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Abstract

To compare the cortical dynamics of different oculomotor tasks, EEG and eye movements were recorded in 21 volunteers.
Using a comprehensive approach, subjects were asked to perform saccadic tasks, which included a saccadic eye movement
to a peripheral target (prosaccadic), a movement to the opposite side (antisaccadic), or maintain the gaze fixed (no-go). In
mixed trials, prosaccadic, antisaccadic and no-go tasks were indicated by a color square (S1) present for 1900–2500 ms
(instructive period). S1 disappeared for 370 ms (gap) and a black dot at 8 deg at right or left indicated the beginning of the
task. Reaction times, amplitude of eye movements and number of errors were greatest in antisaccadic tasks, suggesting a
greater difficulty. The EEG showed a contingent negativity variation (CNV) that increased progressively along the instructive
period and suddenly during the gap: higher in antisaccadic, followed by prosaccadic and no-go tasks. Principal component
analysis (PCA) disentangled fronto-central and occipital CNV-related and fronto-central gap-related components. The
instructive period was characterized by fronto-central and occipital beta desynchronization (ERD) higher in antisaccadic
than in no-go and parieto-occipital alpha synchronization higher in no-go than in antisaccadic tasks. During the gap,
parieto-occipital beta and alpha ERD were higher in antisaccadic compared to no-go. The gap was further characterized by a
fronto-central increase of inter-trial coherence in theta: highest during antisaccadic, followed by prosaccadic and no-go
tasks. This phase locking in theta was also accompanied by theta ERS, which was significantly higher in antisaccadic than in
the other two tasks. In PCA of spectral power two main components had dynamics similar to those extracted from voltage
data, suggesting cross-frequency coupling. These results suggest that the more difficult saccadic tasks are associated with
top-down control mediated by frontal cortex, while simpler tasks rely more on bottom-up control mediated by posterior
cortices.
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Introduction

In antisaccadic tasks, when a visual target appears on one side of

the screen, subjects must move their eyes to the opposite side. The

antisaccadic task allows evaluation of the capacity to inhibit

reflexive saccades and produce voluntary saccades [1]. Antisacca-

dic eye movements are more difficult tasks to perform, which

increases response latency and the number of errors compared to

prosaccadic tasks. The antisaccadic task is thought to involve the

inhibition of the more prevalent prosaccadic response and the

activation of a more forced response. Given the greater difficulty of

this task with respect to prosaccadic tasks, a heightened control is

needed for its success.

A number of approaches have been taken to explore differences

in the preparation and execution of saccades during prosaccadic

and antisaccadic tasks, including recording the activity of single

neurons, functional magnetic resonance imaging (fMRI) and lesion

studies. Single-neuron recordings in the superior colliculus (SC)

and the frontal eye field (FEF) during the instruction period have

shown increased activity of fixation-related neurons and decreased

activity of saccade-related neurons during antisaccadic compared

to prosaccadic trials. This activity pattern explains the longer

reaction times (RT) on antisaccadic trials [2,3].

By fMRI, the preparatory period has been previously related

with a higher activity in FEF, supplementary eye field (SEF),

dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex

(ACC), supplementary motor area (SMA) and intraparietal sulcus

during the antisaccadic in comparison with prosaccadic tasks

[4,5,6,7,8]. In this sense, lesion experiments and pathological

conditions involving DLPFC and ACC seem to induce an

increased number of errors during the antisaccadic task [9].

Although considerable effort has been made to describe

prosaccadic and antisaccadic tasks processing during preparatory

and response periods, technical characteristics of the fMRI impose

important limitations on the study of temporal dynamics. EEG-

derived measures such as ERPs and time-frequency analysis

provide higher temporal resolution. It is well known from EEG

studies that when antisaccades or prosaccades are preceded by a
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cue indicating the type of task, a contingent negative variation

(CNV) appears during the preparatory period. This CNV has a

higher amplitude at fronto-central regions during antisaccadic

than during prosaccadic tasks [10,11,12]. This increase in CNV

amplitude during the antisaccadic task is in good agreement with

fMRI findings of increased activity in the same regions during

antisaccadic compared to prosaccadic tasks [8].

Another technique to examine cortical dynamics associated with

the processing of stimulus-response is event-related frequency

analysis. Major frequency changes have been observed in the EEG

during preparatory periods for motor responses in which a

decrease of spectral power or event-related desynchronization

(ERD) of the mu rhythm occurs [13,14]. In other respects, the use

of these high-resolution techniques allows the study of certain

cognitive processes associated with sensory preparation and motor

preparation and execution. For example, an ERD of beta rhythm

would infer a motor preparation process [13]; a posterior ERD of

alpha, anticipation of the imperative stimulus; and an anterior mu

ERD, preparation for the response [15]. The role of the working

memory in the antisaccadic and prosaccadic tasks could be

evaluated by means of the theta and alpha event-related

synchronization (ERS), which have been proposed as a possible

carrier frequency for working memory processes [16]. The

working memory role is particularly important in experiments

mixing antisaccadic and prosaccadic trials in the same block [17],

given that the instructional value of the cue must be remembered

throughout the preparatory period. This is the case for the present

study.

An additional complexity in this kind of experiments is when the

antisaccadic and prosaccadic tasks are accompanied by a gap

period -a temporal interval between switching off the central

fixation point and switching on the peripheral target- which

induces a decrease in RT [18,19,20]. This reduction of the RT

associated with the temporal gap is independent of the type of

motor response and has been demonstrated for saccadic eye

movements and manual responses [20,21,22,23]. Two different

hypotheses have been proposed to account for this effect: first, the

gap acts as a warning, which would include the motor preparatory

processes [24,25]; and second, attention is disengaged from the

central fixation stimulus, which is assumed to be an automatic

process that occurs prior to the peripheral target during the gap

period [19,20,26]. Growing evidence has supported motor

preparation as an additional factor in the gap effect [26].

During the gap period, a frontal gap-related negativity has been

found in the ERP [27,28,29,30]. This frontal negative component,

which appears as a rapid deflection following the visual offset-

evoked potentials triggered by switching off the central fixation

point, was proposed as indexing preparatory processes in the

frontal cortex. The scalp distribution and the relationship to

facilitation in RT suggested that the frontal negativity could

represent the electrophysiological index of the activation of

premotor, supplementary motor, and/or motor cortex.

In addition to the antisaccadic and prosaccadic tasks, the

present experiment included a no-go task, in which the subjects

must ignore the imperative stimulus and inhibit their response.

No-go task could be useful as a control during the preparatory

period because no movement is prepared but memory load is

similar to the other tasks.

The aim of the present study was to identify differences in

cortical activities during the instruction and gap periods in

antisaccadic, prosaccadic and no-go tasks. Comparisons of

saccadic parameters and RT suggested that antisaccades were

more difficult and required higher attention to be performed than

prosaccades and no-go. In parallel, during the instructive and gap

periods, a higher frontal activity was found in antisaccadic than in

prosaccadic and no-go tasks. This increased frontal activation was

strongest during the gap period indicating that a higher top-down

control must be expected in the more demanding tasks,

particularly at the moment in which a precise timing is required.

Materials and Methods

Participants
Twenty-one subjects (6 males and 15 females) aged between 21

and 29 years (mean = 23.562.8 years) were recruited from the

University of Seville student community, and gave their written

and informed consent to participate. They reported having no

neurological diseases and normal or corrected-to-normal vision.

Experiments were approved by the Ethics Committee of the

University of Seville (10/24/2007) and adhered to the principles of

the Declaration of Helsinki (1964).

Behavioral paradigm
Participants were seated 68 cm in front of a CRT monitor on

which the stimuli were displayed. They were asked to avoid head

movements during the experimental session. Each session consist-

ed of 240 trials of randomly intermixed prosaccadic, antisaccadic

and no-go tasks (80 trials per task). In each trial, the subject

maintained a fixed gaze on a colored square (0.660.6u) (S1) at the

center of a white background screen (Fig. 1). The color of this

square served as a cue: green instructed subjects to perform a

saccade directed to an eccentric black dot (prosaccadic task,

Fig. 1A); red indicated a saccade to the side opposite where the

black dot appeared (antisaccadic task, Fig. 1B); yellow directed

them to avoid any eye movement (no-go task, Fig. 1C). The time

between switching the S1 stimulus on and off (instructive period)

was randomized between 1900 and 2500 ms. After the instructive

period, the cue disappeared during 370 ms (gap period) before an

eccentric dot (S2, the beginning of the executive period)

subtending a visual angle of 0.3 deg appeared in the horizontal

meridian at 8 deg on the left or the right side of the screen in a

pseudorandom order. The eccentric dot was present during

1000 ms.

Eye position and EEG recordings
Visual stimuli were generated using Eevoke software (ANT,

Holland) on a PC with a CRT monitor (refresh rate of 80 Hz and

resolution of 10246768). Trigger information from Eevoke was

sent to the EEG recording system. Eye movements in the

horizontal plane were recorded by infrared video-oculography

(Chronos 3D Binocular Eye Tracker, Chronos Vision GmbH,

Germany). This system sampled the position of both eyes at

400 Hz. Data from eye positions were automatically calculated by

the EyeTracking software (Chronos Vision GmbH, Germany) and

the position of the eyes were digital-to-analog converted (2 ms

delay) and recorded throughout the EEG amplifier as external

signals. EEG activities were collected from 64 scalp tin electrodes

mounted in a cap using the International 10–20 system. Voltages

from electrodes were measured with respect to an average

reference. Impedance was maintained below 5 KOhms for each

electrode. EEG signals and eye movements were recorded through

a full-band DC amplifier (ASA-lab EEG/ERP system, ANT,

Holland) at a sampling rate of 1024 Hz.

Detection, parameters and statistical analysis of saccadic
eye movements

Saccadic eye movements were automatically detected by a script

programmed in Matlab 2008a (MathWorks Inc., MA, USA) using
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eye velocity threshold [31]. For each saccadic eye movement, the

beginning, ending, peak velocity, timing to peak velocity,

amplitude and duration were analyzed. The RTs were calculated

as the period between the arrival of each eccentric target and the

moment in which the eye reached its maximum velocity during the

saccade. Only correct saccades were analyzed. Errors in direction,

anticipations (,100 ms) or delays (.400 ms) with respect to the

eccentric target, and saccades not related to the task were not

considered. Percentage of error was calculated for each task and

an arcsine transformation was applied for statistical comparisons.

RTs were calculated for prosaccadic and antisaccadic tasks for

rightward and leftward-directed saccades. Mean RTs were

compared per saccadic directions and tasks. Errors between

antisaccadic and prosaccadic tasks were compared for each type of

error. Statistical analysis comparisons of saccadic eye movement

parameters, errors and RTs in the different tasks were carried out

by one-way analysis of variance. When the normality condition

failed, Wilcoxon test was applied; when homogeneity of variance

was not achieved, a student t-test for related measures was

performed.

Statistical analysis of EEG activities
EEG recordings were analyzed with EEGLAB rev.10.0.0.0b

toolbox [32] using Matlab 2008a (MathWorks Inc., MA, USA)

software package. To eliminate AC power line interference and

blink artifacts in the EEG, an independent components analysis

[33,34,35] was performed. Criteria for determining these compo-

nents were their scalp map distribution, time course and spectral

power. Thus, the eye blink artifact component showed a frontal

location, coincided with blinking in the recording of eye

movements and had low frequency in the power spectrum. These

components were discarded and the EEG signal reconstructed.

For the analysis of EEG, data were segmented in intervals of

2100 ms, from 1800 before to 300 ms after the visual eccentric

target. The baseline was corrected by subtracting for each channel

the mean voltage level in the first 100 ms interval of the window.

For each task and subject, data were averaged to obtain ERP by

using S2 as a trigger. The ERPs obtained during the three tasks

were statistically compared using permutations. Comparisons were

considered as significant when probability (p) values were below

0.05. A false discovery rate for multiple comparisons [36] was

applied using EEGlab toolbox.

A time-frequency EEG analysis was performed trial-by-trial

using Hanning-windowed sinusoidal wavelets at 1.5 cycles (lowest)

to 7.5 cycles (highest). Changes in event-related dynamics of the

EEG spectral power were studied using the event-related spectral

perturbation (ERSP) index [37]. ERSP quantifies the mean

change in spectral power (dB) from the baseline at different

latencies and frequencies with respect to the event. Event-locked

EEG phase coherence was computed by ITC, analogous to the

‘‘phase locking factor’’ [38]. Significance thresholds for ERSP and

ITC were calculated by a bootstrap distribution (p,0.01),

extracted randomly from the baseline data (100 first ms of each

epoch) and applied 200 times [39]. Additionally, the ERSP and

ITC of the different experimental conditions were statistically

compared by permutation analysis (p,0.05), taking into account

false discovery rate for multiple comparisons.

In parallel, a principal component analysis (PCA) was applied to

ERP and ERSP data. The PCA allows extraction of the total

variance of the data as a few components that can be identified as

sources of variance in the empirical data [40]. In this particular

data set, the main objective was trying to disentangle different

components for ERP and ERSP that could separate neural

activities during the instructive and gap periods. Although PCA

analysis allows the use of several types of axes rotations and all

procedures are mathematically correct, we used the more

parsimonious non-rotated orthogonal approach.

The PCA of ERP data was carried out on a matrix containing

time columns and rows for voltage, electrodes, subjects and

conditions. The matrix was similar for the PCA of the ERSP,

replacing voltage with ERSP frequencies (3 to 30 in 0.5 hertz bin).

The topographies of the components were obtained by averaging

the component scores for the extracted components. For the

ERSP matrix, only loading factors were taken into account. Given

the high complexity of the component scores, analysis of those

results would require a separate study.

Specific applications of the PCA method that are relevant to

understanding the dynamics of CNV and brain rhythms during

the instructive and gap period include the following:

1. PCA analysis in the voltage domain would permit separation of

brain dynamics during the gap period from those of the

previous instructive period.

2. The topographical representation of the component scores in

the time domain would help to disentangle the relative

contribution of different components in the instructive period

(namely the CNV) and the gap-related negativity.

Figure 1. Experimental design. The experimental session involved 240 trials of intermixed prosaccadic (A), antisaccadic (B) and no-go (C) trials.
Each trial comprised an instructive period in which a central color square (S1) on a white background identified the type of task trial (red for
antisaccade, green for prosaccade or yellow for no-go) during a variable time of 1900–2500 ms. The central color square was switched off during
370 ms (gap period) and a peripheral black dot target (S2) appeared, randomly located at 8 deg on the left or right side, indicating the executive
period. Subjects were instructed to execute eye movements with the shortest possible reaction time (RT) after S2. Arrows indicate the correct
direction of the eye movement in each task and the color circle the appropriate final position of the eyes.
doi:10.1371/journal.pone.0063751.g001
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3. In the time-frequency domain, PCA would identify similarities,

if any, between the dynamic of the components extracted by

time frequency analysis and of those obtained from the voltage

domain. In case of similarities, a frequency-coupling between

voltage and the power of brain oscillations could be argued.

Results

Behavioral response
All subjects performed the tasks skillfully, providing a mean of

87.967.7% (mean +/2 SD) of correct responses, although

different tasks showed different degrees of difficulty. The

percentages of total errors during the experiments were

19.2611.6, 13.2610.1 and 3.964.6% for antisaccadic, prosacca-

dic and no-go tasks, respectively (one-way ANOVA,

F(2,60) = 19.59, p,0.01). Main differences were due to errors in

direction in antisaccadic (11.467.7%) and prosaccadic

(2.362.8%) tasks (p,0.01, Wilcoxon test) (Fig. 2A). Other major

errors were due to anticipated responses(,100 ms), which were

significantly higher in prosaccadic (6.068.2%) than in antisaccadic

(3.966.6%) tasks (p,0.05, Wilcoxon test) (Fig. 2B). Finally,

significant differences in errors (p,0.05, Wilcoxon test) were due

to execution of saccades when the subject was instructed to not

perform eye movements in the no-go task (3.764.6%) in

comparison to the lack of eye movement during prosaccadic

(0.560.7%) and antisaccadic (1.362.0%) tasks (Fig. 2C).

Figures 2D and 2E show prosaccadic and antisaccadic latency

distributions to the left and to the right side. Saccadic latencies

were shorter in prosaccadic (202.5631.9 ms) than in antisaccadic

(263.8628.7 ms) tasks, regardless whether eye movements were

directed to the left or to the right (One-way ANOVA,

F(1,40) = 42.90, p,0.01) (Fig. 2F). Moreover, with respect to the

size of saccadic eye movements, mean amplitude of antisaccades

(8.361.2 deg) was significantly greater than in prosaccadic

(7.560.4 deg, t-test, t(20) = 23.19, p,0.01 tasks. Taken together,

the differences in number and type of errors and in response time

suggest that differences between the three tasks could be explained

by a higher degree of difficulty to prepare and execute

antisaccades compared to prosaccades, and the same for

prosaccades compared to no-go responses. Furthermore, the

greatest amplitude in antisaccadic compared to prosaccadic tasks

could suggest excessive motor preparation, which could also be

related to the higher difficulty of the antisaccadic task.

EEG voltage activities during the instructive and gap
periods

During the instructive period, a negative potential was slowly

developing on the scalp in all three tasks. This negativity, which

was maximal at FCz, increased steadily until the beginning of the

gap period. Figure 3 shows the grand average ERP at FCz in no-

go and prosaccadic (Fig.3A), prosaccadic and antisaccadic (Fig. 3B)

and no-go and antisaccadic (Fig. 3C) tasks, triggered by S2 (black

arrowhead in Fig. 3A–C). The extinction of S1 (white arrowhead

in Fig. 3A–C) induced a visual-offset evoked potential -whose

component N1 was clearly visible on the traces- and a sudden

increase of the negative potential. During the gap period,

maximum negativities were reached in FCz at 290 ms, 330 ms

and 350 ms after S1 extinction in prosaccadic, antisaccadic and

no-go tasks, respectively.

The negativity during both the instructive and gap periods

displayed a very similar fronto-central and posterior topography

(Fig. 3D–F). The first two columns in the figure 3D–F display scalp

voltage distributions during the instructive (top row) and the gap

(bottom row) periods in the indicated time windows. The third

column in the same figure shows statistical comparison between

each pair of the indicated tasks. During the instructive period,

significant differences (p,0.05, permutation analysis and false

discovery rate for multiple comparisons) were obtained between

antisaccadic and prosaccadic tasks in the fronto-central (more

negative in anti- than in the prosaccadic task) and in the right

temporo-occipital areas (more negative in pro- than in the

antisaccadic task) (Fig. 3E). The comparison between antisaccadic

and no-go conditions also showed significant differences in fronto-

central (more negative in antisaccadic than in the no-go task), and

occipito-temporal areas (more negative in no-go than in the

antisaccadic task) (Fig. 3F). No differences were found in scalp

voltage between prosaccadic and no-go tasks preceding the gap

(Fig. 3D).

During the gap period, differences in scalp voltages were located

fronto-centrally and were significant for the comparisons between

the three tasks (Fig. 3D–F, bottom). Consequently, the ERP was

more negative in antisaccadic than in prosaccadic, and in

prosaccadic than in no-go tasks. Moreover, there were significant

differences in antisaccadic with respect to prosaccadic (Fig. 3E)

and no-go (Fig.3F) tasks in occipital regions (more negative in pro

and no-go than in antisaccadic conditions).

The similitude in scalp voltage distribution during the

instructive and gap periods was appealing. As the gap induces

deep changes in response time, it seems reasonable to expect more

differences between these two periods. To test the possibility that

some signals during the instructive period would continue during

the gap period and mask gap-related signals, a spatiotemporal

decomposition of the ERP by PCA was carried out (Fig. 4). The

PCA of the ERP responses yielded two main components that

explained 79% and 7% of the total variance, respectively. The

PCA’s first component displayed a linear downward trend in

temporal behavior during the instructive and gap periods (Fig. 4A),

whereas the second component displayed a positivity during the

instructive period and a sharp negativity during the gap period

(Fig. 4B). The topography of the component scores for the first

component showed a central distribution whose amplitude values

were highest in antisaccadic, mid-level in prosaccadic and lowest

in no-go tasks. Moreover, the first component displayed an

occipito-parietal topography with an inverse amplitude pattern for

the three tasks compared to central sites (Fig. 4C). The second

component exclusively displayed a fronto-central topography with

an amplitude pattern relationship to each task (Fig. 4D) similar to

the first component’s central distribution.

As the PCA suggested the existence of linear negative potential

during the instructive period that continued during the gap, the

slope of the trend line was corrected for each subject and electrode

and the voltage map recalculated. The slope value of the ERP

average was calculated for each subject in each electrode during

the time period from 21800 to 2300 ms. With these slopes, a

theoretical line was generated and subtracted from the ERP

average in the whole window (from 21800 to 0 ms), generating

the corrected averaged signal. The baseline was calculated at the

beginning of the gap period and the inter-subject grand average

recalculated. The Figure 5A shows the scalp voltage during the

instructive period with the central and occipital activities described

above. Figure 5B shows the scalp voltage during the gap period

after correction; only negativity at fronto-central, but not at

posterior regions, was present in all three tasks.

These results indicate that: i) during the instructive period, all

three tasks induce a central negativity that intensifies sharply

during the gap period in fronto-central electrodes; ii) this fronto-

central negativity is greater in antisaccadic than prosaccadic and in

Antisaccades and Prosaccades: Cortical Preparation
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prosaccadic than in no-go tasks; and iii) the occipital negativity is

established during the instructive period and although it continues

during the gap it is not intensified.

EEG frequency activities during the instructive and gap
periods

Brain dynamic activities were also evaluated by ERSP and ITC

analyses during all three tasks, revealing differential activities at the

fronto-central and parieto-occipital cortex. Figure 6 shows the

ERSP (Fig. 6A–C above) and ITC (Fig. 6A–C below) analyses

during the three tasks at FCz (A), Pz (B) and Oz (C). At parieto-

occipital electrodes, this analysis showed theta (3–8 Hz) and beta

(13–22 Hz) ERD during the instructive and gap periods in the

three tasks and, mainly in the no-go task, alpha (8–13 Hz) ERS

during the instructive and at the beginning of the gap periods. The

gap (vertical dashed red line in Fig. 6) induced, at parieto-occipital

electrodes, an ERD from 3–22 Hz that was more evident in the

antisaccadic task. During the gap, there was also a fronto-central

theta ERS in the three tasks (Fig. 6A). The ITC analyses showed

significant increases in theta and alpha at fronto-central level

during the gap period in all three tasks.

To disclose spectral differences between the tasks, a paired

comparative analysis was performed (Fig. 7). During the instruc-

tive period, differences in ERSP were found in alpha and beta

bands. In alpha, there was a parieto-occipital ERS which was

significantly higher (p,0.05) in no-go than in the antisaccadic task

(Fig. 7A). In beta, by contrast, there was a fronto-central and

parieto-occipital ERD, and this was significantly higher in

antisaccadic than no-go tasks (Fig. 7B).

In the alpha band, the parieto-occipital ERS observed during

the instructive period switched to an ERD during the gap. This

ERD was greater in antisaccadic than in no-go tasks (p,0.05)

(Fig. 7C). Similarly, during the gap period, there was an ERD in

beta at parieto-occipital electrodes that was significantly greater in

prosaccadic and antisaccadic than in no-go tasks (Fig.7D). These

results indicate that alpha and beta ERD also seem to be related to

the degree of task difficulty and the consequent attention required

to perform it. During the gap period, significant differences

between tasks were found in the theta band in both spectral power

and coherence. The ERSP analysis showed a significant fronto-

central theta ERS in antisaccadic compared to prosaccadic and

no-go tasks, but not between prosaccadic and no-go tasks,

indicating that antisaccadic preparation require a higher recruit-

ment of neurons (Fig. 7E). By contrast, differences in theta ITC

between the three tasks were significant (p,0.05) at fronto-central

levels (Fig. 7F), meaning that better neuron synchronization is

Figure 2. Errors of execution and saccadic latencies of prosaccadic and antisaccadic eye movements. Percentage of direction (A),
anticipation (B) and commission (C) errors during prosaccadic (green), antisaccadic (red) and no-go (yellow) tasks. In D and E, histograms of saccadic
latencies for prosaccades (up, green) and antisaccades (down, red) directed to the left (D) and to the right (E). In F, mean saccadic latencies and
standard deviation for prosaccadic and antisaccadic eye movements directed to the left (L) and to the right (R). The asterisks indicate significance of
differences: *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0063751.g002
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Figure 3. Event-related potentials (ERP) and statistical comparison of scalp maps during the preparatory period. From A–C, ERP
comparison between each pair of tasks at the electrode FCz during the preparatory period. Color traces indicate the ERP for each type of task (red for
antisaccade, green for prosaccade and yellow for no-go). During the instructive period (while S1 was present), a progressive negative potential was
developing. During the gap period, this negative potential increased abruptly. The black horizontal line denotes the baseline value. This negativity
was greater during prosaccadic than no-go (A), during antisaccadic than prosaccadic (B) and during antisaccadic than no-go (C) tasks. The offset of S1
(open triangle) and the onset of S2 (filled triangle) are indicated. Please note the visual evoked potentials (N1) triggered by the offset of S1 (black
arrows). Calibration and voltage polarity for A–C is indicated in A. D–F show in the first two columns the topographical voltage distribution and in the
third the statistical comparison between the same pairs of tasks shown in A–C, during the last 500 ms of the instructive (top row) and gap (bottom
row) periods. Scalp distribution of voltage negativity was mainly located fronto-centrally. During the instructive period, significant differences in
negativity were exclusively found between antisaccadic versus prosaccadic and no-go tasks. During the gap period, significant differences were
found between the three tasks. Red points indicate electrodes with statistical differences (p,0.05).
doi:10.1371/journal.pone.0063751.g003

Figure 4. Principal component analysis (PCA) of the event-related potentials during the preparatory and gap periods. The first PCA
component (A) displays a trend line during all the preparatory period whereas the second (B) shows positivity during the instructive period and a
sharp negativity during the gap period. These two PCA components explained 79% and 7% of the variance, respectively. Scalp component scores for
the first and second components of the PCA during antisaccadic (ANTIS), prosaccadic (PROS) and no-go (NG) tasks are shown in C and D, respectively.
Please note that the occipital component is only present in the first component.
doi:10.1371/journal.pone.0063751.g004
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required to prepare for an antisaccadic than for a prosaccadic and

for a prosaccadic than for a no-go response. This phase locking

behavior in theta indicates that neural synchronization induced by

the gap is a fundamental preparatory activity for the imminent

arrival of the S2. Differences in the intensity of the theta ITC

furthermore suggest that theta is also modulated by the degree of

difficulty of the task being performed.

A PCA was applied to ERSP data obtained from wavelet

analysis. This frequency-spatio-temporal decomposition yielded

two main components, explaining 74% and 7% of the total

variance. The first PCA component (Fig. 8A) displayed a decay

along the instructive period, whereas the second (Fig. 8B) showed

positivity during the instructive period and negativity during the

gap. Comparisons of these two PCA components with those

obtained from ERP data revealed similar profiles whose correla-

tion coefficients were significant for the first (r = 0.87, p,0.001)

(Fig. 8A) and the second (r = 0.84, p,0.001) (Fig 8B) PCA

components. These results indicate that not only voltage but also

the frequency of EEG signal differentiate the instructive and the

gap periods, suggesting a frequency coupling between brain

rhythms and voltage negativities.

Discussion

Complex behavioral paradigms that incorporate different types

of tasks, such as prosaccadic, antisaccadic and no-go conditions,

and include a gap period between the extinction of the cue and the

target offer a very useful approach to the study of cortical

dynamics because they include motor and sensory preparation,

working memory, attention and executive motor processes.

Analysis of behavior, ERP, ERSP, ITC and topographical analysis

would reveal the brain signal computations specifically related to

each of these processes. The present report refers only to the

instructive and the gap periods.

Behavioral results
It is well known that antisaccadic responses show an increased

latency and number of errors compared to prosaccadic response

[1,41]. Accordingly, the present results show that latency and

number of errors were higher in antisaccadic than in prosaccadic

tasks and that errors were mainly due to direction mistakes. The

number of errors in the antisaccadic task increases when a

concurrent working memory task is performed [42]. The need to

keep a given operative rule in working memory is particularly

obvious in an experimental design in which the type of trial

indicated by the cue is updated in each trial. Latency differences

may be related to the extra time needed to inhibit the reflexive

glance toward the target and to command the eye movement to

the opposite side in the antisaccadic task [1]. Errors of execution in

which subjects performed a movement during no-go or did not

produce any eye movement during saccadic tasks were also

observed. These two types of errors are probably due to confusion

about the type of trial in which the subject was embedded,

producing response in no-go and no response in prosaccadic and

antisaccadic tasks. Taking into consideration the response timing,

number and type of errors, and the effect of experimental design

complexity, it could be concluded that there is an increasing order

of difficulty from no-go to prosaccadic and antisaccadic tasks.

Event-related potentials during the instructive period
In these experiments, the preparatory period included an

instructive period –in which a cue color indicating the type of task

was present– and a gap period –in which the cue disappeared

370 ms before the appearance of S2. During these preparation

times, different processes such as rule retention by working

memory, timing, and sensory and motor preparation must be

expected to be active. However, each process probably develops at

different times and can change its relative importance depending

on the type and difficulty of the task.

In ERP analysis, the instructive period was characterized by a

progressive slow negative potential, located in the fronto-central

and posterior regions of the scalp. This negative potential can be

considered a preparatory CNV. The frontal component probably

corresponds to the classical motor preparation subcomponent of

CNV [43] whereas the posterior is probably related to sensory

anticipation [44,45]. These components presented different

amplitudes between the different tasks.

During the instructive period, the negativity in frontal sites was

significantly higher in antisaccadic tasks, followed by prosaccadic

and no-go tasks. A reverse pattern was found in posterior sites,

with higher amplitude in prosaccadic and no-go than in

antisaccadic tasks. An increased CNV in central and pre-central

regions in antisaccadic versus prosaccadic tasks has been

previously described [10,11,12], but the reverse pattern for

occipital negativity observed here constitutes a new result. The

task-related opposite pattern of negativity in posterior and anterior

regions was also revealed by the topography of the first PCA

component, which exhibited the same arrangement (Fig. 4). These

results seems to indicate that the activity during the instructive

period is biased to frontal sites as the difficulty of the task increases

and more control is needed for producing an accurate response.

The preparatory period has been previously related with a higher

activity of FEF, SEF, DLPFC, ACC, SMA and intraparietal sulcus

by fMRI experiments during the antisaccadic task [4,5,6,7,8]. In a

fMRI study with a paradigm very similar to that of the present

report, Brown et al. (2006) showed an increase in the BOLD signal

Figure 5. Voltage topographies. The scalp voltage distribution
during the instructive period (A) displayed fronto-central and posterior
negativity. The topography during the last 100 ms of the gap period,
after subtracting the trend line during the instructive period, showed
the fronto-central but not the occipital component (B).
doi:10.1371/journal.pone.0063751.g005
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during the instructive period in antisaccadic with respect to no-go

tasks in left and right FEF and left caudal precuneus [46]. The

comparison of prosaccadic and no-go tasks yielded an increased

activation in the left precuneus during the prosaccadic condition.

The differences between fMRI and the present study could be

attributed to the fact that the EEG measures the brain activity

related to changes in different rhythms of activity that can

contribute in different directions and intensities to brain metab-

olism.

Event-related potentials during the gap period
During the gap period, a sudden increase in negativity occurred

at fronto-central and parieto-occipital regions. The PCA results

can disentangle this sharp increase in negativity during the gap

from the slow negativity during the instructive period. The PCA

showed two main components, one with fronto-central and

parieto-occipital distributions which would be related to the

CNV during the instructive period and extended into the gap

period, and a fronto-central component whose temporal dynamics

and topography explain the variance associated with gap-related

negativity [29].

Figure 6. Event-related spectral power (ERSP) and inter-trial coherence (ITC) during the preparatory period. The figure shows the time-
frequency analysis at FCz (A), Pz (B) and Oz (C) for antisaccadic (ANTIS), prosaccadic (PROS) and no-go (NG) tasks. For A–C, significant (bootstrap
p,0.01) differences (non-green pixels) in ERSP (first row) and ITC (second row) with respect to the 100 first ms are shown. The vertical dashed red line
indicates the onset of the gap period. For ERSP analysis, warm color indicates even-related synchronization and cool color event-related
desynchronization. For ITC, warm color indicates increase in phase coherence.
doi:10.1371/journal.pone.0063751.g006
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The continuation of CNV activity during the gap period

explains why there is a parieto-occipital voltage activity very

similar to that observed during the instructive period. However,

fronto-central negativity during the gap was greater than during

the instructive period, indicating extra fronto-central activity

during the gap period.

Voltage activities during the instructive and gap periods in

antisaccadic and prosaccadic tasks would have sources in areas

described in fMRI for general and motor related preparation. The

fronto-central localization strongly suggests that the RT facilitation

attributed to the gap compared to the overlap paradigms is

probably due to motor preparation, as suggested by previous

studies using behavioral and ERP data [22,24,25,27,28,30,47].

The gap-related negativity was roughly located over the SMA

and/or dorsal ACC. This increased negativity in the SMA could

explain the increased activity in the superior colliculus observed

during the gap period [48,49,50]. Extensive connections between

the SMA and the superior colliculus have been well established

[51], and this pathway would be implicated in the shortest RTs of

saccades preceded by a gap period. However, motor preparation

could not completely explain the gap-related negativity in

antisaccades (which require inhibition of prevalent responses)

and no-go conditions. Given that gap-related negativity must

account for motor preparation, inhibition of the prevalent

responses and probably timing, it could be related to the more

cognitive concept of attentional control [52] and monitoring of the

ongoing processes, which would be higher in antisaccadic than

prosaccadic and no-go conditions.. The dorsal ACC have a role in

top-down control of oculomotor regions, including the FEF [53],

and an increased number of errors in antisaccadic tasks is related

to lower activation in dorsal ACC [54]. Therefore we can suggest

a role for dorsal ACC during the gap period to exert cognitive

control in the proposed tasks; as more cognitive control is needed,

more neural activity is associated with it, i.e. in the antisaccadic

task in the present experiments.

Time-frequency results
During the instructive period, there was an increase in alpha

power in the parieto-occipital cortex (significantly lower in

antisaccadic than no-go tasks) and a decrease in beta power in

the fronto-central and parieto-occipital (greater and slightly more

frontal in antisaccadic than no-go tasks). Decreases in ERS in the

alpha band has been related to complex tasks and effort in

attention [13], suggesting that antisaccadic task execution is more

demanding than the others. Motor preparation could be observed

throughout the power in the beta band. Beta ERD has been

previously related to the functional state of the somatosensory and

motor cortex [14,55,56]. In this sense, it is interesting to note that

beta ERD was smallest in the no-go task, i.e., when no motor

response was required.

In the present experiments, there was a broadband theta, alpha

and beta ERD in parieto-occipital sites during the gap period.

Figure 7. Topographical distribution of theta, alpha and beta rhythm activities during the instructive and gap periods. A and B show
scalp distribution of event-related spectral power (ERSP) in alpha and beta bands, respectively, during the instructive period. Comparisons between
tasks (third column) showed a significant event-related synchronization (ERS) in no-go (NG) with respect to antisaccadic (ANTIS) task in the alpha
band (A), and an event-related desynchronization (ERD) for antisaccadic compared to no-go task in the beta band (B). C–F show the scalp distribution
of ERSP and inter-trial phase coherence (ITC) during the last 270 ms of the gap period. Parieto-occipital regions were characterized by a significant
alpha ERD in antisaccadic with respect to no-go tasks (C) and a beta ERD higher in antisaccadic and prosaccadic than in no-go tasks (D). Fronto-
central activities were depicted by theta ERS and ITC. Theta ERS was higher in antisaccadic than prosaccadic and no-go tasks (E). Theta ITC task
comparisons showed best phase locking in antisaccadic followed by prosaccadic and no-go tasks (F). Red points in the third column indicate
significant differences (p,0.05). Calibration bars are indicated.
doi:10.1371/journal.pone.0063751.g007
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Broadband power reduction has also been demonstrated in the

late phase of the CNV [14,57]. The alpha ERD was significantly

greater in antisaccadic than no-go tasks. The other comparisons

(anti- vs. prosaccadic and prosaccadic vs. no-go) did not yield

significant differences. Beta ERD was significantly greater in

prosaccadic and antisaccadic than in no-go tasks. These differ-

ences in activity during the gap period could be related to the

higher difficulty, attention and sensorimotor preparation required

by the antisaccadic task. In the theta band, there was an ERS at

fronto-central level with respect to baseline for all three tasks.

Differences were found between the antisaccadic task and

prosaccadic and no-go tasks that could be related to the high

attention required [58,59] to prepare the more demanding [60]

antisaccadic task. The increase in theta power at fronto-central

sites was also accompanied by increased ITC. Theta band would

also serve as the carrier for working memory [16] to retrieve the

rule [61,62,63,64,65] needed to invoke the appropriate response.

Following the definition of Botvinick et al. (2001) of cognitive

control [52], this increase in theta oscillation would be related to

the contextual information, in this case the type of current trial.

This increase in fronto-central theta ITC was significantly higher

in antisaccadic than in prosaccadic and no-go tasks, indicating that

the so-called gap negativity –reflecting control processes– is

partially generated by theta ITC.

PCA results
Comparison of the loading factors of the PCA extracted from

voltage and ERSP during the instructive and gap periods

presented very similar temporal dynamics. This indicates a

functional linkage between voltage and spectral power, as

previously suggested by the broadband decrease in power that

occurs during the CNV period [14]. Funderud et al. (2012)

obtained a similar result in a go/no-go experiment [57] and

suggested that the CNV would reflect the synchronization of a low

frequency rhythm [66], and could trigger a cross-frequency

coupling with the classical brain rhythms. The similar dynamics

of the PCA components obtained from CNV, gap-related

negativity and ERSP clearly support this suggestion.

Present results suggest that when a cue indicates tasks of

increased difficulty, sensory-motor preparation includes increased

fronto-central CNV and beta ERD and decreased alpha ERS

parieto-occipital activity with respect to tasks with lesser cognitive

demands. On the other hand, the presence of a gap before the

target acts as a pre-saccadic trigger signal producing a fronto-

central negativity mainly related with theta ERS and ITC. This

gap-related negativity, which was accompanied by beta and alpha

ERD, was probably related to top-down control of the cognitive

and sensory-motor processes needed to produce an accurate

response.
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