated into (3.19) to get

12 1 1 h Ve
v||Ven|? + ﬁHaH2 S E(h) <V2 [Ven|l + hv2||Aall + V—%HVSOH + 7||a||> :

The regularity assumptions in the statement of Lemma 3.2 allow us to obtain
v|all2 + |||l < |lgll- This leads to

vE | Vey| +h~lv2||a]| < hvm 2 gll,

where we have used the fact that E(h) < hv~z|g|, a direct consequence of the
interpolation results in (3.1) and the stability of P, (-) in H*(Q). Global errors (3.16)
are obtained using the standard interpolation results (3.1) and the triangle inequality.

In order to get stability bounds over the pressure, we test (3.17a) with v, =
P, (Vyp — Vop). After rearranging the resulting equality and invoking an inverse
inequality, we get

hv™2 | Py(Ve — V)| S vE|[V(a—ap)|| < E(h).
So, using (3.20), the definition of E(h), and the stability of Py, (), we get
hv™2 ||V — V|| < ™ 2[| By (Vi — V)| + b 2 || B (Ve — Vo) |

S E(h) + hv™ 2| BE (V) || + o™ 2 || B (Ve — VPg, ()]
(3.21) S hotlgl.

On the other hand, for all ¢ € L?(f2), there exists v, € H§(f2) such that

(4, V- vg) Z llalllvalls,

due to (2.4). Therefore, for Q5 C C°(Q) we can find v, such that

o —enllllvellr < (V(e —¢n), ve)
< (Ve = ¢n)ve = Pu(ve)) + (Ve = ¢n), Pr(ve))
S (Ve = on),ve — Pu(ve)) —v(V(a—ap), VP(ve))
SIV(e = en)l[hllvellr + v[[V(a —ap)|l[[vell1-
We easily get l/*%||g0—<ph|| ghu’%HgH. d

Finally, let us prove a discrete version of a well-known interpolation inequality
(see [1]) that will be required for the treatment of the nonlinear terms. In order to
prove the following lemma, we assume that the regularity of the Poisson—Dirichlet
problem holds.

ASSUMPTION 3.4. Let Q be such that ||ull2 < ||Au|| for any u € HY(Q)NH?(Q).
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Let us also introduce the discrete Laplacian Apuy, € Vj,, solution of
(Ahuh, Vh) = (Vuh, Vvh) V vy € V.

LEMMA 3.3. Let Q C R? satisfy Assumption 3.4, and consider a quasi-uniform
family of finite element meshes. For any u;, € Vy,, the following inequality holds:

1 1
[Vuplloa S [Vun|2[[Apun|=.

Proof. Let us consider u € Hy(Q) N H?*(Q) such that Au = Apuy. Assuming
regularity of the domain, e.g., a convex domain €2, we get the classical error estimates

(3.22) [ =y + Al V(= wp)l| < A2 Aull,

where the error estimate in the L?*(Q) norm is proved using Aubin-Nitsche duality
arguments (see, e.g., [23]). In particular, we get the error estimate

04 S h2[|Aul,

[u — uy|

due to the Gagliardo—Nirenberg inequality (see [1]).
Using the inverse inequality |Vvyllo, < A7 |vallop (for 1 < p < o) and the
definition of Ap, we easily get

[ARagl| S A7 Vas| S A3 us.

These inverse estimates, together with the error estimates (3.22) and the definition of
u, lead to

[all S lhuall, [[Val S [Vl

Let us introduce the Scott—Zang interpolation operator SZvy, (-) with regard to V},
(see [23, 7]). Using Assumption 3.4 and the previous inequalities, we obtain

[Vuap|

0,4 < [V(SZv, (0) —un)lloa + [[VSZv, ()]0,
ShHSZv, (w) —unlloa +[[Vullo.q
S h(IS2 v, () — ullo. + [l — wnllo.d) + | Vul [ Va2
S B2 | Apunl| 2| Anun > + [|Apun ] | Va2

1 1
S [IVun[[2 [[Apun |

For the bound in the second line we have used the W1 (Q)-stability of the Scott—Zang
interpolation (see [7, Theorem 9.8.15]). Then, in order to obtain the bounds in the
third and fourth lines, we have invoked a Gagliardo—Niremberg inequality, the bound
(3.22), and the interpolation properties of the projector (see [7, Theorem 9.8.12]). In
particular, we have used the bound

1 1 3
|SZ2v;, () — o4 S |S2v;, (u) —ul|F[[SZ2v;, (u) —uf|? < k2 |Aul.

This proves the lemma. O
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4. Long-term stability in L (0, co; L2(£2)). Our first result proves that the
VMS finite element approximation of the Navier—Stokes equations (3.8) exhibits an
absorbing set in L? (©). A key difference with respect to previous analysis is the proof
of an LQ(Q) absorbing set for the subgrid component too. We prove the existence
of the LQ(Q) absorbing set and some long-term stability bounds in the next theorem
that holds in two and three dimensions. When there is no confusion, we will omit the
time label for the unknowns.

Let us start this section with short-term stability bounds that are straightforward
from (3.11) for T' < 0.

THEOREM 4.1 (short-term stability). Let Q C R? for d = 2 or 3. When the
time domain is bounded, i.e., T < oo, system (3.8) with ug € Hy(div 0,Q), f €
L%(0,T; L*()) satisfies the energy-type inequality

T
(s @I+ 15 + [ (92 + 7 af?) as
Tr
S [ (G0 )ast O ae for te 0.7

which implies that
uy, is bounded in L°°(0,T; L*(Q)), @ is bounded in L>=(0,T; L*()),
Vu, is bounded in L*(0,T; L*(Q)), 7 2@ is bounded in L*(0,T; L*(%)).

The previous stability results are obtained with the minimum requirement that
the body force f € L2(0,T; H '(£2)). However, those stability results are not uniform
with respect to T', since fooo [I£]|%,ds = oo for a constant body force, e.g., the gravity
force. In the next theorem, we will obtain long-term stability estimates that remain
effective when T" — oo. In order to obtain these results, a slightly more regular body
force is needed, i.e., f € L°(0,00; L*()).

Let us introduce the dimensionless number

o 9

()

defined in [25] as the dimensionless Grashof number; G can also be interpreted as Re?.
In the next theorems, we make use of p := vG. Since the forcing term is understood
in a Lebesgue sense, we understand the pointwise (in)equalities a.e. in time. For
the sake of conciseness, we will usually omit this indication and implicitly assume
distributional sense from here onwards.

THEOREM 4.2 (long-term stability in L>°(0,00; L*(2))). Let us assume that
Assumption 3.3 holds. Then, the solution of problem (3.8) for d = 2, 3 satisfies

uy, is bounded in L°°(0,00; L*()), @ is bounded in L>(0,00; L*(Q2)),
Vuy, is bounded in L}, (0, 00; L*()), T30 is bounded in L2,.(0,00; L*(Q))

for ug € Hy(div 0,9Q) and £ € L>®(0,00; L*()). On the other hand, the following
inequality holds:

IQI

(4.1) 1i?l>sup(IIUh(t)H2+ I(O1?) S =5 117 0,00:L2(2)):

which implies the existence of an absorbing set in L2(Q).
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Proof. Let us start from the equality (3.11), rewritten as

1d

(4.2) %

(han® + [10)*) + v Vun|* + 77 @] = (£, un).

In order to bound the right-hand side, we use Holder and Poincaré inequalities, the
2
latter in the form |v]|? < Cp|Q|7||Vv||? for any v € H(2). We obtain

[k 2,V 2
< _

(4.3) (f,up) S Cp 5 If]1* + 3 (IVug||“
Combining (4.2) and (4.3), we get

IQI

d 1y
(4.4) (lanll® + [a)?) + vl Vs |* + =@l < =[],

dt

which, integrated over [tg, t], leads to
¢
2 (e ()12 2 —1a2
[un @) + 2@ +/ (I Vanl® + 77 [[a]*) ds
to

(45) < [ B ieas + (el + a)l?)

On the other hand, using the Poincaré inequality in (4.2), the inequality (4.3), the
fact that k < ||, and the expression for 7 < h2v~!, we get

IQI

_2
a1+ [[a]1%) + 177 (Junl? + 18)°%) < =~ [I£]1*.

a

Now, we can use the classical Gronwall lemma (see [51]), obtaining

o

(@2 + [a(®)]2) < (1= exp (—vi2I~#t) ) = @)

+exp (—v|21~#t) (Jua(0)]? + a(0)] ) .

The previous inequality proves the L>°(0, oo; L?(Q))-stability results and the existence
of the L?(£2) absorbing set, such that the orbit associated to any ug € Ho(div 0, )
enters this subset at some time ¢*(p,up). Now, taking the limit superior for ¢t — oo,
we get

IQI

timsup (Jun (O + 180)1) S =5 11 0 1z

This proves the second part of the theorem. On the other hand, we get from (4.5)
that

t e Rk ik
/ wIVun|? + 77 Hal?) ds < <T +(t— ’50)> THfH%x(o,t;m(Q))v

to

which proves the L} (0, oo; L?(2))-stability results. O
REMARK 4.1. The previous theorem proves the existence of an absorbing set for
[up, @] in L*(Q) x L*(Q) of radius of the order of Re. Let us stress the fact that any
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stabilized finite element formulation without a dynamic subgrid model does not exhibit
the subgrid absorbing set and the L>(0,00; L*(Q)) subgrid stability bounds.

The subgrid component is related to the part of the pressure gradient and convec-
tive term L2-orthogonal to the finite element space. The goal of the VMS approach is
to provide pressure stability without the need of an inf-sup condition and a numerical
dissipation that will prevent energy pile-up at the smallest scales, effective as v — 0.
In the next theorem, we give a precise mathematical description of this fact; the idea
is to translate the subgrid stability estimates in terms of the finite element compo-
nents, as is usual for stabilized methods. The extra estimates for scheme (3.8) in the
next theorem, which the Galerkin finite element method (FEM) does not provide, are
weighted with a time-independent parameter 7o = inf,¢ 0,0y 7(%); i.e.,

T71 _ Cyv Ce SUP¢te(0,00) Huh(t)”‘l@
0 R h|Q) 7 '

Observe that the parameter 7 ! is well defined for a fixed h > 0 by using an inverse
inequality |[va|lo.e < h~(E=8)||vy| (for 2 < ¢ < o0o) and estimate (4.1). Thus, 7o does
not degenerate to 0. Let us stress the fact that the introduction of the weighting
parameter 7y comes from technical aspects in the subsequent analysis, but the results
apply to system (3.8) with the time-dependent expression of 7 in (3.7).

THEOREM 4.3. Let Q C R? for d = 2 or 3. Algorithm (3.8) with 2 < £ < oo in
(3.7) satisfies, for any w >0 and ty > 0,

1
7o [IVon + N(up, uh)HHgl(to,t0+w;Lq’(Q)) <C

forq = %, In the case £ = 2, there holds

6 |[Vpn + A, ws) | <c

Hy (o, totm; Wy b d+e)

for a fized e > 0, where (d+ €)' denotes the conjugate exponent of d+ e, and C is a
constant that depends on (ug, p,Q,@). In particular, for to — oo, C' depends only on
(0, ).

Proof. Recall that Py (-) is the orthogonal projection operator with respect to the
L? inner product. Let us set £ := ¢y + w. We take v, = Py (v) in the finite element
equation (3.8a), where the regularity of v will be defined later on, and integrate it

1
over a finite interval [to,?] and multiply the resulting equation by the scalar value 7.
For simplicity, let us also consider that v(¢) = v(tg) = 0. We get

by
[ (Pu(Tn A ) s
(4.6) to )
_ _/ 72 {(Ovan, vi) + v (Vun, Vva) — b (up, vi, @)} ds.
to

In the following, we bound the right-hand side terms in the finite element equation
(4.6). The first term can be bounded using integration-by-parts in time and the
definition of v in order to obtain

t

t 1 ¢ 1 1
—/ . (atuh,vh)ds:/ . (uh,atvh)dSS/ 2 [unlll|9pvallds

to to t

0
_ 1 B 1
1 g 2 t z
STg ( ||uh|2ds> < |8tvh|2ds> .
to to

(4.7)
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The convective term is bounded using Holder’s inequality for mixed norms (see [1])
as follows:

¢ 1 ¢ 1 -
- / b (un, v, @) ds < / 7 s e[ valods

to to

t
1, . 1
< / 7 1)1 vl ds
to

; Lo }
1
(48) sioft ([ rtaras) ([ valias )
to tO

where we recall that 2 < ¢ < oo in the definition (3.7) of 7, whereas ¢ = ;2. Let us
observe that ¢ > 2. Finally, using an inverse inequality, we obtain

t t
—/ Toéy(vuh,vVh)dsgf 2 B | Vgl [[vallds
to
t
(4.9) < ( /
to

to
L _ L
2 7 2
V||Vuh|2ds> (/ |vh||2ds> .
to
Combining (4.7)-(4.9), we get

t 1 1 t % i %
/705 (Ph(Vph+N(uh,uh)),v)ds<702< ||uh|2ds> (/ |8tvh|2ds>
to

to tO

i 3 i 3
1
+ Q|7 </ 7'_1|ﬁ|2d8> (/ |vh||3ds>
to to
B 1 B 1
t 2 t 2
+</ V||Vuh|2ds> (/ ||Vh|2ds> .
to tO

In view of the above discussion, we consider v € Hg (o, #; L7(£2)) to conclude that

1
(4.10) 73 Pu(Vpn + N (Why w)l| g 0 12 (0) < €

with ¢’ being the conjugate of ¢ and C involving the problem data (ug, p, 2, @), by
using the fact that Pj,(-) is a stable operator in L°, with 1 < s < oco. In particular,
for tg — oo, C' depends only on (p,),w) . Note that when ¢ = 2, we have ¢ = oo,
whose dual space is not identified with L!(€2). To bypass this problem, we use the
Sobolev embedding W(Jl’dJrE (Q) — L*>(Q), where d is the space dimension and € > 0
is a fixed number. Therefore, we have that

<C

1
7—02 HPh(vph + N(Uh, uh)|‘H51(t07{;wglw(d+5),(Q)) >~

when ¢ = 2 and (d + €)' is the conjugate of (d + ¢).
Our next step is to find a bound for the subscale part of Vpy, + N (up,uy). For

1
this we multiply the subscale equation by 77 and integrate it over a finite interval
[to, ]. We get

E 1 { 1
(4.11) / ¢ (P (Vpn + N(up,up)),v) ds = —/ ¢ (O + 77 'a,v) ds.

to tO
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For the right-hand side terms in the subgrid equation (4.11), we proceed as follows:

t t t
—/ - (atﬁ,v)ds:/ . (ﬁ,@tv)dsg/ 72 |1l 9]l ds
to to to
o 1, 3
} / Ja)2ds / lowviPds |
to to
_ _ 1 _ 1
t 1 t 2 t 2
—/ 2 (771, v)ds < /T*1|\ﬁ|\2ds |¥)%ds | .
to to to

S o

Therefore,

t 1 1 t % i %
/t 3 (P (Vpn + N wn)), v) ds < 7 ( / ||a|2ds) ( / |atv|2ds)
0 0 0
t

2 £ 3
+</ Tl|ﬁ||2ds> (/ |\7|2ds> .
to tO

Thus, we have proved by selecting v € H} (to,; L*(Q)) that

1
(4.12) 76 1 Bi (Von + N (un, un)) | =1 4 220y < C-
Then, it is clear that from (4.10) and (4.12) that we have

1
70 [Vor + N (an, un)ll =1 4 700 () < C
where C' depends only on (p, 2, w). Analogously, for ¢ = 2, we arrive at

Vpr + N (up, up)|| ,<C

Hgl(to,f;ng‘(dJrE),
for a fixed € > 0. O

REMARK 4.2. The previous result proves the effectiveness of algorithm (3.8) as a
stabilization technique. Both pressure stability and velocity stability that do not vanish
with v — 0 have been proved at all times.

REMARK 4.3. The previous results bound a sum of pressure and convection terms,
whereas it would be desirable to have separate control of these two terms. This kind
of result is not specific to our formulation, being a common feature of residual-based
stabilization techniques. In fact, this is the case even for the steady Navier—Stokes
equations (see, e.g., [14]). Numerical evidence shows the effectiveness of residual-
based stabilization techniques, even though separate bounds that would be effective for
large Re have not been proved so far. A partial remedy could be the split version of
the stabilization terms proposed in [16].

Connected to Remark 4.3, the next result provides an estimate for the convective
term independent of the pressure term when 2 < ¢ < co. For the linearized problem
and with divergence-free advection velocities, this would allow us to obtain as well
an estimate for the pressure gradient alone using Theorem 4.3. For the problem we
consider, this could also be achieved by introducing the pressure subgrid scale and
the additional control on the velocity divergence it provides, although we will not
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exploit this here (see [15, 16]). As far as we know, even though it is rather weak,
this is the first time that a result of this kind has been established. Similar weak
norms have been investigated in the framework of a posteriori error estimation for
convection-diffusion equations in [55].

COROLLARY 4.4. Let Q C R? for d =2 or 3. There holds

T3V - (u, ® up) < Clluyl2,

o 0w )
where s’ is the conjugate of s such that s = % i two dimensions and s = 516—326 m
three dimensions, when 2 < £ < oo.

Proof. Let us give the proof for the two-dimensional case only. For each 2 < £ <
00, we can find 2 < r < £ such that the interpolation inequality

1 1
o.r < lunlZlunllg

[[ar|

holds, with £ 4+ 7 = 2. Therefore, thanks to § + 2 + 1 = 1, we write, for all
¢ € W),

TV - (up @ up), ) < 72 |upllol[unlloal Vollo,s

1 1/2
< 7% |[up |2 un 16/ 1o, Vllo,s

hlan| v

Unrllo,¢ 1/2

< h4llanlo,al|@l1,s
( — Cch”umlmﬁ) o llo.al]

S llhslunllg 2,

where in the last line we have used the inverse inequality || va|o4 S hz Ivallo,2- O

5. Absorbing set in H'(Q2) and the global attractor for d = 2. In this
section, we prove the existence of an absorbing set in H*(Q), which is the key result
for the existence of a global attractor for algorithm (3.8). Let us introduce first the
uniform Gronwall lemma (see, e.g., [53]).

LEMMA 5.1 (uniform Gronwall lemma). Let x, p, f be three positive locally
integrable functions on (to,0), such that O:x is locally integrable on (to,00), which
satisfy

O < px+ f a.e. for t>ty,

t+w t+w t+w
/ wu(s)ds < aq, / f(s)ds < ag, / x(s)ds < as for t > tg,
t t t

where w, a1, as, ag are positive constant values. Then,
asz
z(t+w) < (— + ag) exp(ay) a.e. for t>tg.
w

In order to get the bounds that lead to the existence of the H'(£2) absorbing set,
let us introduce the scalar value
-1 Osl/ CCU
7- =
vooom? h

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/05/17 to 150.214.182.215. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

1032 S. BADIA, R. CODINA, AND J. V. GUTIERREZ-SANTACREU

where U > 0 is a bounded characteristic velocity of the problem. In particular,
U = SUDe (4.00) 1|~ 7||up|| is a possible choice, since £ > 2 and SUD;e (1,00) || Un | has
been bounded in Theorem 4.2. The long-term stability of the subgrid velocity in the
next theorem is weighted by 7, 1 Again, the introduction of the weighting parameter
Ty is purely technical, and the following results apply to system (3.8) with the time-
dependent expression of 7 in (3.7). Let us recall that it is only the definition of 7 that
depends on /.

THEOREM 5.2 (H' () absorbing set). Let Q C R? be such that Assumptions 3.3
and 3.4 hold. Then, the solution (up,pn, Q) of problem (3.8), for 2 < { < oo, satisfies
the long-term stability bound

. 1~ a
lim sup (V||Vuh||2 + TU1HuH2) < (a3 + —2) exp (a1),
t—00 w
with
t+w
/ v (v lup|? + 1) (v Vun|? 4+ 7t a)?) ds S (v v ) ap = aa,
t
t+w
/t (1?2 +U") ds < w (||f||2L°°(o,oo;L2(Q)) + U4) =:as,

e wv
/ (1/|\Vuh||2—|—7'[jl|\ﬁ||2) ds < p? <1+ﬁ) =:a3
t

for any fived w > 0. This bound proves the existence of an absorbing set in HI(Q)

1
for the finite element fluid velocity and an absorbing set in LQ(Q) for ;.

Proof. Let us reformulate system (3.8a), (3.8¢), and (3.8b) in an appropriate way
for the subsequent analysis, introducing the new variables z; and z:

(5.1a) (Opuap, vi) + b (up,up, vi) + (zn, vi) — b (up, vy, a) = (f,vy),

(5.1b) v(Vup, Vvy) = (pr, V- vi) = (20, Vn),
o s luplle U - o

(5.1c) (O, V) + (2,V) + C. <|Q|%h - E) (4,v) — b (up,up,v) =0,

(5.1d) o (@, V) + (Vps, V) = (2,V),

(5.1e) (gn, V-up) — (@, Vgy) =0

First, we take v;, =z, in (5.1a) and v =z in (5.1c) in order to get

(5.2a) (Ovup, zp) + b (up,up, zn) + ||zhH2 —b(up,zp,0) = (f,2),
(5.2b) (00,2) + ||2)|> = —b (up,up, 2) — Ce <||;;|L;|Z — %) (0,z) .

From the regularity of the solution in Lemma 3.1, we are allowed to integrate
(5.1b) and (5.1b) in the time domain for vy, = dyuy, and v = 9;u. Doing that, we
finally get

1d
(5-32) §E”||Vuh|\2 — (pn, V - Opun) = (zn, Opun)
1d N - .
(5.3b) §&T51||u||2 + (Vpp, 0id) = (z,0,0) .
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Note that we have used the fact that 7 is constant in time; this technical reason pre-
vents us from getting long-term subscale estimates multiplied by the time-dependent
stabilization parameter T that is used in the algorithm. Now, using [51, Lemma 1.1,
Chapter 3] and the regularity of the solution in Lemma 3.1, we obtain

d N
gy —(up +1,Vq,) = (0i(up, +1),Vgn) =0 Yaqn € Q.

We invoke this result in (5.2) and (5.3), obtaining

d (v 24 U1 2 2 2
3 \ g IVunll™ +==llal” | + llzn ] + ll2[|° = (£, )

(5.4) — b (up, up, zp) — b (un, up, z) + b (un, zp, @) — C <|||(‘;|L”2 _ %) (,2) .

Before controlling the right-hand side of (5.4) we introduce some technical tools. Let
us define @ € H}(Q) N H?(Q) as the solution of the following Stokes problem:

—vAAO+Vp=gi=z,+z+ (1,1 —7;)a inQ,
V-a=0 in Q,
ua=0 on 01,

where 7,71 := C;h=2v (see (3.15)). From (5.1b), (5.1e), (5.1d), one can write

z/(Vuh,Vvh) — (ph,v Vh) (Zh,Vh)
(gn, V-uap) — (1 th) =0,
(@, V) + (Vpn, ¥) = (7t — 7 Da+ 2, 7).

From Lemma 3.2, we know that 2 ||V (& — up)|| + 2~ vz ||Ja| < hv~2||g||. Next, we
want to bound ||Apuy|| in terms of v~ 1||g||. Indeed, taking u € H§(Q) N H*(Q) as
the solution of Au = Apuy, we obtain (see [34])

[Arup|? < = (Vun, VAR uy)
< - (V(u - uh), VAhuh) + (Afl, Ahuh)
< (| Apunll (R V (@ — up)|| + | Adl])

S Al gl

This result allows us to say that v||Apuyl + h~2v|al| < ||g|l. On the other hand,
using the expression of 7y, we find

Igll < llzll + 1z + 2~ Ul < llzall + 2] + U2 + v~ 7 ],

Our goal now is to bound the right-hand side of (5.4). For every nonlinear term,
we will repeatedly apply the results of Lemma 3.3 and Young’s inequality. For the
first nonlinear term on the right-hand side of (5.4), we use these ingredients and the
fact that v||Apunl < |lgll:

b(wn, wn, zn) < [lupflo.al Vunlloallzn]| < sl | Vus ||| Anan]|? ||
vl

<Y _
N(S

a1 Vs || + 6|z 1

IIHhH IVunll* + 6ligll* + dllzn |,

N
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and, analogously,

-2
~ v ~
b(un, un,2) S —5 [[unl®[Vun " + dlg]* + o)1z >

For the third nonlinear term, we use the inverse inequalities in (3.2), the expression
for 7,,, and the result 7, !||a|| < ||g||, obtaining the following bound:
b(an,zn,0) < [[afl[unlloalVzrloa + [[all|V - anllo4lznlo.a
< h7Hall[anllo,allzn o,
1y~ 1 1 1 1
S h7Hallun]| 2 ([ Vus | 2|z 7 [ V2 2

< unll 2Rz a2 Vg 2h 6|2 | 24

—2
v 1 11~
S Z lwlPv [l Van]® + 6l + dllzn”

v 2 9~
S o loall® G2 m 28] + [ Vanll) + dllgl® + ollza] >

Finally, by using the Sobolev embedding H'(Q) — L”(Q2), i.e., |[ul, < C’p|Q|% (V||
for d = 2, and the expression of 7,,, we bound the last term on the right-hand side of
(5.4) as follows:

lorle U3 g 2) < L)t + 2o 4+ Lo2r2 g + o)z
[ 4 4 4

For the force term, we simply have
1
(£, 2) S 561 + Bl
The above bounds applied to (5.4), picking ¢ small enough, yield
d 1~ .
3 WIVaRl 7 alf?) + flza]* + 2]

2 (v lunl? 4+ 1) (PIVaalt + 72l + Ut + £
v (2 Jun? + 1) (vIVusl? + 7t a)l?) (v Vas? + 75t lal?) + U+ (1F])2

<v
S
We finish the proof using the uniform Gronwall lemma over the previous inequality,
with the constants in the statement of Theorem 5.2. o

The previous stability bounds lead to an absorbing set in H 1(Q) for the finite
element component of the velocity. With regard to the subgrid scale, Theorem 5.2

proves that 7, %{i also exhibits an absorbing set in L?(£2), which can only be obtained
for dynamic subgrid models. With regard to the norms involved, the previous results
are stronger than those in Theorem 4.2. However, the radius of the absorbing set in
Theorem 4.2 is much smaller than the one for Theorem 5.2 for large Re. Thus, from a
numerical point of view, in which constants do matter, the L? () results are stronger.
We conclude the section with the proof of the existence of a global attractor.
COROLLARY 5.3. Let Q C R? satisfy Assumption 3.3. For autonomous systems,
i.e., if f is time-independent, the L2(Q) absorbing set for uy is a global attractor.
Proof. The existence of an absorbing set in H 1(Q) obtained in the previous
theorem allows us to say that there is always a ball in H*(Q) that absorbs all orbits
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for large enough time values. Due to the Rellich-Kondrachov embedding theorem,
ie., HY(Q) — L?*(Q), the L*(Q2) absorbing set in Theorem 4.2 is in fact compact in
dimension 2. Thus, the operators S(¢) are uniformly compact for ¢ large enough, and
the existence of a compact global attractor can be proved (see [53, Theorem 1.1] for
details). O

6. Conclusions. We have presented a finite element approximation of the
Navier—Stokes equations with numerical subgrid scale modeling for which the results
obtained here are easily summarized: we have been able to prove that the long-term
behavior is similar to what is found for the pure Galerkin method, plus additional con-
trol on the velocity subgrid scales. In particular, we have shown that uy is bounded
in L?(Q) for all time and so is the velocity subgrid scale i, that in two dimensions the
spatial dissipation associated to uy, is bounded in L?(0,00) and so is the dissipation
associated to 1, and that uy, has an absorbing set in L*(Q) and so does . In the
two-dimensional case, for u;, the absorbing set can be shown to be a global attractor
using classical arguments.

The benefit of our approach is that additional control on the pressure and the
convective terms can be recovered from the stability obtained for the velocity subgrid
scales. The key point, and in some sense the essence of stabilized FEMs for convection
dominant flows, is that this control remains meaningful for v — 0.

This last issue brings us to discuss the limitations of our analysis. As for all
stabilized formulations we are aware of, full control on the pressure is not obtained
(not even for the stationary Oseen problem), but only the sum of the pressure gradient
and the convective term can be shown to be stable. In practice, however, this seems to
be enough, although, as far as we know, no theoretical explanation has been provided.
We have, however, provided a weak estimate in this direction, showing that some
control can be proved for the convective term and the pressure gradient alone. Another
limitation of our analysis is that we have needed to assume that the advection velocity
is up, and not up +1u, and that we have had to take a constant stabilization parameter,
whereas in practice it is computed from local values (at least at the element level).

Let us stress also that the key for being able to prove our stability estimates is
twofold: the velocity subgrid scale u needs to be time-dependent and orthogonal to
the finite element space. These ideas were introduced in [15], and we have used them
in an essential way in the analysis presented here, starting with the existence and
uniqueness proof. For these reasons, it is not clear whether or not the results proved
in this work will be shared by nondynamical stabilized formulations and/or techniques
that do not enforce L2-orthogonality (see [17, 10, 12, 6, 36, 39] for examples).

The next issue we wish to consider is the design of time integration schemes that
preserve the stability results proved here for the time-continuous case, particularly
considering that the time integration of u, and of u will probably have different
requirements. This is, however, the subject of future research.

Acknowledgment. We thank an anonymous reviewer for insightful comments
and suggestions.
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