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Astrophysical reaction rate for 9Be formation within a three-body approach
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The structure of the Borromean nucleus 9Be (α + α + n) is addressed within a three-body approach using the
analytical transformed harmonic oscillator method. The three-body formalism provides an accurate description of
the radiative capture reaction rate for the entire temperature range relevant in astrophysics. At high temperatures,
results match the calculations based on two-step sequential processes. At low temperatures, where the particles
have no access to intermediate two-body resonances, the three-body direct capture leads to reaction rates larger
than the sequential processes. These results support the reliability of the method for systems with several charged
particles.
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I. INTRODUCTION

The origin of elements in the Universe is an important
topic in nuclear astrophysics [1]. The formation of heavy
nuclei from light elements needs to overcome the instability
gaps at mass numbers A = 5 and A = 8 [2]. At the helium
burning stage of stars, the triple-α reaction for the formation
of 12C is the main nucleosynthesis process. However, in
neutron rich environments, the reaction α(αn,γ )9Be followed
by 9Be(α,n)12C may dominate, depending on the astrophysical
conditions [3]. The relevance of this process has been linked to
the nucleosynthesis by rapid neutron capture (or r process) in
type II supernovae [3–6], so establishing an accurate rate for
the formation of 9Be is essential for the r-process abundance
predictions [7,8].

The radiative three-body capture processes are essential in
overcoming the A = 5,8 gaps [2,9], but traditionally they have
been described as two-step sequential reactions [1,3,10–13].
When at least one of the two-body subsystems shows a low-
lying narrow resonance, the sequential picture provides a rather
accurate description of these reactions for high-temperature
environments, where the intermediate states can be populated.
However, at low temperatures the particles may have no
energy to populate intermediate resonances, and therefore the
direct three-body capture plays an important role [14–16].
Moreover, the intermediate configurations may not be present
or show a too quick decay. So, a complete three-body
formulation is needed to describe properly the reaction rates
of such nuclei in the entire temperature range.

The complete computation of three-body reactions in the
whole energy range requires a narrow grid of continuum
states right above the breakup threshold [14], which is a
difficult task. The asymptotic behavior of continuum states
for systems with several charged particles is not known in
general, and very involved procedures are needed to deal with
this problem [16–18]. In a recent work [19,20] we presented
a pseudostate (PS) method based on an analytical local
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scale transformation (LST) of the harmonic oscillator (HO)
basis, the transformed harmonic oscillator (THO) method. We
generalized the analytical THO method for three-body systems
and successfully applied it to the Borromean nucleus 6He
(α + n + n) system. PS methods consist of diagonalizing the
Hamiltonian in a complete set of square-integrable functions, a
procedure which does not require going through the continuum
wave functions, and the previous knowledge of the asymptotic
behavior is not needed. Furthermore, in the analytical THO
method, the parameters of the transformation govern the radial
extension of the THO basis. This provides the advantage
of allowing the construction of an optimal basis for each
observable of interest [19,21,22]. The analytical THO basis
can describe very accurately the strength functions in the
low-energy range, providing a good description of the radiative
capture reactions.

In the present work we apply the analytical THO method to
the Borromean nucleus 9Be, whose astrophysical relevance
has been pointed out. The purpose of this paper is to
show the reliability of the method when applied to systems
with more than one charged particle, and to confirm the
importance of the direct three-body capture at low temperature.
The full three-body formalism allows the treatment of the
direct and sequential, resonant and nonresonant processes on
the same footing. Thus these processes do not need to be
treated separately when estimating the total contribution to the
astrophysical reaction rate [16,23].

The paper is structured as follows. In Sec. II the three-body
formalism is presented. The analytical THO method and the
expression for the radiative capture reaction rate are shown.
The electromagnetic transition probabilities are derived for a
system with two identical charged particles. In Sec. III the full
formalism is applied to the case of 9Be, and the rate of the
radiative capture reaction α + α + n → 9Be + γ is obtained.
Finally, in Sec. IV, the main conclusions of this work are
summarized.

II. THREE-BODY FORMALISM

The three-body formalism used in this work is described
in detail in Ref. [19], where it is applied to a system with a
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FIG. 1. The three sets of scaled Jacobi coordinates.

single charged particle. In this section, we summarize the main
features of the formalism and we derive the electromagnetic
transition probabilities B(Oλ) for the case of a system with
two identical charged particles, such as 9Be (α + α + n).

In order to describe the three-body system we use hy-
perspherical coordinates {ρ,αk,̂xk,̂yk}, which are obtained
from the Jacobi coordinates {xk, yk}. Note that there are
three possible Jacobi systems, each one denoted by the label
k = 1,2,3. The variable xk is proportional to the relative
coordinate between two of the particles and yk is proportional
to the coordinate from the center of mass of these two particles
to the third one, both with a scaling factor depending on their
masses [24]. We are using the odd-man-out notation in which,
for example, the Jacobi-1 system corresponds to the Jacobi
system in which the particles (2,3) are related by the coordinate
x1 (see Fig. 1).

The hyperradius ρ and the hyperangle αk are related to the
Jacobi coordinates as

ρ =
√

x2
k + y2

k , (1)

αk = tan

(
xk

yk

)
. (2)

While the hyperangle depends on the Jacobi-k system, the
hyperradius does not.

A. Analytical THO

The THO method consists of diagonalizing the Hamiltonian
of the system in a discrete basis of L2 functions, the THO
functions, in one of the Jacobi systems (for simplicity, if k is
fixed we do not specify it)

ψTHO
iβjμ (ρ,�) = RTHO

iβ (ρ)Yβjμ(�), (3)

where � ≡ {α,̂x,̂y} is introduced for the angular dependence
and β ≡ {K,lx,ly,l,Sx,jab} is a set of quantum numbers
called a channel. In this set, K is the hypermomentum, lx
and ly are the orbital angular momenta associated with the
Jacobi coordinates x and y, respectively, l is the total orbital
angular momentum (l = lx + l y), Sx is the spin of the particles
related by the coordinate x, and jab results from the coupling
jab = l + Sx . If we denote by I the spin of the third particle,
that we assume to be fixed, the total angular momentum j is
j = jab + I . The functions Yβjμ(�) are states of good total
angular momentum, expanded in hyperspherical harmonics
(HH) [25,26] as shown in Appendix A [see Eq. (A2)].

The THO hyperradial functions RTHO
iβ (ρ) are based on a

LST, s(ρ), of the HO functions:

RTHO
iβ (ρ) =

√
ds

dρ
RHO

iK [s(ρ)], (4)

where i denotes the hyperradial excitation. In this paper, as in
Refs. [19,21,22], we adopt the analytical form of Karataglidis
et al. [27],

s(ρ) = 1√
2b

⎡⎣ 1(
1
ρ

)ξ + (
1

γ
√

ρ

)ξ

⎤⎦
1
ξ

, (5)

depending on the parameters ξ , γ , and the oscillator length
b. The HO hyperradial variable s is dimensionless according
to the transformation defined above [Eq. (5)]. In this way,
we take the oscillator length b as another parameter of the
transformation. We have fixed for all calculations ξ = 4 as in
Ref. [19], since a very weak dependence of the results on this
parameter was found previously. Note that the THO hyper-
radial wave functions depend, in general, on all the quantum
numbers included in a channel β, however the HO hyperradial
wave functions only depend on the hypermomentum K .

The states of the system are then given by diagonalization of
the three-body Hamiltonian in a finite basis up to a maximum
hypermomentum Kmax, which determines the number of
channels, and imax hyperradial excitations in each channel,


njμ(ρ,�) =
∑

β

imax∑
i=0

Ciβj
n RTHO

iβ (ρ)Yβjμ(�), (6)

where C
iβj
n are the diagonalization coefficients, and the label

n enumerates the eigenstates.

The function s(ρ) behaves asymptotically as γ

b

√
ρ
2 and

hence the THO hyperradial wave functions obtained behave at
large distances as exp (−γ 2ρ/2b2). Therefore, the ratio γ /b
governs the asymptotic behavior of the THO functions: as γ /b
increases, the hyperradial extension of the basis decreases
and some of the eigenvalues obtained by diagonalizing
the Hamiltonian explore higher energies [21]. That is, γ /b
determines the density of PSs as a function of the energy. This
gives the freedom to choose an appropriate basis depending
on the observable of interest.

B. Radiative capture reaction rate

We consider the radiative capture reaction of three particles,
(abc), into a bound nucleus A of binding energy |εB |, i.e., a +
b + c → A + γ . The energy-averaged reaction rate for such
process, 〈Rabc(ε)〉, is given as a function of the temperature T
by the expression [14,19]

〈Rabc(ε)〉(T ) = ν!
�

3

c2

8π

(axay)3/2

gA

gagbgc

1

(kBT )3

×
∫ ∞

0
(ε + |εB |)2σγ (ε + |εB |)e −ε

kB T dε. (7)

where ε = εγ + εB is the initial three-body kinetic energy, εγ

is the energy of the photon emitted, εB is the ground-state
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energy, gi are the spin degeneracies of the particles, ν is the
number of identical particles in the three-body system, ax and
ay are the reduced masses of the subsystems related to the
Jacobi coordinates {x, y}, and σγ (εγ ) is the photodissociation
cross section of the system A. This function can be expanded
into electric and magnetic multipoles [15,28],

σ (Oλ)
γ (εγ ) = (2π )3(λ + 1)

λ[(2λ + 1)!!]2

(
εγ

�c

)2λ−1
dB(Oλ)

dε
, (8)

which are related to the transition probability distributions
dB(Oλ)/dε, for O = E,M .

The integral in Eq. (7) is very sensitive to the dB(Oλ)/dε
behavior at low energy and, for that reason, a detailed
description of the transition probability distribution in that
region is needed to avoid numerical errors. Accordingly to
the traditional literature [29], in the absence of low-energy
resonances the first multipole contribution is the dominant one
and the electric contribution dominates over the magnetic one
at the same order.

C. Electromagnetic transition probability B(Oλ)

As in Refs. [19,24], we follow the notation of Brink and
Satchler [30]. The reduced transition probability between
states of the system is defined as

B(Oλ)nj,n′j ′ ≡ B(Oλ; nj → n′j ′)

= |〈nj‖Ôλ‖n′j ′〉|2
(

2λ + 1

4π

)
, (9)

where ÔλMλ
is the electric or magnetic multipole operator of

order λ, and the |njμ〉 denotes the wave function given by
Eq. (6).

We consider first electric transitions, involving the matrix
elements of the electric multipole operator Q̂λMλ

. This opera-
tor, for a general system with three particles, takes the form in
the Jacobi-k set

Q̂λMλ
(xk, yk) =

(
4π

2λ + 1

)1/2 3∑
q=1

Zqer
λ
q YλMλ

(̂rq), (10)

where Zq is the atomic number of the particle q, e is the
electron charge, and rq is the position of particle q with respect
to the center of mass of the system, which in the Jacobi-q
system is given by [31]

rq =
√

m

mq

(MT − mq)

MT

yq . (11)

Here m is a normalization mass, taken as the atomic mass
unit, and MT is the total mass of the system. We describe the
system in a preferred Jacobi set, k, however the expression
for the electric multipole operator given by Eq. (9) can be
easily expressed, in general, using different Jacobi systems.
The relation between harmonic polynomials in different Jacobi

α1

α

2n

3

x
y

FIG. 2. (Color online) 9Be in Jacobi-T system.

sets is given by the expression [32]

yλ
q YλMλ

(̂yq) =
λ∑

l=0

(−1)λxλ−l
k (sin ϕqk)λ−lyl

k(cos ϕqk)l

×
√

4π (2λ + 1)!

(2l + 1)!(2λ − 2l + 1)!

× [Yλ−l (̂xk) ⊗ Yl (̂yk)]λMλ, (12)

with

tan ϕqk = (−1)P
√

mpMT

mqmk

, (13)

depending on the mass of the particles and the parity (−1)P of
the permutation P of {k,p,q}. The identity transformation is
given by ϕkk = π . Using Eq. (12) we can rewrite the harmonic
polynomial for each particle q as a function of the Jacobi
coordinates in the preferred Jacobi system k. This is equivalent
to rotating the functions to the Jacobi system q where the
position of each particle is given by a vector proportional
to yq .

If we consider a system with two identical charged particles,
such as 9Be, we describe the problem using the Jacobi-T
system shown in Fig. 2. In the T system the two α particles
are related by the x coordinate. For simplicity, the subindexes
corresponding to the chosen Jacobi set are normally omitted.
So in this case, x = x3 and y = y3.

From Eqs. (11)–(13), the expression (10) can be reformu-
lated for dipolar transitions (λ = 1) as

Q̂1M1 = −
(

4π

3

)1/2

2(cos ϕ23)Z2e

√
may2

m2
yY1M1 (̂y). (14)

Here ay2 = ay1 is the Jacobi mass factor related to the
coordinate y2,

ay2 = m2(m3 + m1)

MT

, (15)

and m2 = m1, in this case, is the α particle mass. The x
component is absent in Eq. (14) because the two charged
particles are identical, which simplifies the problem. This
expression is analogous to Eq. (18) in Ref. [19] but including
a factor 2 cos(ϕ23) which, for 9Be, equals 2/

√
10.

To test the completeness of the basis, we can also calculate
the sum rule for electric dipolar transitions from the ground
state (g.s.) to the states (n,j ). Using Eqs. (9) and (14) we obtain

ST (E1) = 3

4π

Z2e2may2

m2
2

(2 cos ϕ23)2〈g.s.|y2|g.s.〉. (16)
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If the system shows low-energy resonances coupled to
the ground state by magnetic transitions at the same order
than electric transitions, magnetic contributions may play
a significant role. We consider then magnetic transitions,
involving the matrix elements of the magnetic operator M̂λMλ

.
This operator can be expressed as a sum of two terms: the
orbital and spin terms [33]. Following the notation of Brink
and Satchler,

M̂orb
λMλ

(�r) = e�

2mc

√
4πλ

∑
q

rλ−1
q

2g
(q)
l

λ + 1
[Yλ−1l]

(q)
(λ−1,1)λ,Mλ

,

(17)

M̂
spin
λMλ

(�r) = e�

2mc

√
4πλ

∑
q

rλ−1
q g(q)

s [Yλ−1s](q)
(λ−1,1)λ,Mλ

.

(18)

Here gl and gs are the orbital and spin g factors, and
[Yλ−1j ](λ−1,1)λMλ

is a tensorial product of order 1,

[Yλ−1j ](λ−1,1)λ,Mλ
≡

∑
ην

Y(λ−1)η

√
2jν + 1〈(λ − 1)η1ν|λMλ〉.

(19)

For dipolar transitions, the total magnetic operator is given
then by

M̂1M1 = M̂orb
1M1

+ M̂
spin
1M1

= e�

2mc

∑
q

[
g

(q)
l lq + g(q)

s sq

]
M1

. (20)

These terms need to be evaluated for each particle. We express
again the position of particle q in the Jacobi-q system by
Eq. (11), and we rotate the wave functions |nj 〉 to that system
using the transformations between different Jacobi sets (see,
for instance, Ref. [34]). The matrix element formula is given
in Appendix A.

Transition probabilities given by Eq. (9) are a set of discrete
values. In order to obtain a continuous energy distribution, the
best option is to do the overlap with the continuum wave
functions [35], which are not known in general. In this work,
as in Ref. [24], we consider that a PS with energy εn is the
superposition of continuum states in the vicinity. There are
several ways to assign an energy distribution to a PS. Here, as
in Ref. [19] we assign a Poisson distribution for each discrete
value of B(Oλ)(εn), with the form

D(ε,εn,w) = (w + 1)(w+1)

εw+1
n �(w + 1)

εw exp

(
−w + 1

εn

ε

)
, (21)

which is properly normalized. Poisson distributions tend
smoothly to zero at the origin, which is the physical behavior
we expect for the energy distributions of the pseudostates.
The parameter w controls the width of the distributions; as
w decreases, the width of the distributions increases. The
prescription to fix an appropriate w parameter will be the
same as that introduced in Ref. [19]. It consists of choosing
the value of w that ensures a smooth B(E1) distribution
without spreading it unphysically. We present more details
and a practical example in Appendix B.

III. APPLICATION TO 9Be

The 9Be nucleus can be described as a three-body system,
comprising two α particles and one neutron. It shows a
Borromean structure, since neither of the binary subsystems
5He nor 8Be are bound. 9Be is a loosely bound system with a
3/2− ground state located at 1.5736 MeV below the α + α + n
threshold [36]. The presence of a very narrow two-body
8Be resonance at 0.092 MeV above the three-body threshold
suggests a sequential description of the formation process [3].
Due to the small lifetime of the 5He system (∼10−21 s)
compared to 8Be (∼10−16 s), the sequential synthesis is
considered to proceed mainly through 8Be [37]. Nevertheless,
the sequential picture may underestimate the reaction rate at
low temperature by several orders of magnitude [14].

This nucleus presents a genuine three-body 1/2+ resonant
state around 0.11 MeV with a relatively large width [38].
Therefore, the photodissociation cross section of 9Be shows
a relatively broad peak at the energy of the resonance,
very close to the three-body and two-body thresholds. This
resonance is the main contribution to the α(αn,γ )9Be reaction
rate, especially at the lowest temperatures where other jπ

contributions are negligible [6,14]. The experimental cross
section shows also a rather narrow peak around 0.85 MeV
associated with the 5/2− resonance. In this work, we have
included in the calculation the 1/2+, 3/2+, 5/2+ states,
all connected to the ground state by electric dipolar (E1)
transitions. Magnetic dipolar (M1) transitions to the 1/2−,
3/2−, 5/2− states are also known to have an influence on
the reaction rate [3,5,6,37]. Although they are not expected to
change the low-temperature tail [6], we have also calculated
magnetic contributions. Our model treats the resonant and
nonresonant parts of the spectrum on the same footing, both
contributing to the strength function and the reaction rate.

A. Hamiltonian

Our three-body model includes the α-n potential from
Ref. [39], which has been shown to provide reasonable results
for 6He [19,24]. In order to account for the Pauli principle
needed to block occupied α states to the neutron, a repulsive
s-wave component is introduced in the α-n interaction, with
the requirement that the experimental phase shifts are correctly
reproduced. For the α-α nuclear interaction we include the Ali-
Bodmer potential [40] version “a” with a different repulsive
term for s and d waves:

Vαα(r) = (125P̂l=0 + 20P̂l=2)e−(r/1.53)2 − 30e−(r/2.85)2
.

(22)

In this expression, the repulsive terms block the α-α bound
states, and their strengths need to be different in order
to reproduce the experimental phase shifts. This potential
together with a hard-sphere Coulomb interaction with a
Coulomb radius of rCoul = 2.94 fm,

V Coul
αα (r) = Z2e2 ×

{(
3
2 − r2

2r2
Coul

)
1

rCoul
, r � rCoul,

1
r

r > rCoul,
(23)
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TABLE I. Three-body force [Eq. (24)] parameters for different
jπ states. See text for details on Kmax and imax values for each jπ .

jπ v3b (MeV) r3b (fm) a3b

3/2− +1.11 6.1 5
1/2+ −2.45 6.1 5
3/2+ −1.60 6.1 5
5/2+ −0.18 6.1 5
5/2− +1.65 6.1 5
1/2− +0.20 6.1 5

reproduces the exact position of the two-body s-wave 8Be
resonance. The modification of the Ali-Bodmer potential
introduced by Fedorov et al. [41] should not be used in
combination with the Coulomb interaction given by Eq. (23),
since they do not reproduce the position of the two-body
resonance, and this is crucial to obtain the right behavior in
the low-lying 9Be continuum.

These binary interactions are adjusted to reproduce the
phenomenology of the two-body systems. Since three-body
models are an approximation to the full many-body system,
including only two-body interactions may lead to devia-
tions from the experimental three-body energies [15,24,34].
Therefore, it is usual to include a structureless hyperradial
three-body force, which can be fixed to adjust the energy of the
system without distorting its structure. We use the following
expression, as in Refs. [19,24]:

V3b(ρ) = v3b

1 + (
ρ
r3b

)a3b
. (24)

There are different choices in the literature, and we have
checked that the specific form of this interaction plays
a negligible role on the final results. The parameters for
the three-body force are chosen to adjust the energy of the
experimentally known states of the system; in this case, the
ground state of 9Be and the 1/2+, 3/2+, 5/2+, 5/2−, and
1/2− resonances. The value of these parameters are different
for each jπ state, and they are given in Table I.

We diagonalize the Hamiltonian in a finite THO basis with a
maximum value of the hypermomentum Kmax and a maximum
number of hyperradial excitations in each channel imax. We
calculate separately the kinetic energy matrix elements and the
potential matrix elements. The hyperangular integration of the
potential matrix elements are performed, as in Refs. [19,24],
by using a set of subroutines of the code FACE [34].

B. 3/2− ground state

The 3/2− states are described with an analytical THO basis
defined by parameters b = 0.7 fm and γ = 1.4 fm1/2, trying to
minimize the size of the basis needed to reach convergence of
the ground state. The three-body force parameters are taken as
v3b = 1.11 MeV, r3b = 6.1 fm, and a3b = 5, chosen to adjust
the ground-state energy and the matter radius of 9Be.

In Figs. 3 and 4 we show the convergence of the ground-
state energy and the matter and charge radii with respect to
the maximum hypermomentum Kmax with imax fixed to 20.
Kmax determines the number of channels included in the wave

7 11 13 15 17 19 21 23 25 27 29 319
K

max

-1.6

-1.4

-1.2

-1

ε B
  (

M
eV

)

FIG. 3. Convergence of the ground-state energy of 9Be with
respect to the maximum hypermomentum Kmax.

function expansion. From Fig. 3 we see that the value Kmax =
30 provides a well converged ground state with energy εB =
−1.5736 MeV in agreement with Ref. [36]. Assuming that
the α particle matter and charge radii are 1.47 and 1.6755 fm,
respectively, for the 9Be ground state we obtain a charge radius
of rch = 2.508 fm and a matter radius of rmat = 2.466 fm.

Our value for the charge radius is in agreement with the
experimental value of 2.519 ± 0.012 fm [42]. This reveals
that our description of the system is rather accurate. For
the matter radius our value is larger than the one given
in Ref. [43], 2.38 ± 0.01 fm, obtained with Glauber-model
calculations from interaction cross sections at high energies.
A different estimation from a simple microscopic model by
using cross sections at intermediate energies gives a radius of
2.53 ± 0.07 fm [44], in better agreement with our calculation.
It has been pointed out [45] that the optical limit approximation
of Glauber models, such as in Ref. [43], may underestimate the
radius of loosely bound systems. In halo nuclei, the few-body

9 11 13 15 17 19 21 23 25 27 29 317
K

max

2.42

2.44

2.46

2.48

2.50

2.52

r 
 (

fm
)

matter radius
charge radius

FIG. 4. (Color online) Convergence of the matter radius (solid
line) and the charge radius (dashed line) of 9Be with respect to the
maximum hypermomentum Kmax.
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TABLE II. Ground-state energy εB , matter radius rmat, charge
radius rch, and sum rule ST (E1) as a function of imax with Kmax = 30.
A fast convergence is observed.

imax εB (MeV) rmat (fm) rch (fm) ST (E1) (e2fm2)

5 −1.5659 2.453 2.502 0.5565
10 −1.5734 2.465 2.507 0.5760
15 −1.5736 2.466 2.508 0.5762
20 −1.5736 2.466 2.508 0.5762
25 −1.5736 2.466 2.508 0.5762

structure implies strong spatial correlations between the core
and valence nucleons, so the optical limit fails. 9Be is not a halo
system but it shows a strong few-body intrinsic configuration
with the two α particles loosely bound by the remaining
neutron, so the usual estimations of its radius from interaction
cross sections may be misleading.

In Table II we show the convergence of the ground-state
energy, its matter radius, the charge radius, and the sum
rule for electric dipolar transitions [Eq. (16)] as the number
of hyperradial excitations imax increases. Calculations are
performed for a fixed value of Kmax = 30, and we can see
a rapid convergence.

In addition, the 9Be system shows a large experimental
quadrupole deformation, with a quadrupole moment of 5.29 ±
0.04 e fm2 [46]. Our model provides a good description of this
deformation due to the alpha-alpha cluster configuration, and
gives a quadrupole moment of 4.91 e fm2, which is close to
the experimental value.

C. 1/2+ resonance

The structure of the 1/2+ resonance in 9Be has been
studied by many authors, both theoretically [38,47,48] and
experimentally [3,5,6,11,37], due to its relevance for the
synthesis of this nucleus in astrophysics. It has been found that
the radiative capture reaction α(αn,γ )9Be is mainly governed
by the 1/2+ contribution of electric dipolar transitions to the
ground state [6,14].

To get a well defined B(E1) distribution at low energies, we
need a basis with a large hyperradial extension to concentrate
many eigenvalues close to the breakup threshold. For this
purpose we describe the 1/2+ states with a THO basis defined
by parameters b = 0.7 fm and γ = 0.7 fm1/2.

However, our calculations show a very slow convergence
with respect to Kmax for the low-energy 1/2+ continuum. The
structure of the 1/2+ resonance is not well described with
Kmax values around 30–40, and going to larger hypermomenta
involves the computation of very large basis sets, which is
limited by computer power and calculation times. Since the
1/2+ resonance decay is known to proceed mainly through
the two-body low-lying s-wave 8Be resonance [38], we expect
the three-body resonance to be mainly governed by α-α s-
wave components. Thus we fix Kmax to 40 and increase the
maximum hypermomentum for s waves, Ks

max. In Fig. 5 we
show the 1/2+ contribution to the total photodissociation cross
section, as a function of Ks

max. For these calculations, we take
a THO basis with imax = 30 and we smooth the discrete values

0 0.5 1 1.5
ε  (MeV)

0

0.5

1

1.5

σ γ [
1/

2+
] 

 (
m

b)

K
s

max
 = 40

K
s

max
 = 60

K
s

max
 = 80

K
s

max
 = 100

K
s

max
 = 120

K
s

max
 = 140

FIG. 5. (Color online) Dependence on Ks
max of the 1/2+ contri-

bution to the 9Be photodissociation cross section. (See the text.)

using Poisson distributions with a width parameter w = 30.
We can see in Fig. 5 that the structure of the resonance is
strongly dependent on Ks

max, and very large values are needed
to reach convergence. For this reason, we fix Ks

max to 140,
maintaining the global Kmax = 40 for all the other partial
waves, as we find no need to include more channels in the
wave function expansion to achieve converged cross section
and reaction rates. The three-body-force parameters needed to
reproduce the position of the resonance are v3b = −2.45 MeV,
r3b = 6.1 fm, and a3b = 5.

D. 3/2+, 5/2+, 1/2−, and 5/2− states

The 3/2+, 5/2+, 1/2−, and 5/2− resonances in 9Be have
excitation energies of 3.131, 1.475, 1.206, and 0.856 MeV,
respectively [36]. Since these resonances contribute to the
photodissociation cross section at higher energies than the case
of 1/2+, we expect smaller influences on the total reaction
rate, at least in the low-temperature tail. We describe these
states with a THO basis defined by parameters b = 0.7 fm
and γ = 1.0 fm1/2, that ensures enough states at low energies.
We include all channels up to Kmax = 30, large enough to get
converged strength distributions in these cases, and imax = 30.
In order to adjust the position of the resonances, we change the
parameter v3b to –1.60 MeV for the 3/2+ states, –0.18 MeV
for the 5/2+, +1.65 MeV for the 5/2− states, and +0.20 for
the 1/2− states. The B(E1) and B(M1) discrete values are
smoothed using Poisson distributions with a width parameter
w = 30, 60, 30 for 3/2+, 5/2+, 1/2−, respectively. For the
5/2− states we need a larger width parameter, which produces
narrower distributions, since the 5/2− resonance shows a very
small width. This was previously reported in Ref. [24], where
a value of w = 1300 was used to describe properly the width
of the narrow 2+ resonance in 6He. Thus we fix w = 10000
around the resonance energy for the 5/2− states, keeping
w = 30 for the nonresonant region.

Note that the convergence problem shown in the preceding
subsection for the 1/2+ state is absent in these cases. These
resonances have larger excitation energies, and thus their
properties are less sensitive to the α-α s-wave contribution.
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FIG. 6. (Color online) Contribution of the 1/2+ (thin solid), 5/2+

(dashed), 3/2+ (dotted), 5/2− (dot dashed), and 1/2− (double dot
dashed) states to the total photodissociation cross section (thick solid).

E. Photodissociation cross section

In Fig. 6, we show the three electric dipolar contributions
to the photodissociation cross section of 9Be from 1/2+ (thin
full line), 3/2+ (dotted line), and 5/2+ (dashed line) states. We
include also the magnetic dipolar contribution from the 5/2−
states (dot dashed) and the 1/2− states (double dot dashed).
The total cross section is also shown by a thick full line. We
can see how at very low energy only the 1/2+ states contribute
to the cross section.

In Fig. 7, we compare the result shown in Fig. 6 with
the experimental data from Arnold et al. [6] and Sumiyoshi
et al. [3]. The agreement is rather good. Although we do not
include them in the figure for clarity, our results are also in
good agreement with other experimental data available in the
literature [5,37]. We show also recent calculations by de Diego
et al. [15,49] using a similar three-body model. In these works,

0 1 2 3
ε  (MeV)

0
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1.5
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σ γ  (
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Sumiyoshi (2002)
de Diego (2010)
de Diego (2014)
Garrido (2011)
THO

FIG. 7. (Color online) Total photodissociation from our three-
body calculation (solid line) compared with the results from Refs. [49]
(dashed line), [15] (dot dashed), and [14] (dotted) and experimental
data of Refs. [3] (triangles) and [6] (circles).

the continuum problem is solved by imposing box boundary
conditions, for which obtaining a large density of states at
the lowest energies is numerically challenging. So, the 1/2+
resonance peak for energies below 1.2 MeV is replaced by an
energy-dependent Breit-Wigner distribution with the proper
resonance parameters to reproduce the data. In Ref. [15], the
1/2+ parameters are adjusted to reproduce the 2002 data,
while those in Ref. [49] are fixed to describe the 2012 data.
This procedure is applied by Garrido et al. [14] to fit the
total cross section including Breit-Wigner distributions for
the lowest 9Be resonances, and we also include this result in
Fig 7. This calculation is adjusted to reproduce the data from
Sumiyoshi et al.

In contrast, our calculated 1/2+ peak is directly obtained
by smoothing the transition strength following Eq. (21), using
a THO basis that concentrates a large density of states near
the breakup threshold. In this sense, our model provides the
first full three-body calculation of the 9Be photodissociation
cross section in the whole energy range. We underestimate
the experimental data for the 1/2+ contribution (in particular
compared to 2012 data), but it shows the right low-energy
behavior and the corresponding tail of the resonance. The
smaller height is not crucial when computing the reaction rate,
an observable that ranges over many orders of magnitude
as a function of the temperature, especially at the lowest
temperatures where the rate is strongly governed by the cross
section behavior up to 0.1–0.2 MeV only.

We reproduce very well the narrow 5/2− resonance, al-
though we know from sequential models that this contribution
has a small influence on the total reaction rate [5,6]. This
contribution is not computed in Refs. [14,15,49]. Concerning
the 5/2+ broad resonance, our three-body estimations agree
better with Sumiyoshi et al. [3] than with those from the more
recent experiment of Arnold et al. [6], in which a rather narrow
peak is obtained. For that reason we fix the position of the 5/2+
resonance to Sumiyoshi et al. data. In the calculations by de
Diego et al., the 5/2+ resonance is adjusted to the energy given
by Sumiyoshi et al.; however, due to the smoothing procedure
the maximum is shifted to lower energy.

The 3/2+ resonance plays a minor role and its contribution
affects only the high energy region. At these energies, our
calculations agree better with both sets of experimental data
than those by de Diego et al. The overall difference between
both calculations could be associated with the different
discretization methods and different two-body potentials. We
have also estimated the M1 contribution to the 1/2− states,
which has a small effect on the cross section, as shown in
Fig. 6.

As we can see in Fig. 7, although the overall behavior
is very similar in both sets of experimental data, there are
important discrepancies between them. The accuracy of these
experiments could then be questioned, since experimental
normalization factors may lead to very different results. In
Refs. [3,6], for instance, the energy and width of the 1/2+
resonance are found to be the same, but with gamma widths
differing by a factor of 1.3. This results in a different height
for the resonant peak. For that reason it is not trivial to
find an explanation of the differences between theory and
experiment. We must also consider that three-body models
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the total reaction rate.

are an approximation to the actual many-body problem, and
consequently there might be effects on the cross section
that we are not considering explicitly, e.g., dynamical effects
within the clusters, full antisymetrization problems, etc. Both
calculations (this work and Refs. [15,49]) are systematically
above the data at energies larger than 2 MeV, but at this level it
is not possible to determine if this difference is related to many-
body corrections or a possible normalization uncertainty. In
any case, the final reaction rate at low temperature depends
mainly on the photodissociation cross section at the lowest
energies (0–0.2 MeV) and the total strength, so differences in
the height, shape, etc. of the specific structures are not crucial.

F. Reaction rate

We compute the rate of the radiative capture reaction α +
α + n → 9Be + γ from the photodissociation cross section,
according to Eq. (7). In Fig. 8 we show the contributions from
the 1/2+ (solid line), 3/2+ (dotted line), 5/2+ (dashed line),
5/2− (dot dashed), and 1/2− (double dot dashed) states to the
reaction rate. We can see that the 1/2+ states dominates over
all other contributions, especially in the low-temperature tail
of the reaction rate. The other contributions become relevant
at temperatures above 3 GK.

In Table III we present the total reaction rate, the sum of the
electric and magnetic dipolar contributions, at representative
temperatures. In Fig. 9 we compare this rate with sequential
estimations from experimental cross sections [3,6,11]. Our
three-body model converges to the sequential result at high
temperature, where the direct capture plays a minor role.
Calculations by de Diego et al. [15,49] between 0.1 and
5 GK also agree with this results, although we do not include
them in Fig. 9 for clarity. At low temperature, below 0.1 GK,
the three-body capture enhances the reaction rate in several
orders of magnitude, in good agreement with three-body
Breit-Wigner estimations by Garrido et al. [14]. This confirms
that the uncertainty related to the 1/2+ resonance peak is
not crucial when computing the reaction rate, as discussed in
Sec. III E. At such low temperatures the three-body system

TABLE III. Reaction rate of ααn, in cm−6s−1mol−2, at represen-
tative temperatures in GK, T9.

T9 Rate T9 Rate T9 Rate

0.001 3.67 × 10−45 0.04 1.16 × 10−12 0.45 6.78 × 10−7

0.002 4.03 × 10−37 0.05 1.83 × 10−11 0.5 6.85 × 10−7

0.003 6.19 × 10−33 0.06 1.31 × 10−10 0.6 6.61 × 10−7

0.004 4.57 × 10−30 0.07 5.71 × 10−10 0.7 6.10 × 10−7

0.005 5.75 × 10−28 0.08 1.78 × 10−9 0.8 5.52 × 10−7

0.006 2.48 × 10−26 0.09 4.38 × 10−9 0.9 4.94 × 10−7

0.007 5.17 × 10−25 0.1 9.07 × 10−9 1 4.41 × 10−7

0.008 6.41 × 10−24 0.11 1.65 × 10−8 1.25 3.32 × 10−7

0.009 5.41 × 10−23 0.12 2.71 × 10−8 1.5 2.53 × 10−7

0.011 3.40 × 10−22 0.13 4.11 × 10−8 1.75 1.98 × 10−7

0.012 7.15 × 10−21 0.14 5.85 × 10−8 2 1.58 × 10−7

0.013 2.61 × 10−20 0.15 7.93 × 10−8 2.5 1.07 × 10−7

0.014 8.55 × 10−20 0.16 1.03 × 10−7 3 7.89 × 10−8

0.015 2.57 × 10−19 0.17 1.29 × 10−7 3.5 6.18 × 10−8

0.016 7.25 × 10−19 0.18 1.57 × 10−7 4 5.09 × 10−8

0.017 1.93 × 10−18 0.19 1.87 × 10−7 5 3.85 × 10−8

0.018 4.91 × 10−18 0.2 2.18 × 10−7 6 3.19 × 10−8

0.019 1.19 × 10−17 0.25 3.72 × 10−7 7 2.79 × 10−8

0.02 2.79 × 10−17 0.3 5.01 × 10−7 8 2.52 × 10−8

0.025 1.11 × 10−15 0.35 5.93 × 10−7 9 2.34 × 10−8

0.03 1.95 × 10−14 0.4 6.49 × 10−7 10 2.20 × 10−8

has no energy to populate the two-body 8Be resonance and,
as expected, the direct capture begins to dominate. This effect
cannot be described with sequential models.

IV. SUMMARY AND CONCLUSIONS

The structure of the Borromean nucleus 9Be (α + α + n)
has been described in a full three-body model using the
analytical THO method. The photodissociation cross section
is calculated including electric dipolar transitions from the
3/2− ground state to the 1/2+, 3/2+, 5/2+ continuum states
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FIG. 9. (Color online) Total reaction rate from our three-body
calculation (solid line) and three-body Breit-Wigner calculation [14]
(dashed line) compared with sequential estimations from experimen-
tal data of Refs. [11] (squares), [3] (triangles), and [6] (circles).
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and also magnetic transitions to the 5/2− and 1/2− states.
For each angular momentum, an appropriate analytical THO
basis has been used. The results show the dominance of
the 1/2+ resonance at low energy. The comparison with the
experimental data and with previous calculations available in
the literature reveals the effectiveness of the formalism.

The difference between theoretical works is discussed.
Unlike previous calculations, our model describes the pho-
todissociation cross section using the same footing in the whole
energy range. The differences between theory and experiments
might be related to many-body corrections not included within
three-body models and also to experimental uncertainties
arising from the discrepancies between the different data sets.

The radiative capture reaction rate for the formation of 9Be
is then calculated from the photodissociation cross section.
The reaction rate so obtained within a full three-body model
matches the reaction rates obtained using sequential models at
temperatures above 0.1 GK. However at lower temperatures
the three-body calculation is several orders of magnitude
larger than the sequential models. This result reveals that
the sequential models fail to reproduce the capture reaction
rate of 9Be at low temperature where the three-body system
has no energy to populate the two-body 8Be resonance and
the direct capture becomes more relevant. Our calculations
agree reasonably well with estimations using three-body
Breit-Wigner distributions to fit the cross section.

The successful application of the analytical THO method
to the determination of the 9Be photodissociation cross section
and radiative capture reaction rate encourages the application
to the triple-alpha process as well as the formation of 17Ne
(15O + p + p). Both reactions involve three charged particles,
which increases the level of difficulty.
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APPENDIX A: MAGNETIC OPERATOR
MATRIX ELEMENTS

In this Appendix, we present the main expressions needed to
compute the magnetic operator matrix elements from Eq. (18).
For each particle q, we rotate the wave function given by Eq. (6)
to the Jacobi-q system, and then we sum up the orbital and
spin contributions. This can be expressed in a compact form
by using the transformations between different Jacobi sets for

the angular part of the wave functions [34],

Nβkβq
= 〈k : βkjμ|q : βqjμ〉. (A1)

Here index q labels particle q, while k denotes the preferred
Jacobi system in which we diagonalize the Hamiltonian.
Since k is fixed, we omit it for the following expressions, so
|k : βkjμ〉 represents Yβjμ(�) in Eq. (3). These functions are

expanded in hyperspherical harmonics (HH) [25,26] ϒ
lxly
Klml

(�)
as

Yβjμ(�) =
∑
νι

〈jabνI ι|jμ〉κι
I

∑
mlσ

〈lmlSxσ |jabν〉ϒlxly
Klml

(�)χσ
Sx

.

(A2)

Here χσ
Sx

is the spin wave function of the two particles
related by the Jacobi coordinate x and κι

I is the spin function
of the third particle. The HH are eigenfunctions of the
hypermomentum operator K̂2, and can be expressed in terms
of the spherical harmonics as

ϒ
lxly
Klml

(�) =
∑
mxmy

〈lxmxlymy |lml〉ϒlxlymxmy

K (�), (A3)

ϒ
lxlymxmy

K (�) = ϕ
lx ly
K (α)Ylxmx

(̂x)Ylymy
(̂y), (A4)

ϕ
lx ly
K (α) = N

lxly
K (sin α)lx (cos α)ly P

lx+ 1
2 ,ly+ 1

2
n (cos 2α),

(A5)

where P a,b
n is a Jacobi polynomial with order n = (K − lx −

ly)/2 and N
lxly
K is the normalization constant.

Using Eq. (A1) and expanding the explicit angular depen-
dence of the wave functions, we can express the orbital and
spin parts of the magnetic operator reduced matrix element for
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a given multipolarity λ as

〈nj ||M̂orb
λ ||n′j ′〉 = e�

2mc

√
λ

λ + 1
ˆ(λ − 1)λ̂ĵ ′(−1)λ

∑
q

(
MT − mq

MT

)λ (
m

ayq

) λ−1
2

2g
(q)
l

∑
ββ ′

∑
βqβ ′

q

Nββq
Nββ ′

q
δSxq S ′

xq
δlxq l′xq

× (−1)2j−j ′+l′yq
−lyq +lxq −Sxq +jabq +j ′

abq
−Iq

√
l′yq

(
l′yq

+ 1
)
l̂yq

l̂′2yq
ĵabq

ĵ ′
abq

l̂q l̂
′
q

(
lyq

λ − 1 l′yq

0 0 0

)
×W

(
lyq

l′yq
(λ − 1)1; λl′yq

)
W

(
lq l

′
q lyq

l′yq
; λlxq

)
W

(
lyq

l′yq
(λ − 1)1; λl′yq

)
W

(
lyq

l′yq
(λ − 1)1; λl′yq

)
×

∑
ii ′

Ciβj
n C ′i ′β ′j ′

n

∫∫
dα dρ(sin α)2(cos α)2Uiβ(ρ)ϕ

lxq lyq

Kq
(α)yλ−1Ui ′β ′ (ρ)ϕ

l′xq
l′yq

K ′
q

(α), (A6)

〈nj ||M̂ spin
λ ||n′j ′〉 = e�

2mc

√
λ ˆ(λ − 1)λ̂ĵ ′ ∑

q

(
MT − mq

MT

)λ−1 (
m

ayq

) λ−1
2

g(q)
s

∑
ββ ′

∑
βqβ ′

q

Nββq
Nββ ′

q
δSxq S ′

xq
δlxq l′xq

×(−1)j+j ′+lxq −Sxq −jabq +2Iq
√

Iq(Iq + 1)Îq l̂yq
l̂′yq

ĵabq
ĵ ′
abq

l̂q l̂
′
q

(
lyq

λ − 1 l′yq

0 0 0

)

×W
(
lq l

′
q lyq

l′yq
; (λ − 1)lxq

)
W

(
lq l

′
qjabq

j ′
abq

; (λ − 1)Sxq

) ⎧⎨⎩
j j ′ λ

jabq
j ′
abq

λ − 1
Iq Iq 1

⎫⎬⎭
×

∑
ii ′

Ciβj
n C ′i ′β ′j ′

n

∫∫
dα dρ(sin α)2(cos α)2Uiβ(ρ)ϕ

lxq lyq

Kq
(α)yλ−1Ui ′β ′(ρ)ϕ

l′xq
l′yq

K ′
q

(α). (A7)

The notation ĵ represents a reduced form for the factor√
2j + 1. These expressions depend on the orbital and spin g

factors of each particle. The α particles have spin zero, so we
consider g(α)

s = 0 and g
(α)
l is taken as its charge. For the neutron

we use the free value of g(n)
s = −3.82 and we do not assign

any effective charge, so g
(n)
l = 0. It is known that the effective

g factors are rather uncertain [50], especially g(n)
s which could

be reduced by a factor of 2 due to spin polarization. A more
exhaustive analysis of these factors for the particular case of
9Be could reduce the uncertainty in the magnetic contributions
to the photodissociation cross section.

APPENDIX B: SMOOTHING PROCEDURE

In PS methods any transition probability to be calculated is
given by a set of discrete values. In order to obtain a continuous

distribution, in this work we assign a Poisson distributions to
each PS. We discuss in this Appendix the procedure to select
an optimal width parameter w for the Poisson distributions
defined by Eq. (21). The value of w must ensure a smooth
B(E1) distribution without spreading it unphysically. As an
example, we show in Fig. 10 the B(E1) distribution to the 1/2+
states calculated with different width parameters. For w values
smaller than 30, the distributions are too wide to represent
the PS energy distributions, and consequently the final distri-
butions cannot reproduce the experimental photodissociation
data. For much larger values, however, the final distributions
are distorted and show unphysical oscillations or peaks. This is
our prescription to select the optimal w value; that is, w as large
as possible. In this case w = 30 is a reasonable choice. This
method provides good results and a rather good agreement with
the experimental data on the photodissociation cross section,
as shown in Sec. III E.
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