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Abstract. In the present paper, we consider inexact proximal point algorithms for finding
singular points of multivalued vector fields on Hadamard manifolds. The rate of convergence is
shown to be linear under the mild assumption of metric subregularity. Furthermore, if the sequence
of parameters associated with the iterative scheme converges to 0, then the convergence rate is
superlinear. At the same time, the finite termination of the inexact proximal point algorithm is
also provided under a weak sharp minima-like condition. Applications to optimization problems are
provided. Some of our results are new even in Euclidean spaces, while others improve and/or extend
some known results in Euclidean spaces. As a matter of fact, in the case of exact proximal point
algorithm, our results improve the corresponding results in [G. C. Bento and J. X. Cruz Neto, Optim.,
63 (2014), pp. 1281–1288]. Finally, several examples are provided to illustrate that our results are
applicable while the corresponding results in the Hilbert space setting are not.
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1. Introduction. Recent interests are focused on the study of various problems
on manifolds. The reason is that many optimization problems arising in various appli-
cations are posed on manifolds and require a manifold structure (not necessarily with
linear structure), such as geometric models for the human spine [4], some eigenvalue
optimization problems [6, 61], and so on. Moreover, some constrained optimization
problems may be seen as unconstrained ones on some manifolds. For example, some
eigenvalue problems, invariant subspace computations, optimization problems with
equality constraints, etc., can be reformulated as unconstrained optimization problems
on some manifolds (cf. [4, 50, 56] and references therein). Then, these problems can be
resolved more efficiently by using the underlying geometric structure of the manifold,
which sometimes has a lower complexity and quite often has better numerical proper-
ties (as explained in [6]). On the other hand, some nonconvex/nonmonotone problems
in linear spaces may become convex/monotone problems through the introduction of
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PROXIMAL POINT ALGORITHMS ON HADAMARD MANIFOLDS 2697

an appropriate Riemannian metric (in [15] many such examples are provided). Thus,
these problems can be studied by using some convex analysis results on manifolds
and the intrinsic geometry property of the manifold endowed with some appropriate
Riemannian metric.

Hence, extension of concepts, techniques, and algorithms from Euclidean spaces
to Riemannian manifolds are natural and meaningful. Indeed, some important ones
such as monotone operators, weak sharp minima, variational inequality, subdifferen-
tials, Newton’s method, the conjugate gradient method, the trust-region method, the
proximal point method, and their modifications for optimization problems on linear
spaces are extended to the Riemanninan manifolds setting in [4, 7, 10, 17, 22, 29, 32,
33, 36, 37, 38, 39, 44, 45, 53, 54, 55, 58] and the references therein. Furthermore, some
recent works about optimization algorithms on Riemannian manifolds for nonsmooth
functions can be found in [8, 25, 26] and so on.

Our interest in the present paper is focused on inexact proximal point algorithms
for finding singular points of multivalued vector fields on Hadamard manifolds. We
first simply recall the definition of this algorithm and its history in the Hilbert space
setting. Let H be a real Hilbert space, and T : H → H be a multivalued maximal
monotone operator. The problem of finding

(1.1) z ∈ H such that 0 ∈ T (z)

has interesting interpretations in various fields, and a lot of problems such as convex
minimization problems, variational inequalities, saddle point problems, and comple-
mentarity problems, and so on can be recast into the form (1.1); see, e.g., [41, 51], etc.
A large variety of methods for solving (1.1) have been proposed and investigated (see,
e.g., [40, 51]). Among them, one of the most important is the well-known proximal
point algorithm defined by

(1.2) zk+1 = (I+ ckT )
−1(zk), k = 0, 1, . . . ,

where z0 ∈ H is an initial point and {ck} ⊆ (0,+∞) is a sequence of the regularized
parameters. The proximal point algorithm was earlier used for regularizing linear
equations [31], and seems to have been applied for the first time to convex minimiza-
tion by Martinet [41], and has been explored extensively; see, e.g., [5, 24, 40, 51] and
the book [9], together with the reference therein.

In particular, in his seminal work [51], Rockafellar developed two inexact ver-
sions of the proximal point algorithm to generate the sequences {zk+1} by using two
approximate rules zk+1 ≈ (I+ ckT )

−1(zk) . One criterion adopted by Rockafellar is

(1.3)
∥∥zk+1 − (I+ ckT )

−1(zk)
∥∥ ≤ εk, k = 0, 1, . . . ,

while the other is

(1.4) d
(
0, Sk

(
zk+1

)) ≤ εk
ck

, k = 0, 1, . . . ,

where each Sk(·) := T (·)+ c−1
k (· − zk) and the real sequence {εk} satisfies

∑∞
k=0 εk <

∞. As shown in [51], that criterion (1.4) implies criterion (1.3). Under the assumption
that the solution set of (1.1) is nonempty and the regularized parameters {ck} are
bounded away from zero, it is proved in [51] that the sequence {zk} generated by (1.3)
(and so by (1.4)) with any initial point z0 converges weakly to a solution of (1.1);
furthermore the convergence rate is at least linear if T−1 is additionally assumed to
be Lipschitz continuous at 0.
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2698 J. WANG, C. LI, G. LOPEZ, AND J.-C. YAO

The proximal point algorithm was first extended in [21] to solve convex optimiza-
tion problems on Hadamard manifolds and, further, in [33] to find singular points of
multivalued vector fields on a Hadamard manifold. Recently, the convergence prop-
erty of the proximal point algorithm for solving variational inequality problems for
multivalued mappings on general Riemannian manifolds has been studied in [35]. The
setting in the Hadamard manifold is as follows. Let M be a Hadamard manifold, and
let A : M → 2TM be a multivalued vector field such that A(x) ⊆ TxM for each
x ∈ M and the domain D(A) of A is closed and convex. Given a sequence of parame-
ters {λn} ⊆ (0,+∞), then the proximal point algorithm on Hadamard manifolds for
finding a singularity of A (i.e., 0 ∈ A(x)) is defined as follows.

Algorithm P. Give initial point x0 ∈ D(A). Letting n = 0, 1, 2, . . . and having
xn, determine xn+1 such that

(1.5) 0 ∈ A(xn+1)− λn exp
−1
xn+1

xn.

As expected, the extension to the Hadamard manifold setting of the inexact ver-
sions of the proximal point algorithm in Hilbert spaces with two approximate rules
(1.3) and (1.4) has been done in [59], where their convergence results are established.
Given a sequence of parameters {λn} ⊆ (0,+∞) and a sequence of error controls
{εn} ⊆ (0,+∞), the two inexact proximal point algorithms are formulated, respec-
tively, as the following Algorithm IP1 and Algorithm IP2.

Algorithm IP1. Give initial point x0 ∈ D(A). Letting n = 0, 1, 2, . . . and having
xn, determine xn+1 such that

(1.6) d(xn+1, yn) ≤ εn

with the associated yn ∈ M satisfying

(1.7) 0 ∈ A(yn)− λn exp
−1
yn

xn.

(The sequence {yn} is called an associated sequence generated by Algorithm IP1).
Algorithm IP2. Give initial point x0 ∈ D(A). Letting n = 0, 1, 2, . . . and having

xn, determine xn+1 such that

(1.8) d(0, Aλn,xn(xn+1)) ≤ λnεn,

where, for each n = 0, 1, . . . , the multivalued vector field Aλn,xn is defined by

Aλn,xn(x) := A(x) − λn exp
−1
x xn for each x ∈ M.

As pointed out in [59], it is unknown whether a sequence generated by Algorithm
IP2 is also a sequence generated by Algorithm IP1 even in the case when A is max-
imal monotone (because whether (1.7) is solvable is unknown) in general. From the
viewpoint of application, Algorithm IP2 is more implementable than Algorithm IP1.

The aim of the present paper is to continue to study the convergence properties
of Algorithms IP1 and IP2. The interesting topics considered here are two: one is the
convergence rate of these algorithms and the other is the finite termination of these
algorithms. More precisely, we will establish in sections 3 and 4 that linear conver-
gence and finite termination for these two inexact algorithms under the assumptions
of metric subregularity and of weak sharp minima-like conditions, respectively. Fur-
thermore, if the involved parameters λn → 0, then the convergence rate is superlinear.
In particular, some of our results are new (e.g., most of the results in section 3) even
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in Euclidean spaces, while some corresponding result in [11] for the proximal point al-
gorithm on Hadamard manifolds is improved/extended (as explained before Corollary
5.11). To the best of our knowledge, the present paper seems to explore the linear
convergence property of the proximal point algorithms on Riemannian manifolds. As
shown by an example provided in the last section (i.e., Example 6.4), the results in
the present paper cannot be extended directly to the general Riemannian manifold
setting.

The remainder of the paper is organized as follows. In section 2, some fundamen-
tal definitions, properties, and notations of Riemannian manifolds are provided. In
section 3, convergence rates of Algorithms IP1 and IP2 are presented. Finite termina-
tions of Algorithms IP1 and IP2 are explored in section 4. In section 5, applications to
optimization problems are provided. In the last section, several examples are provided
to illustrate our theorems obtained in the present paper.

2. Preliminaries. In this section we introduce some fundamental definitions,
properties, and notations of Riemannian manifolds, which can be found in any text-
book on Riemannian geometry, for example, [18, 48, 52].

Let M be a complete and connected m-dimensional manifold. We assume that M
can be endowed with a Riemannian metric 〈·, ·〉, with the corresponding norm denoted
by ‖ · ‖, to become a Riemannian manifold. Let p ∈ M . The tangent space of M
at p is denoted by TpM and the tangent bundle of M by TM =

⋃
p∈M TpM , which

is naturally a manifold. Given a piecewise smooth curve γ : [a, b] → M joining p to
q (i.e., γ(a) = p and γ(b) = q), we can define the length of γ by using the metric as

L(γ) =
∫ b

a
‖γ′(t)‖dt. Then the Riemannian distance d(p, q) is defined by minimizing

this length over the set of all such curves joining p to q, which induces the original
topology on M .

For a Banach space or a Riemannian manifold Z, we use BZ(p, r) and BZ(p, r) to
denote, respectively, the open metric ball and the closed metric ball at p with radius
r, that is,

BZ(p, r) = {q ∈ Z : d(p, q) < r} and BZ(p, r) = {q ∈ Z : d(p, q) ≤ r}.

We often omit the subscript Z if no confusion arises. In particular, we use Bp to
denote the closed unit ball of TpM , i.e.,

Bp := {v ∈ TpM | ‖v‖ ≤ 1}.

Let ∇ be the Levi-Civita connection associated with (M, 〈, 〉). Let γ be a smooth
curve in M . A vector field X is said to be parallel along γ if ∇γ′X = 0. If γ′ itself is
parallel along γ, we say that γ is a geodesic, and in this case ‖γ′‖ is constant. When
‖γ′‖ = 1, γ is called normalized. A geodesic joining p to q in M is said to be minimal if
its length equals d(p, q). By the Hopf–Rinow theorem we know that if M is complete
then any pair of points in M can be joined by a minimal geodesic. Moreover, (M, d)
is a complete metric space and bounded closed subsets are compact.

We use Pγ,·,· to denote the parallel transport on the tangent bundle TM along γ
with respect to ∇, which is defined by

Pγ,γ(b),γ(a)(v) = V (γ(b)) ∀a, b ∈ R and v ∈ Tγ(a)M,

where V is the unique vector field satisfying ∇γ′(t)V = 0 for all t and V (γ(a)) = v.
Then, for any a, b ∈ R, Pγ,γ(b),γ(a) is an isometry from Tγ(a)M to Tγ(b)M . Note that,
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for any a, b, b1, b2 ∈ R,

Pγ,γ(b2),γ(b1) ◦ Pγ,γ(b1),γ(a) = Pγ,γ(b2),γ(a) and P−1
γ,γ(b),γ(a) = Pγ,γ(a),γ(b).

We will write Pq,p instead of Pγ,q,p in the case when γ is a minimal geodesic joining
p to q and no confusion arises.

Recall that the exponential map exp : TM → M is defined as follows: for all
q ∈ M, v ∈ TqM ,

expq v = γ(1, q, v) = γ

(
‖v‖, q, v

‖v‖
)
,

that is, expq v is obtained by going out the length equal to ‖v‖, starting from q, along
a geodesic γ which passes through q with velocity equal to v

‖v‖ . Then, for any value

of t, expq tv = γ(t, q, v). Note that the map expq is differentiable on TqM for any
q ∈ M .

A complete simply connected Riemannian manifold of nonpositive sectional cur-
vature is called a Hadamard manifold. Throughout the remainder of this paper, we
will always assume that M is an m-dimensional Hadamard manifold. Let p ∈ M . It
follows from [52, p. 221, Theorem 4.1] that expp : TpM → M is a diffeomorphism, and
for any two points p, q ∈ M there exists a unique normalized geodesic joining p to q,
which is, in fact, a minimal geodesic. Furthermore, for the Hadamard manifold, one
of the most important properties is the following comparison theorem (cf. [52, p. 223,
Proposition 4.5]), which is useful in our study. Let Δ(p1p2p3) be a geodesic triangle of
a Riemannian manifold, that is, Δ(p1p2p3) is a set consisting of three points p1, p2, p3,
and three minimal geodesics joining these points. Then, for each i = 1, 2, 3 (mod 3),

(2.1) d2(pi, pi+1) + d2(pi+1, pi+2)− 2
〈
exp−1

pi+1
pi, exp

−1
pi+1

pi+2

〉
≤ d2(pi−1, pi).

A subset K ⊆ M is said to be convex if for any two points p and q in K, the
geodesic joining p to q is contained in K, that is, if γ : [a, b] → M is a geodesic such
that p = γ(a) and q = γ(b), then γ((1− t)a+ tb) ∈ K for all t ∈ [0, 1].

Let X (M) denote the set of all multivalued vector fields A : M ⇒ TM such that
A(x) ⊆ TxM for each x ∈ M and the effective domain D(A) of A is closed and convex,
where the domain D(A) of A is defined by

D(A) = {x ∈ M : A(x) �= ∅}.

In the spirit of the corresponding notions in Hilbert spaces (cf. [14, 42] and [60] for
example), Definition 2.1 below taken from [59] extends some notions of the mono-
tonicity to multivalued vector fields on Hadamard manifolds. In particular, concepts
(a), (b), (c) were introduced and studied in [44] for the single-valued case and in [16]
for the multivalued case.

Definition 2.1. Let A ∈ X (M). A is said to be
(a) monotone if the following condition holds for any x, y ∈ D(A):

(2.2)
〈
u, exp−1

x y
〉 ≤ 〈v,− exp−1

y x
〉 ∀u ∈ A(x) and ∀v ∈ A(y);

(b) strictly monotone if (2.2) holds with strict inequality for any x, y ∈ D(A)
with x �= y, that is,

(2.3)
〈
u, exp−1

x y
〉
<
〈
v,− exp−1

y x
〉 ∀u ∈ A(x) and ∀v ∈ A(y);
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(c) ρ-strongly monotone if there exists ρ > 0 such that, for any x, y ∈ D(A),
(2.4)〈

u, exp−1
x y
〉− 〈v,− exp−1

y x
〉 ≤ −ρd2(x, y) ∀u ∈ A(x) and ∀v ∈ A(y);

(d) maximal monotone if it is monotone and the following implication holds for
any x ∈ M and u ∈ TxM :
(2.5)〈

u, exp−1
x y
〉 ≤ 〈v,− exp−1

y x
〉 ∀y ∈ D(A) and v ∈ A(y) =⇒ u ∈ A(x).

Example 2.1. Let y ∈ M . Define a vector field Vy : M → TM by

Vy(x) := − exp−1
x y.

Then, by [58], Vy is 1-strongly maximal monotone. Furthermore, for any λ > 0 and
any monotone vector field A on M , the multivalued vector field Aλ,y defined by

Aλ,y(x) := A(x)− λ exp−1
x y for each x ∈ M

is λ-strongly monotone; see [33] for example.

Let A be a multivalued vector field. We use A−1(0) to denote the set of all
singularities of A, that is,

A−1(0) := {x ∈ D(A) : 0 ∈ A(x)}.

The following proposition is known in [33, Theorem 4.3] and provides a sufficient
condition ensuring the existence of singularities of A.

Proposition 2.2. Let A ∈ X (M) be a maximal strongly monotone vector field
with the domain D(A) = M . Then there exists a unique singularity of A.

Remark 2.1. Note that Algorithm P is an implicit method. Thus one basic prob-
lem is when this algorithm is well-defined. For each n, define Aλn,xn ∈ X (M) by

Aλn,xn(x) := A(x)− λn exp−1
x xn ∀x ∈ D(A).

Then, in the case when A ∈ X (M) is monotone, each Aλn,xn is strongly monotone.
Thus, in view of Proposition 2.2, the following assertions hold when A is monotone.
(i) Algorithm P is well-defined if and only if A−1

λn,xn
(0) �= ∅ for each n = 0, 1, 2, . . . .

(ii) If D(A) = M and A is maximal monotone, then Algorithm P is well-defined.

The following proposition taken from [59] shows that if (1.7) is solvable for each n,
then any sequence generated by Algorithm IP2 with initial point x0 is also a sequence
generated by Algorithm IP1 with the same initial point.

Proposition 2.3. Suppose that A ∈ X (M) is a maximal monotone multivalued
vector field. Let {λn} and {εn} be two sequences of positive numbers. Let x0 ∈ M
and let {xn} be a sequence generated by Algorithm IP2. Suppose that, for each n, the
problem

(2.6) 0 ∈ A(x) − λn exp
−1
x xn

is solvable. Then {xn} can also be regarded as a sequence generated by Algorithm IP1

with same initial point x0.
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Consider a sequence {xn} in M . For convenience, we write

(2.7) δn :=
εn

d(xn+1, xn)
for each n ∈ N,

where we adopt the convention that 0
0 = 0. Throughout the paper, we always assume

that A ∈ X (M) is maximal monotone with A−1(0) �= ∅, and let x0 ∈ D(A) be a given
initial point. We first need the following lemma about the properties of sequences
generated by Algorithm IP1.

Lemma 2.4. Let {xn} be a sequence generated by Algorithm IP1 (together with
the associated sequence {yn}) and let x̄ ∈ A−1(0). Then the following assertions hold:

(i) For any n = 0, 1, . . . , the following inequality holds:

(2.8) d2(yn, x̄) + d2(yn, xn) ≤ d2(xn, x̄).

(ii) The following implication holds:

(2.9)
∑
n≥0

δn < +∞ =⇒
∑
n≥0

εn < +∞.

(iii) If {εn} ⊂ [0,+∞) satisfies

(2.10)
∑
n≥0

εn < +∞,

then the sequences {d(xn, x̄)} and {d(yn, x̄)} are convergent for any x̄ ∈
A−1(0).

Proof. Assertions (i) and (iii) are known in [59, Lemma 3.7].
(ii). Suppose that

∑
n δn < +∞. Fix n. Then, by the definition, one has that

(2.11) εn = δnd(xn+1, xn).

Let x̄ ∈ A−1(0). We observe by (2.8) that

(2.12) d(yn, x̄) ≤ d(xn, x̄) for each n.

Hence

(2.13) d(xn+1, x̄) ≤ d(xn+1, yn) + d(yn, x̄) ≤ d(xn, x̄) + εn for each n.

Combining (2.11) and the second inequality of (2.13), we conclude that

d(xn+1, x̄) ≤ δnd(xn+1, xn) + d(xn, x̄) ≤ δn(d(xn+1, x̄) + d(xn, x̄)) + d(xn, x̄).

It follows that

(2.14) d(xn+1, x̄) ≤ 1 + δn
1− δn

d(xn, x̄) =

(
1 +

2δn
1− δn

)
d(xn, x̄).

Since
∑

n≥0
2δn
1−δn

< ∞ by assumption, we apply [49, Lemma 2.2.2] to obtain that the
sequence {d(xn, x̄)} is convergent and so {d(xn+1, xn)} is bounded. It follows from
(2.11) that ∑

n≥0

εn ≤ sup
n

d(xn+1, xn)
∑
n≥0

δn < +∞

and so
∑

n≥0 εn ≤ +∞. The proof is complete.
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Note that, in general, a sequence generated by Algorithm IP2 cannot be regarded
as a sequence generated by Algorithm IP1. The following lemma is an analogue to
Lemma 2.4 for Algorithm IP2.

Lemma 2.5. Let {xn} be a sequence generated by Algorithm IP2 and let x̄ ∈
A−1(0). Then the following assertions hold:

(i) For any n ∈ N, the following inequality holds:

(2.15) d2(xn+1, x̄) +
1

2
d2(xn+1, xn) ≤ 1

1− 2δ2n
d2(xn, x̄).

(ii) The following implication holds:

(2.16)
∑
n≥0

δ2n < +∞ =⇒
∑
n≥0

εn < +∞.

(iii) If {εn} ⊂ [0,+∞) satisfies (2.10), then the sequence {d(xn, x̄)} is convergent
for each x̄ ∈ A−1(0).

Proof. Assertions (i) and (iii) are known in [59, Lemma 3.9]. Below, we show
that assertion (ii) holds. Suppose that

∑
n≥0 δ

2
n < +∞. Note by definition that

δn = εn
d(xn+1,xn)

. Then

(2.17) 2εn ≤ δ2n + d2(xn+1, xn).

Let N be a positive integer such that 2δ2n < 1 for all n ≥ N . Fix n ≥ N and let
x̄ ∈ A−1(0). Then, applying (2.15) to 2δ2n in place of t, we have the following assertion:

(2.18) d2(xn+1, x̄) ≤
(
1 +

2δ2n
1− 2δ2n

)
d2(xn, x̄)− 1

2
d2(xn+1, xn).

This implies that

1

2
d2(xn+1, xn) ≤ (d2(xn, x̄)− d2(xn+1, x̄)) +

2δ2nd
2(xn, x̄)

1− 2δ2n
;

hence,

(2.19)
∑
n≥N

1

2
d2(xn+1, xn) ≤

∑
n≥N

(d2(xn, x̄)− d2(xn+1, x̄)) +
∑
n≥N

2δ2nd
2(xn, x̄)

1− 2δ2n
.

It follows from (2.17) and (2.18) that [49, Lemma 2.2.2] is applicable and so {d2(xn, x̄)}
is convergent (and so bounded). Consequently, (2.19) implies that

∑
d2(xn+1, xn) <

+∞ thanks to the fact that
∑

n δ
2
n < +∞. Therefore,

∑
n εn < +∞ by (2.17), and

the proof is complete.

3. Metrical subregularity and rate of convergence. Let A : M → 2TM be
a multivalued vector field, and consider the following generalized singularity problem:

(3.1) 0 ∈ A(x).

This section is devoted to the study of the convergence rate of the inexact proximal
point algorithm for solving (3.1) under metric regular condition. First, we recall some
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notions and notations. Let X be a metric space and let x ∈ X . Let S1 ⊆ X . The
distance from x to S1 is defined by

d(x, S1) := inf{d(x, z)| z ∈ S1}.
Let v ∈ TzM for some z ∈ M . Then, we define

A−1(v) := {x ∈ M : Px,zv ∈ A(x)},
while gphA and domA are defined similarly.

The metric subregularity (the terminology “error bond” is sometimes adopted
instead of metric subregularity; see [19] for history of terminology) and its equivalent
calmness counterpart for inverse mappings have been studied extensively in linear
spaces. Various results in this direction and their applications can be found in [1, 2,
3, 19, 23, 27, 28, 30, 62, 63] and references therein. Below, we extend the notion of
metric subregularity (cf. [20]) to Riemannian manifolds.

Definition 3.1. Let A : M → 2TM be a multivalued vector field. Let κ ≥ 0 and
U ⊂ M . A is said to be

(a) metrically subregular on U with modulus κ if

(3.2) d
(
x,A−1(0)

) ≤ κ d
(
0, A(x)

)
for all x ∈ U ;

(b) metrically subregular if, for any x̄ ∈ A−1(0), there exist a neighborhood Ux̄ ⊂
M of x̄ and κx̄ > 0 such that A is metrically subregular on Ux̄ with modulus
κx̄;

(c) global metrically subregular with modulus κ if A is metrically subregular on
M with modulus κ, that is,

(3.3) d
(
x,A−1(0)

) ≤ κ d
(
0, A(x)

)
for all x ∈ M.

Remark 3.1. Let x̄ ∈ A−1(0), and define

sregx̄A := lim
ρ→0

sup
x∈B(x̄,ρ)\A−1(0)

d(x,A−1(0))

d(0, A(x))
.

Then A is metrically subregular if and only if sregx̄A < +∞ for each x̄ ∈ A−1(0).

Below, we get a lemma about the convergence rate of sequences generated by
Algorithms IP1 and IP2, which will be useful. Recall that {δn} is defined by (2.7):

δn =
εn

d(xn, xn+1)
for each n.

Let κ > 0 and set

(3.4) μn := κλn(1 + δn) for each n.

Lemma 3.2. Let N ∈ N, κ > 0, and let U ⊆ M . Suppose that A is metrically
subregular on U with modulus κ.

(i) Let {xn} be a sequence generated by Algorithm IP1 (together with the associated
sequence {yn}) such that {yn : n ≥ N} ⊂ U and

(3.5) sup
n≥N

δn < 1.
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Then, one has that, for each n ≥ N ,

(3.6) d(xn+1, A
−1(0)) ≤

(
δn

1− δn
+

√
λ2
nκ

2

1 + λ2
nκ

2

)
d(xn, A

−1(0)).

(ii) Let {xn} be a sequence generated by Algorithm IP2 such that {xn : n ≥ N} ⊂
U and (3.5) holds. Then one has that, for each n ≥ N ,

(3.7) d(xn+1, A
−1(0)) ≤

√
2μn√

(1 + 2μ2
n)(1 − 2δ2n)

d(xn, A
−1(0)),

where μn is given by (3.4).

Proof. (i) Let z ∈ A−1(0) and fix n. By (2.8), we have d(yn, xn) ≤ d(xn, z). As
z ∈ A−1(0) is arbitrary, it follows that

(3.8) d(yn, xn) ≤ d(xn, A
−1(0)).

Observe further that

d(xn+1, yn) ≤ εn = δnd(xn+1, xn) ≤ δn(d(xn+1, yn) + d(yn, xn)).

This gives that

d(xn+1, yn) ≤ δn
1− δn

d(xn, yn).

Combining this with (3.8) yields

(3.9) d(xn+1, yn) ≤ δn
1− δn

d(xn, A
−1(0)).

This implies that
(3.10)

d(xn+1, A
−1(0)) ≤ d(xn+1, yn)+d(yn, A

−1(0)) ≤ δn
1− δn

d(xn, A
−1(0))+d(yn, A

−1(0)).

Since λn exp
−1
yn

xn ∈ A(yn) by the definition of Algorithm IP1, it follows that

(3.11) d(0, A(yn)) ≤ λn‖ exp−1
yn

xn‖.
By assumption, we get that for each n ≥ N1,

d(yn, A
−1(0)) ≤ κd(0, A(yn)).

Combining this with (3.11) gives that

(3.12)
∥∥exp−1

yn
xn

∥∥ ≥ 1

κλn
d(yn, A

−1(0)).

Write z = PA−1(0)(xn). Then

d2(yn, A
−1(0)) ≤ d2(yn, z)

≤ d2(xn, z)− d2(xn, yn)

≤ d2(xn, A
−1(0))− 1

κ2λ2
n

d2(yn, A
−1(0)),
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where the second inequality holds because of (2.8), while the last inequality holds
because of (3.12). This implies that

d(yn, A
−1(0)) ≤

√
λ2
nκ

2

1 + λ2
nκ

2
d(xn, A

−1(0)).

Combining this with (3.10) yields that for all n ≥ N1,

d(xn+1, A
−1(0)) ≤

(
δn

1− δn
+

√
λ2
nκ

2

1 + λ2
nκ

2

)
d(xn, A

−1(0)).

Hence, (3.6) is seen to hold.
(ii) For each n, by the definition of Algorithm IP2, one can chose vn+1 ∈ Txn+1M

such that

(3.13) λnvn+1 ∈ Λn(xn+1) = A(xn+1)− λn exp
−1
xn+1

xn

and
λn‖vn+1‖ ≤ d(0,Λn(xn+1)) ≤ λnεn.

This, together with the definition of δn, gives that

λn‖vn+1‖ ≤ λnδnd(xn+1, xn).

We get by assumption that, for each n ≥ N ,

(3.14) d(xn, A
−1(0)) ≤ κd(0, A(xn)).

Observe further that λnvn+1 + λn exp
−1
xn+1

xn ∈ A(xn+1) by (3.13). Thus, it follows
from (3.14) that

(3.15) d(xn+1, A
−1(0)) ≤ κ‖λnvn+1 + λn exp

−1
xn+1

xn‖ ≤ κλn(1 + δn)d(xn, xn+1).

Applying (2.15), we conclude that

d2(xn+1, A
−1(0)) +

1

2
d2(xn+1, xn) ≤ 1

1− 2δ2n
d2(xn, A

−1(0)).

This, together with (3.15), gives that

(κλn(1 + δn))
2d2(xn+1, A

−1(0)) +
1

2
d2(xn+1, A

−1(0))

≤ (κλn(1 + δn))
2

[
d2(xn+1, A

−1(0)) +
1

2
d2(xn+1, xn)

]
≤ (κλn(1 + δn))

2

1− 2δ2n
d2(xn, A

−1(0)).

Therefore,

d2(xn+1, A
−1(0)) ≤ (κλn(1 + δn))

2

(12 + (κλn(1 + δn))2)(1 − 2δ2n)
d2(xn, A

−1(0)),

and (3.7) is seen to hold. The proof is complete.
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Lemma 3.3. Let {xn} be a sequence generated by Algorithm IP1 (together with
the associated sequence {yn}) or Algorithm IP2 such that

(3.16) lim
n→∞

εn
d(xn, xn+1)

= 0 and sup
n

λn < ∞.

Suppose that there exist κ ∈ [0,+∞), N ∈ N, and U ⊆ M such that
(a) A is metrically subregular on U with modulus κ, and
(b) {xn : n ≥ N} ⊂ U and {yn : n ≥ N} ⊂ U .

Then there exist x̄ ∈ A−1(0), q ∈ [ 12 , 1), and a bounded sequence {an} ⊂
(0,+∞) satisfying

(3.17) lim
n→∞

an+1

an
≤ 2

√
2κlim

n
λn

such that

(3.18) d(xn, x̄) ≤ anq
n−Nd(xN , A−1(0)) for any n > N ;

hence {xn} converges linearly to x̄.

Proof. By assumption (3.16), there exists q ∈ [ 12 , 1) such that the following in-
equalities hold for any n ≥ N (N can be taken to be larger if necessary):

(3.19) δn ≤ 1

2
,

δn
1− δn

+

√
λ2
nκ

2

1 + λ2
nκ

2
< q, and

√
2μn√

(1 + 2μ2
n)(1− 2δ2n)

< q,

where μn is given by (3.4). Note further by assumption that Lemma 3.2 is applicable.
Define the sequence {an} by

(3.20) an :=
4

(1− q) qn−N

n−1∏
l=N

(
δl

1− δl
+

√
λ2
l κ

2

1 + λ2
l κ

2

)
for any n > N

if {xn} is generated by Algorithm IP1; otherwise,

(3.21) an :=
4

(1 − q) qn−N

n−1∏
l=N

√
2μl√

(1 + 2μ2
l )(1 − 2δ2l )

for any n > N.

Then, {an} is decreasing and so bounded thanks to the second inequality in (3.19),
and (3.17) holds because, by (3.16),

lim
n→∞

an+1

an
=

1

q
lim
n→∞

(
δn

1− δn
+

√
λ2
nκ

2

1 + λ2
nκ

2

)
=

κlimnλn

q
√
1 + κ2limnλ2

n

≤ κlimnλn

q

if {an} is defined by (3.20); otherwise,

lim
n→∞

an+1

an
=

1

q
lim
n→∞

( √
2μn√

(1 + 2μ2
n)(1 − 2δ2n)

)
=

√
2κlimnλn

q
√
1 + 2κ2limnλ2

n

≤
√
2κlimnλn

q
.

Below we shall show that

d(xn+1, xn) ≤ an(1− q)qn−Nd(xN , A−1(0)) for each n > N.(3.22)
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Granting this, we have that, for any m ∈ N and n > N ,

(3.23) d(xn+m, xn) ≤ an(1− q)qn−N (1 + q + · · ·+ qm−1)d(xN , A−1(0))

as {an, n ≥ N + 1} is monotone decreasing. Passing to the limit as m → ∞, one sees
that (3.18) holds.

Thus, to complete the proof, it remains to show (3.22). We only prove this for
the case when {xn} is generated by Algorithm IP1 as the proof is similar for the other
case. Then, by Lemma 3.2, for each n > N , (3.6) holds, and so

(3.24) d(xn, A
−1(0)) ≤

n−1∏
l=N

(
δl

1− δl
+

√
λ2
l κ

2

1 + λ2
l κ

2

)
d(xN , A−1(0)).

In terms of the definition of {an}, one has that

(3.25) d(xn, A
−1(0)) ≤ (1− q) an

4
qn−Nd(xN , A−1(0)) for each n > N.

Fix n ≥ N and let z := PA−1(0)(xn). Then d(yn, z) ≤ d(xn, z) = d(xn, A
−1(0)).

Thus, using (1.6) and recalling (2.7), we conclude that

d(xn+1, z) ≤ d(xn+1, yn) + d(yn, z) ≤ δnd(xn+1, xn) + d(xn, z).

Hence,

d(xn+1, xn) ≤ d(xn+1, z) + d(xn, z) ≤ δnd(xn+1, xn) + 2d(xn, z).

This implies that

d(xn+1, xn) ≤ 2d(xn, z)

1− δn
=

2

1− δn
d(xn, A

−1(0)) ≤ 4d(xn, A
−1(0))

(noting that δn ≤ 1
2 and d(xn, z) = d(xn, A

−1(0))). Combining this with (3.25) yields
that (3.22) holds, and the proof is complete.

Theorem 3.4. Suppose that
(a) A is globally metrically subregular, or
(b) A is metrically subregular and

∑
n εn < +∞.

Let {xn} be a sequence generated by Algorithms IP1 or IP2 such that (3.16) holds.
Then {xn} converges linearly to a point x̄ ∈ A−1(0): there exist q ∈ [ 12 , 1) and a
bounded sequence {an} ⊂ (0,+∞) satisfying

(3.26) lim
n→∞

an+1

an
≤ 2

√
2sregx̄Alim

n
λn

such that

(3.27) d(xn, x̄) ≤ anq
nd(x0, A

−1(0)) for any n ≥ 1.

In particular, if limn→∞ λn = 0 or sregx̄A = 0, then {xn} is superlinearly convergent.

Proof. We first note xn → x̄ ∈ A−1(0), which is clear by Lemma 3.3 in case (a)
(applied to some κ > 0 and U := M), and by [59, Theorems 3.8 and 3.11] in case (b)
(noting that

∑
n

1
λ2
n

= +∞ and limn→∞ λnεn = 0 hold by (3.16) and (b) assumed

here).
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To complete the proof, it suffices to show that there exist q ∈ [ 12 , 1), N ∈ N, and a
bounded sequence {an} ⊂ (0,+∞) such that (3.18) and (3.26) hold. To this purpose,
let ε > 0. By the definition of sregx̄A, there exists δ > 0 such that

sup
x∈B(x̄,δ)\A−1(0)

d(x,A−1(0))

d(0, A(x))
≤ sregx̄A+ ε;

hence, assumption (a) of Lemma 3.3 holds with B(x̄, δ) and sregx̄A+ ε in place of U
and κ. Moreover, one can choose a positive integer N such that {xn : n ≥ N} ⊂ U
and {yn : n ≥ N} ⊂ U because xn → x̄ and ‖yn − x̄‖ ≤ ‖xn − x̄‖ for each n.
Thus Lemma 3.3 is applicable to concluding that there exist q ∈ [ 12 , 1) and a bounded
sequence {an} ⊂ (0,+∞) satisfying (3.17) such that (3.18) holds. Passing to the
limit, one sees that (3.26) follows from (3.17), and the proof is complete.

Corollary 3.5 follows directly from Lemmas 2.4 and 2.5 and Theorem 3.4.

Corollary 3.5. Let {xn} be a sequence generated by Algorithm IP1 with
∑

n δn <
∞, or by Algorithm IP2 with

∑
n δ

2
n < ∞. Suppose that A is metrically subregular and

supn λn < ∞. Then, {xn} is linearly convergent to a point x̄ ∈ A−1(0). Moreover, if
limn→∞ λn = 0 or sregx̄A = 0, then {xn} is superlinearly convergent.

If εn = 0 for each n = 0, 1, . . . , then δn = 0. Thus, we get the following corollary
directly from Theorem 3.4 for the convergence rate of the classical proximal point
Algorithm P.

Corollary 3.6. Let {xn} be a sequence generated by Algorithm P. Suppose that
A is metrically subregular and supn λn < ∞. Then, {xn} is linearly convergent to
a point x̄ ∈ A−1(0). Moreover, if limn→∞ λn = 0 or sregx̄A = 0, then {xn} is
superlinearly convergent.

The notion of Lipschitz continuous for a multivalued mapping in Banach spaces
was given in [51]. Below, we extend this notion to the Riemannian manifold setting.

Definition 3.7. Let A : M → 2TM be a multivalued vector field. Let κ ≥ 0.
Then A−1 is said to be Lipschitz continuous at 0 with modulus κ if A−1(0) = {x̄} and
there exists r > 0 such that

d(x, x̄) ≤ κ‖w‖ for each x ∈ M and w ∈ B(0, r) ∩ A(x).

Proposition 3.8 below provides some sufficient conditions ensuring the Lipschitz
continuity at 0 of A−1.

Proposition 3.8. Suppose that A ∈ X (M) is monotone and x̄ ∈ A−1(0). Then
the following assertions hold:

(i) If A is ρ-strongly monotone at x̄ with ρ > 0, that is,

〈Px̄,xw, exp
−1
x̄ x〉 ≥ ρd2(x, x̄) for each x ∈ D(A) and w ∈ A(x),

then A−1 is Lipschitz continuous at 0 with modulus κ := ρ−1.
(ii) If 0 ∈ intA(x̄), then A−1 is Lipschitz continuous at 0 with modulus κ := 0.

Proof. (i). The proof is trivial.
(ii). By definition, to complete the proof, it’s sufficient to show that there exists

ε > 0 such that the following implication holds:

(3.28) for any x ∈ M , and w ∈ A(x) with ‖w‖ < ε =⇒ x = x̄.
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2710 J. WANG, C. LI, G. LOPEZ, AND J.-C. YAO

Since 0 ∈ intA(x̄), there exists ε > 0 such that for each w ∈ Tx̄M with ‖w‖ < ε, one
has that w ∈ intA(x̄). Write

B(0, ε) := {w ∈ Tx̄M : ‖w‖ < ε}.
Then B(0, ε) ⊂ A(x̄). Let x ∈ M be such that x �= x̄. Let w ∈ A(x). Let w ∈
B(0, ε) ⊂ A(x̄). Let γ ∈ Γx̄x be such that ‖γ′(0)‖ = ‖γ′(1)‖ = d(x̄, x). Noting that A
is monotone, we obtain

(3.29) 〈w, γ′(0)〉 ≤ 〈w, γ′(1)〉.
Since w ∈ B(0, ε) ⊂ A(x̄) is arbitrary, it follows from (3.29) that

sup
w∈B(0,ε)

〈w, γ′(0)〉 ≤ 〈w, γ′(1)〉,

which implies that
ε‖γ′(0)‖ ≤ ‖w‖‖γ′(1)‖

and so ‖w‖ ≥ ε. Hence, we get the following implication:

for any x ∈ M with x �= x̄, and w ∈ A(x) =⇒ ‖w‖ ≥ ε,

which is equivalent to (3.28). The proof is complete.

Remark 3.2. Let A be any monotone, and let x̄ ∈ A−1(0). For any λ > 0, let Aλ,x̄

be the multivalued vector field given in Example 2.1 with x̄ in place of y. Then Aλ,x̄

is λ-strongly monotone at x̄, and so A−1
λ,x̄ is Lipschitz continuous at 0 with modulus

κ := λ thanks to Proposition 3.8(i).

Remark 3.3. Suppose that A−1 is Lipschitz continuous at 0. Then A is metrically
subregular and A−1(0) = {x̄}. Thus, by Lemma 3.2, there exists a positive N such
that, for each n ≥ N ,

d(xn+1, x̄) ≤
(

δn
1− δn

+

√
λ2
nκ

2

1 + λ2
nκ

2

)
d(xn, x̄)

in the case when {xn} is a sequence generated by Algorithm IP1 with
∑

n δn < ∞,
and

d(xn+1, x̄) ≤
√
2μn√

(1 + 2μ2
n)(1− 2δ2n)

d(xn, x̄)

in the case when {xn} is a sequence generated by Algorithm IP2 with
∑

n δ
2
n < ∞.

Then the following corollary follows directly.

Corollary 3.9. Let {xn} be a sequence generated by Algorithm IP1 with
∑

n δn <
∞, or by Algorithm IP2 with

∑
n δ

2
n < ∞. Suppose that A−1 is Lipschitz continuous

at 0 with modulus κ ≥ 0 and supn λn < ∞. Then, {xn} is (Q-)linearly convergent to
the unique point x̄ ∈ A−1(0):

lim
n→∞

d(xn+1, x̄)

d(xn, x̄)
≤ 1.

Furthermore, if limn→∞ λn = 0 or κ = 0 (e.g, 0 ∈ intA(x̄)), then {xn} is (Q-)
superlinearly convergent:

lim
n→∞

d(xn+1, x̄)

d(xn, x̄)
= 0.

Remark 3.4. To the best of our knowledge, Theorem 3.4 and Corollaries 3.5, 3.6,
and 3.9 are new even in Euclidean spaces.
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4. Finite termination of the algorithm. This section is devoted to establish-
ing results on finite termination of the inexact proximal point algorithm. We say that
a sequence {xn} terminates in a finite number of iterations if there exists a positive
integer N such that xn = xn+1 and xn ∈ A−1(0) for all n ≥ N . We begin with the
following useful lemma. Let S be a convex subset in M , and let x ∈ S. Recall that
a vector v ∈ TxM is tangent to S if there is a smooth curve γ : [0, ε) → S such that
γ(0) = x and γ′(0) = v. Then the collection TxS of all tangent vectors to S at x is a
convex cone in the space TxM ; see [54, p. 71]. Thus the normal cone NS(·) is defined
by

NS(x) =

{ {
w ∈ TxM

∣∣ 〈w, v〉 ≤ 0 for all v ∈ TxS
}

for each x ∈ S,
∅ otherwise.

(4.1)

Below, we always assume that S = A−1(0).

Definition 4.1. Let x̄ ∈ S. Let r, α > 0. Problem (3.1) is said to satisfy
(a) weak sharp minima-like condition on B(x̄, r) (with modulus α) if

(4.2) B(0, α) ⊂ A(z) + TzS for each z ∈ B(x̄, r) ∩ S;

(b) local weak sharp minima-like condition if, for any z̄ ∈ A−1(0), there exists
rz̄ > 0 such that problem (3.1) satisfies weak sharp minima-like condition on
B(z̄, rz̄);

(c) global weak sharp minima-like condition (with modulus α) if problem (3.1)
satisfies weak sharp minima-like condition on M , that is,

B(0, α) ⊂ A(z) + TzS for each z ∈ S.

Note by [57, Proposition 3.1] that the following equivalence holds for each z ∈ S:

(4.3) B(0, α) ⊂ A(z) + TzS ⇐⇒ B(0, α) ∩NS(z) ⊂ A(z).

The following remark shows that the weak sharp minima-like condition implies
the metrical subregularity.

Remark 4.1. Let S = A−1(0). If problem (3.1) satisfies a weak sharp minima-like
condition on B(x̄, r), then A is metrically subregular on B(x̄, rx̄) with rx̄ < min{1, r},
that is,

(4.4) d
(
x,A−1(0)

) ≤ 1

α
d
(
0, A(x)

)
for all x ∈ B(x̄, rx̄).

In fact, let x ∈ B(x̄, rx̄). Without loss of generality, we assume that d(x, S) > 0. Set
z = PS(x). Then exp−1

z x ∈ NS(z) and ‖ exp−1
z x‖ = d(x, z) < 1 which implies that

α exp−1
z x ∈ B(0, α) ∩NS(z).

Then, by (4.3), we have that α exp−1
z x ∈ A(z). Since A is monotone, it follows that

(4.5)
〈
w,− exp−1

x z
〉 ≥ 〈α exp−1

z x, exp−1
z x

〉
for any w ∈ A(x).

Hence, α‖ exp−1
z x‖ ≤ d(0, A(x)), and (4.4) is shown.

Lemma 4.2. Let x̄ ∈ S and let α > 0. Let r ∈ (0,+∞]. Suppose that problem
(3.1) satisfies a weak sharp minima-like condition on B(x̄, r) (with modulus α). Let
x, y ∈ B(x̄, r). Let λ > 0 and u ∈ TyM be such that

(4.6) λ exp−1
y x+ u ∈ A(y) and

∥∥λ exp−1
y x+ u

∥∥ < α.

Then y ∈ S.
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2712 J. WANG, C. LI, G. LOPEZ, AND J.-C. YAO

Proof. Assume on the contrary that y /∈ S. Let ȳ = PS(y) be the projection of y
on S. Then, by [34, Proposition 3.4], one has that

(4.7)
〈
v, exp−1

ȳ y
〉 ≤ 0 for any v ∈ TȳS.

Furthermore, by (2.1), one has

d2(y, ȳ) + d2(ȳ, x̄)− 2
〈
exp−1

ȳ y, exp−1
ȳ x̄

〉 ≤ d2(y, x̄).

This, together with (4.7), gives that d(ȳ, x̄) ≤ d(y, x̄) < r. Thus, ȳ ∈ B(x̄, r) ∩ S.

Write w := α
exp−1

ȳ y

d(ȳ,y) . Then, w is well-defined (as y /∈ S by assumption), and ‖w‖ = α.

This, together with (4.2), implies that w ∈ A(ȳ) + TȳS. Hence there exists v ∈ TȳS
such that w − v ∈ A(ȳ). Since λ exp−1

y x + u ∈ A(y) by (4.6), it follows from the
monotonicity of A that

(4.8)
〈
w̄ − v, exp−1

ȳ y
〉 ≤ 〈−λ exp−1

y x− u, exp−1
y ȳ
〉
.

Using (4.7), we see that 〈w, exp−1
ȳ y〉 ≤ 〈w̄ − v, exp−1

ȳ y〉. This, together with (4.8),
implies that 〈

w, exp−1
ȳ y
〉 ≤ 〈−λ exp−1

y x− u, exp−1
y ȳ
〉
.

Hence, we have ‖λ exp−1
y x+ u‖ ≥ ‖w‖ = α, which contradicts (4.6), and so, we have

that y ∈ S.

Recall that A ∈ X (M) is monotone and upper Kuratowski semicontinuous with
A−1(0) �= ∅, and x0 ∈ D(A) is a given initial point. Throughout the remainder of this
section, we always assume that S := A−1(0) is convex.

Remark 4.2. Noting that A is maximal monotone, we see that S is closed. If
D(A) = M , then S = A−1(0) is convex (see [35, Corollary 4.7]).

Lemma 4.3. Let x̄ ∈ S and let α > 0. Let r ∈ (0,+∞]. Suppose that problem
(3.1) satisfies a weak sharp minima-like condition on B(x̄, r) with modulus α. Let
{xn} be a sequence generated by Algorithm IP1 (together with the associated sequence
{yn}) or by Algorithm IP2 such that

(4.9) lim
n→∞δn < 1 and limn→∞λnd(xn, xn+1) = 0.

Suppose further that there exists N ∈ N such that {xn, yn, n ≥ N} ⊆ B(x̄, r). If A(x)
is a singleton for each x ∈ S, or {xn} is generated by Algorithm IP2, then, {xn}
terminates in a finite number of iterations.

Proof. First, let {xn} be generated by Algorithm IP1 with the associated sequence
{yn}. Then

d(xn+1, yn) ≤ εn = δnd(xn+1, xn).

Thus, it follows that

(1− δn)d(xn+1, xn) ≤ d(xn+1, xn)− d(xn+1, yn)

≤ d(xn, yn)

≤ d(xn+1, xn) + d(xn+1, yn)

≤ (1 + δn)d(xn+1, xn).
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PROXIMAL POINT ALGORITHMS ON HADAMARD MANIFOLDS 2713

This, together with (4.9) implies that

limn→∞λnd(xn, yn) = 0.

Then, there exists a subsequence {nk} of {n} such that

lim
k→∞

λnk
d(xnk

, ynk
) = 0.

Thus, there is a positive integer K ≥ N such that, for all k ≥ K,

(4.10) xnk
, ynk

∈ B(x̄, r) and λnk

∥∥∥exp−1
ynk

xnk

∥∥∥ < α.

Noting

(4.11) λnk
exp−1

ynk
xnk

∈ A(ynk
)

for each k, Lemma 4.2 is applicable (with u = 0) to concluding that ynk
∈ S for all

k ≥ K. Thus, there exists Ñ ≥ nK such that y
˜N ∈ S. By assumption, A(y

˜N ) is a
singleton. Therefore, thanks to (4.11), one sees that 0 = A(y

˜N ) = λ
˜N exp−1

y
˜N
x

˜N , that

is, x
˜N = y

˜N (as λ
˜N > 0). Thus, x

˜N ∈ S. Below, we show that xn+1 = xn for all n ≥ Ñ

and then complete the proof. To proceed, we fix n ≥ Ñ . Without loss of generality,
assume that xn ∈ S = A−1(0) and δn < 1. Below, we prove that xn+1 = xn.
Note by Algorithm IP1 that there exists yn such that 0 ∈ A(yn) − λn exp

−1
yn

xn. By
assumption, 0 ∈ A(xn) and so 0 ∈ A(xn) − λn exp−1

xn
xn. As A(·) − λn exp−1

· xn is
strongly monotone as noted in Example 2.1, it follows that xn = yn. Thus, we have

d(xn+1, xn) = d(xn+1, yn) ≤ εn.

Then, it follows that

d(xn+1, xn) ≤ εn
d(xn+1, xn)

d(xn+1, xn) = δnd(xn+1, xn).

This, together with the assumption that δn < 1, implies that xn = xn+1.
Second, let {xn} be generated by Algorithm IP2. Note by assumption that

lim inf
n→∞ λnd(xn, xn+1) = lim inf

n→∞ λn

∥∥∥exp−1
xn+1

xn

∥∥∥ = 0.

Fix n. Then making use of the definition of Algorithm IP2, we can choose vn+1 ∈
Txn+1M such that

(4.12) vn+1 ∈ Aλn,xn(xn+1) = A(xn+1)− λn exp
−1
xn+1

xn

and

(4.13) ‖vn+1‖ = d(0, Aλn,xn(xn+1)) ≤ λnεn = λnδnd(xn, xn+1),

where vn+1 is well-defined because Aλn,xn(xn+1) is closed and convex. (4.13) implies
that ∥∥∥λn exp

−1
xn+1

xn + vn+1

∥∥∥ ≤ λnd(xn, xn+1)(1 + δn).

Combining this with (4.9) yields that

limn→∞
(
λn exp

−1
xn+1

xn + vn+1

)
= 0.

D
ow

nl
oa

de
d 

03
/2

9/
17

 to
 1

50
.2

14
.1

82
.1

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2714 J. WANG, C. LI, G. LOPEZ, AND J.-C. YAO

Hence, there exists a positive integer K ≥ N such that the following assertions hold:

xK , xK+1 ∈ B(x̄, r), λK exp−1
xK+1

xK + vK+1 ∈ A(xK+1),

and ∥∥∥λK exp−1
xK+1

xK + vK+1

∥∥∥ < α.

Then, Lemma 4.2 is applicable to concluding that xK+1 ∈ S. Below we show that
xn+1 = xn for each n ≥ K+1, and then complete the proof. By assumption, without
loss of generality, we may assume that for each n ≥ K,

(4.14)
εn

d(xn, xn+1)
< 1.

Let n = K + 1 and let vn+1 be chosen to satisfy (4.12) and (4.13). Since 0 ∈ A(xn)
because xn ∈ S, and A is monotone, it follows that〈

vn+1 + λn exp−1
xn+1

xn, exp
−1
xn+1

xn

〉
≤ 〈0,− exp−1

xn
xn+1

〉
= 0.

That is, 〈
λn exp−1

xn+1
xn, exp

−1
xn+1

xn

〉
≤
〈
−vn+1, exp

−1
xn+1

xn

〉
,

and so λnd(xn, xn+1) = λn‖ exp−1
xn+1

xn‖ ≤ ‖vn+1‖. Combining this with (4.13) yields
that

d(xn+1, xn) ≤ εn+1.

Furthermore, using (4.14), we obtain that

d(xn+1, xn) ≤ εn+1

d(xn+1, xn)
d(xn+1, xn) < d(xn+1, xn).

Hence d(xn+1, xn) = 0, that is xn+1 = xn as desired. Inductively, we get xn+1 = xn

for each n ≥ K + 1 and the proof is complete.

Theorem 4.4. Suppose that problem (3.1) satisfies
(a) global weak sharp minima-like condition with modulus α > 0

or
(b) local weak sharp minima-like condition and

∑
n εn < +∞.

Let {xn} be a sequence generated by Algorithm IP1 such that (4.9) holds. If A(x) is
a singleton for each x ∈ S, then {xn} terminates in a finite number of iterations.

Proof. (a) If problem (3.1) satisfies a global weak sharp minima-like condition
with modulus α > 0, then for any x̄ ∈ S, problem (3.1) satisfies a weak sharp
minima-like condition on B(x̄, r) (for any r > 0) with uniform modulus α. Then, the
conclusion follows from Lemma 4.3.

(b) Suppose that problem (3.1) satisfies a weak sharp minima-like condition and∑
n εn < +∞. Let {xn} and {yn} be sequences generated by Algorithm IP1. Then, it

follows from [59, Proposition 3.3] that {xn} converges to a singular point x̄ ∈ A−1(0).
Hence, there exist αx̄, rx̄ > 0 such that problem (3.1) satisfies a weak sharp minima-
like condition on B(x̄, rx̄) with modulus αx̄. Thus, there exists a positive integer N
such that {xn, yn, n ≥ N} ⊂ B(x̄, rx̄). Therefore, Lemma 4.3 is applicable and the
conclusion follows.
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Corollary 4.5. Suppose problem (3.1) satisfies a local weak sharp minima-like
condition and suppose that

(4.15)
∑
n

1

λ2
n

= +∞.

Let {xn} be a sequence generated by Algorithm IP1 with
∑

n δn < +∞. If A(x) is a
singleton for each x ∈ S, then {xn} terminates in a finite number of iterations.

Proof. By Theorem 4.4, to complete the proof, it’s sufficient to show that

(4.16)
∑
n

εn < +∞

and (4.9) hold. In fact, limn→∞δn < 1 and (4.16) follows directly from the assumption∑
n δn < +∞ and Lemma 2.4. Thus, we get from [59, Theorem 3.8] that (4.16) and

(4.15) imply that the equality in (4.9) holds.

Theorem 4.6 below shows that if {xn} is a sequence generated by Algorithm IP2,
then the condition that A(x) is a singleton for each x ∈ S can be removed.

Theorem 4.6. Suppose that problem (3.1) satisfies condition (a) or (b) of The-
orem 4.4. Let {xn} be a sequence generated by Algorithm IP2 such that (4.9) holds.
Then {xn} terminates in a finite number of iterations.

Proof. Let {xn} be a sequence generated by Algorithm IP2. Since λnεn =
λnδnd(xn, xn+1), it follows from (4.9) that

lim inf
n→∞ λn(d(xn, xn+1) + εn) = 0.

Hence, [59, Proposition 3.3] is applicable to conclude that {xn} converges to a sin-
gular point x̄ ∈ A−1(0). Thus, with a similar technique mentioned in the proof of
Theorem 4.4, we get that Lemma 4.3 is applicable and the conclusion follows.

Corollary 4.7. Let {xn} be a sequence generated by Algorithm IP2 with
∑

n δ
2
n <

+∞. Suppose problem (3.1) satisfies a local weak sharp minima-like condition and
(4.15) holds. Then {xn} terminates in a finite number of iterations.

Proof. By Theorem (4.6), to complete the proof, it’s sufficient to show that (4.16)
and (4.9) hold. Indeed,

∑
n δ

2
n < +∞ implies that limn→∞δn < 1 and (4.16) holds

because of Lemma 2.5. Thus, we apply [59, Lemma 3.10] to conclude that

limn→∞λn

∥∥∥exp−1
xn+1

xn

∥∥∥ = 0.

Hence, (4.9) is seen to hold.

Corollary 4.8. Let {xn} be a sequence generated by Algorithm IP2 with
∑

n δ
2
n <

+∞. Suppose that (4.15) holds, and that there exists x̄ ∈ M such that 0 ∈ intA(x̄).
Then, {xn} terminates in a finite number of iterations.

Proof. By Proposition 3.8, the assumption 0 ∈ intA(x̄) implies that S = A−1(0) =
{x̄}. This implies that Tx̄S = 0 and there exists α > 0 such that (4.2) holds (with
any r > 0). Hence, problem (3.1) satisfies a global weak sharp minima-like condition.
Thus, Corollary 4.7 is applicable and the conclusion follows.

Applying Corollary 4.7 to the special case when εn = 0 for each n ≥ 0, we get
the following finite termination result for Algorithm P.
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Corollary 4.9. Let {xn} be a sequence generated by Algorithm P. Suppose that
problem (3.1) satisfies a local weak sharp minima-like condition and (4.15) holds.
Then, Algorithm P terminates in a finite number of iterations.

The following corollary follows from Corollary 4.8 directly.

Corollary 4.10. Let {xn} be a sequence generated by Algorithm P. Suppose
that (4.15) holds, and there exists x̄ ∈ M such that 0 ∈ intA(x̄). Then, Algorithm P
terminates in a finite number of iterations.

5. Applications. This section is devoted to applications of the results in the
previous sections to minimization problems on Hadamard manifolds. Let f : M →
(−∞,+∞] be a function with its effective domain denoted by D(f) and defined by

D(f) := {x ∈ M : f(x) �= +∞}.
Recall that f is proper if its effective domain D(f) is nonempty. Recall also that f is
convex if for any geodesic γ in M , the composition function f ◦ γ : R → (−∞,+∞] is
convex, that is,

(f ◦ γ)(ta+ (1 − t)b) ≤ t(f ◦ γ)(a) + (1− t)(f ◦ γ)(b)
for any a, b ∈ R and 0 ≤ t ≤ 1. Throughout this subsection, we assume that f : M →
(−∞,+∞] is a proper lower semicontinuous convex function. The subdifferential
∂f(x) of f at x ∈ D(f) is defined by

∂f(x) :=
{
u ∈ TxM :

〈
u, exp−1

x y
〉 ≤ f(y)− f(x) for each y ∈ M

}
.

The following proposition collects some useful properties of ∂f proved in [33].

Proposition 5.1. Let f be a proper lower semicontinuous convex function on
M . Then the following assertions hold:

(i) The subdifferential ∂f is a monotone and upper Kuratowski semicontinuous
multivalued vector field.

(ii) If D(f) = M , then ∂f is maximal monotone.

The constrained minimization problem considered here is described as follows:

(5.1) min
x∈C

f(x),

where, C ⊆ M is a closed convex subset. Let δC be the indicator function defined
by δC(x) = 0 if x ∈ C and δC(x) = +∞ otherwise, and let fC := f + δC . Then the
constrained minimization problem (5.1) is equivalent to the unconstrained minimiza-
tion problem: minx∈M fC(x). Therefore, without loss of generality, we assume for the
whole subsection that C is the manifold M . Thus, problem (5.1) is reduced to the
following minimization problem:

(5.2) min
x∈M

f(x).

We use S to denote the solution set of (5.2), that is,

S := argmin{f(x) : x ∈ M}.
It is easy to check that

(5.3) x ∈ S ⇐⇒ 0 ∈ ∂f(x).

Throughout this section, we always assume that S is nonempty.
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Let λ > 0, z ∈ M , and let fλ,z denote the regularized function defined by

fλ,z(x) := f(x) +
λ

2
d2(z, x) for each x ∈ M.

The inexact proximal point algorithm that we are interested in for finding an approx-
imate solution of problem (5.2), is defined as follows.

Algorithm IPM. Give initial point x0 ∈ D(f). Letting n = 0, 1, . . . and having
x0, x1, . . . , xn, determine xn+1 as follows: choosing a parameter λn > 0 and an error
εn ≥ 0, then take xn+1 such that

fλn,xn(xn+1) ≤ inf
x∈M

fλn,xn(x) +
1

2
λnε

2
n.

Clearly, in the special case when each εn = 0, Algorithm IPM is reduced to the
following classical proximal point algorithm which has been studied in [33] and [21].

Algorithm PM. Give initial point x0 ∈ D(f). Letting n = 0, 1, . . . and having
x0, x1, . . . , xn, determine xn+1 as follows: choosing a parameter λn > 0, take xn+1

such that
xn+1 = argminx∈Mfλn,xn(x).

The following proposition describes the relationship between Algorithms IPM and
IP1, which is taken from [59, Proposition 4.3].

Proposition 5.2. Let {xn} be a sequence generated by Algorithm IPM with initial
point x0. Then {xn} also is a sequence generated by Algorithm IP1 for A(·) = ∂f(·)
with the same error sequence {εn}.

5.1. Linear convergence. This subsection is devoted to the study of linear
convergence of Algorithm IPM. Below, we extend the notion of weak sharp minimizer
of order p for problem (5.2) to a manifold setting. Here, we are interested in the case
when p = 2.

Definition 5.3. Let S be the solution set of problem (5.2). Then, we say that
(a) S is the set of local weak sharp minima of order 2 for problem (5.2) if for

each x̄ ∈ S, there exist α, r > 0 such that for all x ∈ B(x̄, r),

(5.4) f(x) ≥ f(x̄) + αd2(x, S);

(b) S is the set of global weak sharp minima of order 2 for problem (5.2) with the
uniform modulus α > 0 if estimate (5.4) holds for all x̄ ∈ S and x ∈ M .

The following proposition is about metrical subregularity of ∂f .

Proposition 5.4. If S is the set of local (resp., global) weak sharp minima of
order 2 for problem (5.2), then ∂f is metrically subregular (resp., global metrically
subregular).

Proof. Let x̄ ∈ ∂f−1(0). Then x̄ ∈ S. Thus, by assumption, there exist α, r > 0
such that (5.4) holds for all x ∈ B(x̄, r). Let x ∈ B(x̄, ε). As S = ∂f−1(0), to
complete the proof, it’s sufficient to show that

(5.5) d(x, S) ≤ 1

α
d(0, ∂f(x)).

In the case when d(x, S) = 0, it’s trivial. Below, we assume that d(x, S) > 0. Since
S is closed and convex, there exists x0 ∈ S such that

(5.6) d(x, S) = d(x, x0).

D
ow

nl
oa

de
d 

03
/2

9/
17

 to
 1

50
.2

14
.1

82
.1

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2718 J. WANG, C. LI, G. LOPEZ, AND J.-C. YAO

Let v ∈ ∂f(x). Then 〈
v,− exp−1

x x0

〉 ≥ f(x)− f(x0).

This, together with (5.6) and (5.4), gives that

‖v‖ ≥ 〈v,− exp−1
x x0〉

‖ exp−1
x x0‖

≥ f(x)− f(x0)

‖ exp−1
x x0‖

≥ αd2(x, S)

d(x, S)
= αd(x, S).

As v ∈ ∂f(x) is arbitrary, (5.5) is seen to hold.

The linear convergence result of Algorithm IPM is given below.

Corollary 5.5. Let {xn} be a sequence generated by Algorithm IPM. Suppose
that (3.16) holds. Suppose further that

(a) S is the set of global weak sharp minima of order 2, or
(b) S is the set of local weak sharp minima of order 2 and

∑
n εn < +∞.

Then, {xn} is linearly convergent to a point x̄ ∈ S. Moreover, if limn→∞ λn = 0,
then {xn} is superlinearly convergent.

Proof. Let {xn} be a sequence generated by Algorithm IPM. Then, it follows
from Proposition 5.2 that {xn} is also a sequence generated by Algorithm IP1 for
A(·) = ∂f(·) with the same error sequence {εn}. Thus, the conclusion follows from
Proposition 5.4 and Theorem 3.4.

For the classical proximal point Algorithm PM, we get the following corollary
about the linear convergence rate directly from Corollary 5.5.

Corollary 5.6. Let {xn} be a sequence generated by Algorithm PM. Suppose
that supn λn < +∞. Suppose further that S is the set of local weak sharp minima
of order 2. Then, {xn} is linearly convergent to a point x̄ ∈ S. Furthermore, if
limn→∞ λn = 0, then {xn} is superlinearly convergent.

5.2. Finite termination. This subsection is devoted to the study of finite ter-
mination of Algorithm IPM. The notion of weak sharp minima has been explored
thoroughly in linear spaces (cf. [12, 13] and so on), which has also been extended to
a manifold setting (cf. [34]).

Definition 5.7. Let S be the solution set of problem (5.2). S is said to be the
set of local weak sharp minima for problem (5.2) if for each x̄ ∈ S, there exist α, r > 0
such that for all x ∈ B(x̄, r),

(5.7) f(x) ≥ f(x̄) + αd(x, S).

By [34, Corollary 4.10], S is the set of local weak sharp minima for problem (5.2)
if and only if there are α, r > 0 such that we have the inclusion

B(0, α) ⊂ ∂f(z) + TzS for all z ∈ S ∩B(x̄, r).(5.8)

Hence, we have the following proposition.

Proposition 5.8. S is the set of local weak sharp minima for problem (5.2) if
and only if problem 0 ∈ ∂f(x) satisfies a local weak sharp minima-like condition.

The following theorem shows that under certain condition and assumption of local
weak sharp minima, a sequence generated by Algorithm IPM terminates in a finite
number of iterations.
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Corollary 5.9. Suppose that S is the set of local weak sharp minima for problem
(5.2), and that (4.15) holds. Let {xn} be a sequence generated by Algorithm IPM.
Then, {xn} terminates in a finite number of iterations provided one of the following
two conditions holds:

(a) f is Gateaux differentiable on Sf and
∑

δn < +∞;
(b)

∑
δ2n < +∞ and

(5.9) d(0, ∂fλn,xn(xn+1)) ≤ λnεn for each n ∈ N.

Proof. By Proposition 5.8, a local weak sharp minima implies a local weak sharp
minima-like condition. On the other hand, note that for each x ∈ Sf , f is Gateaux
differentiable at x implies that ∂f(x) is a singleton. Moreover, if assumption (5.9)
holds, then {xn} is also a sequence generated by Algorithm IP2 for A(·) = ∂f(·) with
the same error sequence {εn}. Hence, Corollary 4.5 is applicable and the conclusion
follows.

The following theorem shows that if {f(xn)} is bounded (e.g., D(f) = M or, more
generally, any cluster point of {xn} is in intR(D(f)) (cf. [59, Remark 4.2])), then the
condition

∑
n

1
λ2
n
= +∞ can be weakened to

∑
n

1
λn

= +∞.

Theorem 5.10. Suppose that S is the set of local weak sharp minima for problem
(5.2). Suppose further that

(5.10)
∑
n

1

λn
= +∞.

Let {xn} be a sequence generated by Algorithm IPM such that {f(xn)} is bounded.
Then, {xn} terminates in a finite number of iterations provided one of the conditions
(a) and (b) in Corollary 5.9 holds.

Proof. To complete the proof, we only need to show that

(5.11) lim inf
n→∞ λnd(xn, xn+1) = 0.

Granting this, we can check, as in the proof we did for Corollary 5.9, that Proposi-
tion 5.8 and Theorem 4.4 are applicable and then the conclusion follows.

By the definition of Algorithm IPM, for each n,

(5.12) f(xn+1) +
λn

2
d(xn, xn+1)

2 ≤ f(xn) +
1

2
λnε

2
n.

Recall that δn = εn
d(xn,xn+1)

. Then, εn = δnd(xn, xn+1). This, together with (5.12),

yields that

(5.13)
λn

2

(
1− δ2n

)
d(xn, xn+1)

2 ≤ f(xn)− f(xn+1).

Since p := lim supn→∞ δn < 1, there exists a positive integer N such that for all
n ≥ N , δn < p. Combing this with (5.13) yields that

(5.14)
1

2

(
1− p2

) ∑
n≥N

1

λn
(λnd(xn, xn+1))

2 ≤
∑
n≥N

(f(xn)− f(xn+1)).

Since {f(xn)} is bounded, it follows from (5.14) that

(5.15)
∑
n≥N

1

λn
(λnd(xn, xn+1))

2 < +∞.
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As
∑

n≥0
1
λn

= +∞, one sees that (5.11) follows from (5.15), and the proof is com-
plete.

Corollary 5.11 below follows directly from Theorem 5.10, and shows that the
classical proximal point algorithm PM for problem (5.2) terminates in a finite number
of iterations, which extends the corresponding results in [11], where it was proved
under the assumptions that Sf is a global weak sharp minima for problem (5.2) and
that {λn} ⊆ [λ−, λ+] for some 0 < λ− < λ+.

Corollary 5.11. Suppose that S is the set of local weak sharp minima for prob-
lem (5.2). Suppose further that D(f) = M and (5.10) holds. Then, Algorithm PM

terminates in a finite number of iterations.

6. Numerical examples. This section is devoted to several examples: Exam-
ples 6.1–6.3 are used to illustrate our theorems in the previous sections for inexact
proximal point algorithms on Hadamard manifolds; Example 6.4 is used to show that
our results obtained in the present paper cannot be extended directly to the general
Riemannian manifold setting. It should be remarked that the functions or vector
fields in Examples 6.1–6.3 are not convex or monotone in the Euclidean space and so
the corresponding results in a Hilbert space setting (e.g., [51, 57]) cannot apply.

Let M = H := {(y1, y2) ∈ R2| y2 > 0} be the Poincaré plane endowed with the
Riemannian metric given by

g11 = g22 =
1

y22
, g12 = 0 for each point (y1, y2) ∈ H

(cf. [54, p. 86]). Then, the sectional curvature of M is −1 (cf. [18]). Let x̄ = (y1, y2) ∈
H . Then Tx̄H = R2 and

(6.1) 〈u, v〉x̄ =
1

y22
〈u, v〉 for any pair (u, v) ∈ Tx̄H × Tx̄H,

where 〈·, ·〉x̄ and 〈·, ·〉 denote the inner product in Tx̄H and R
2, respectively. The

geodesics of the Poincaré plane are the semilines γa : y1 = a, y2 > 0, and the semicir-
cles γb,r : (y1 − b)2 + y22 = r2, y2 > 0. Consider the set C given by

C :=
{
(y1, y2) ∈ R

2
∣∣ (y1 − 1)2 + y22 ≤ 5, (y1 + 1)2 + y22 ≤ 5, y2 ≥ 1

}
.

Then C ⊆ H is convex. Example 6.1 gives an example of a multivalued vector field
on the Poincaré plane satisfying a local weak sharp minima-like condition.

Example 6.1. Let f0 : M → R be the function defined by

f0((y1, y2)) :=
1

y2
for each (y1, y2) ∈ M.

By [54, p. 86], f0 is convex on M . Define the function f1 : M → R by

f1((y1, y2)) := max

{
f0(y1, y2),

2

3

}
for each (y1, y2) ∈ M.

Then, f1 is convex on M . Moreover, define the function f : M → R by

(6.2) f((y1, y2)) := f1(y1, y2) + δC(y1, y2) for each (y1, y2) ∈ M.
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Then, f is convex and the solution set of (5.2) is

(6.3) S = C ∩
{
(y1, y2) ∈ M | y2 ≥ 3

2

}
.

Furthermore, by [34, Example 6.2], S is the set of local weak sharp minima for prob-
lem (5.2). Hence, Corollary 5.9 is applicable to concluding that any sequence {xn},
generated by Algorithm IPM with {δn} satisfying

∑
δn < +∞ and the parameters

{λn} satisfying (4.15), terminates in a finite number of iterations.
Let A : M ⇒ TM be a multivalued vector field defined by

A(y1, y2) :=

⎧⎨⎩
(0,−1) +NC(y1, y2), (y1, y2) ∈ C \ S,
{t(0,−1) : t ∈ [0, 1]}+NC(y1, y2), (y1, y2) ∈ S,
∅, otherwise.

By [54, p. 297], one checks that A is equal to the subdifferential of f given by (6.2).
Since S is the set of local weak sharp minima for problem (5.2), it follows from
Proposition 5.8 that the problem 0 ∈ A(x) satisfies a local weak sharp minima-like
condition. Thus, Corollary 4.7 is applicable to concluding that any sequence {xn},
generated by Algorithm IP2 with {δn} satisfying

∑
δ2n < +∞ and the parameters

{λn} satisfying (4.15), terminates in a finite number of iterations.

Example 6.2 below provides a multivalued vector field on the Poincaré plane
satisfying the metrical subregularity condition.

Example 6.2. Let W,S ⊆ H be defined, respectively, by

W :=
{
(y1, y2) ∈ H : y1 ∈ [1, 3], 2 ≤ (y1 − 2)2 + y22 ≤ 10

}
and

S :=
{
(y1, y2) ∈ W : y21 + (y2 − 2)2 ≤ 4

}
=

{
(y1, y2) ∈ W :

y21 + y22
y2

≤ 4

}
.

Then, W and S are closed and convex as, by [54, p. 301], the function (y1, y2) →
y2
1+y2

2

y2
is convex on H . Let A1, A : M ⇒ TM be multivalued vector fields defined,

respectively, by

A1(y1, y2) :=

⎧⎪⎨⎪⎩
(2y1y2, y

2
2 − y21), y21 + (y2 − 2)2 > 4,

{t(2y1y2, y22 − y21) : t ∈ [0, 1]}, y21 + (y2 − 2)2 = 4,

(0, 0), y21 + (y2 − 2)2 < 4,

and
A(y1, y2) := A1(y1, y2)− exp−1

(y1,y2)
PS(y1, y2) +NW (y1, y2),

where PS denotes the projection on S. Clearly, NW (·) is monotone. Furthermore,
by [46], the vector field (y1, y2) → − exp−1

(y1,y2)
PS(y1, y2) is monotone and continuous

on H . Below we show that A1 also is monotone. To do this, define a function
f : H → R by

f(y1, y2) := max

{
y21 + y22

y2
, 4

}
for each (y1, y2) ∈ H.

Then, as mentioned above, f is convex. Furthermore, by [54, p. 297], one checks that
A1 is equal to the subdifferential of f . Hence, by [33, Theorem 5.1], A1 is monotone
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and upper Kuratowski semicontinuous on H . Therefore, A is monotone. Observe
further that S ⊆ A−1(0). Below, we verify that

(6.4) S = A−1(0) and d
(
x, S
) ≤ d

(
0, A(x)

)
for all x ∈ W,

that is, A is metrically subregular on W with modulus κ = 1. Clearly, the first
assertion in (6.4) follows trivially from the second one of (6.4). Hence, it remains to
show that the second assertion in (6.4) holds. To proceed, let x ∈ W . In the case
when d(x, S) = 0, it’s trivial. Below, we assume that d(x, S) > 0. Since S is closed
and convex, there exists x0 ∈ S such that d(x, S) = d(x, x0), that is, x0 = PS(x). Let
v ∈ A(x). Then, there are v1 ∈ A1(x), v2 ∈ NW (x) such that

v = v1 − exp−1
x PS(x) + v2 = v1 − exp−1

x x0 + v2.

Clearly, by the definition of a normal cone NW (x), one has

(6.5)
〈
v2,− exp−1

x x0

〉 ≥ 0.

Note that f is convex and so

(6.6)
〈
v1,− exp−1

x x0

〉 ≥ f(x)− f(x0) ≥ 0.

Observe further that

(6.7)
〈− exp−1

x x0,− exp−1
x x0

〉
= d2(x, S).

Hence, it follows from (6.7), (6.6), and (6.5) that〈
v,− exp−1

x x0

〉 ≥ d2(x, S).

This implies that

‖v‖ ≥ 〈v,− exp−1
x x0〉

‖ − exp−1
x x0‖

≥ d2(x, S)

d(x, S)
= d(x, S).

As v ∈ A(x) is arbitrary, (6.4) is seen to hold. Thus, Corollary 3.5 is applicable to
concluding that, with {λn} satisfying supn λn < +∞, any sequence {xn}, generated
by IP1 with

∑
n δn < ∞, or by Algorithm IP2 with

∑
n δ

2
n < ∞, converges linearly

to a point x̄ ∈ A−1(0). Furthermore, if limn→∞ λn = 0, then {xn} is superlinearly
convergent.

In the following example, vector fields with global metrical subregularity or a
global weak sharp minima-like condition on the Hadamard manifold of symmetric
positive definite matrixes are presented.

Example 6.3. Let

S
m
++ := {X ∈ R

m×m| X is a symmetric positive definite matrice}

be the differentiable manifold with the Riemannian distance between X,Y ∈ Sm++

given by

d2(X,Y ) :=
m∑
i=1

ln2λi

(
X− 1

2Y X− 1
2

)
,
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where λi(X
− 1

2Y X− 1
2 ) is the ith eigenvalue of X− 1

2BA− 1
2 (cf. [47, p. 355], [43]). Let

X ∈ Sm++. Then TXSn++ = Sm, where Sm = {X ∈ Rm×m| X is a symmetric matrice}.
Furthermore, the inner product on TXSm++ is defined by

〈U, V 〉X := Tr(X−1UX−1V ) for each U, V ∈ TXS
m
++.

Hence, Sm++ is a Hadamard manifold with nonpositive curvature everywhere (cf. [47,
p. 355], [43]). Let X0, Y0 ∈ Sm++ be such that detX0 = detY0 = 1. Let γ be the
geodesic connecting X0 and Y0, that is, γ(0) = X0, γ(1) = Y0, and

γ(t) = X
1
2

(
X− 1

2Y X− 1
2

)t
X

1
2 for each t ∈ [0, 1].

Write
S := {γ(t)| t ∈ [0, 1]}.

Note that
⋃

X∈Sm++
TXSm++ = Sm. Define the vector field A1, A2 : Sm++ ⇒ Sm, respec-

tively, by

A1(X) := 2(ln detX)X − exp−1
X PSX for each X ∈ S

m
++,

and

A2(X) :=

{
2(ln detX)X − exp−1

X PSX

dS(X) for each X ∈ Sm++ \ S,
2(ln detX)X +NS(X) ∩ BX for each X ∈ S,

where PS denotes the projection on S. Recall from [15] that the vector field X →
2(ln detX)X is monotone (but this vector field isn’t monotone in the classical sense),
and recall also from [46] that the vector field X → − exp−1

X PSX is monotone. Hence,
A1 and A2 are monotone. Observe further that A−1

1 (0) = A−1
2 (0) = S. Then, with

a similar technique to Example 6.2, one can verify that A1 is globally metrically
subregular with modulus κ = 1. Furthermore, by (4.3), we see that A2 satisfies a
global weak sharp minima-like condition. Then, Corollary 3.5 is applied to A1 to
conclude that, with {λn} satisfying supn λn < +∞, any sequence {xn}, generated by
IP1 with

∑
n δn < ∞, or by Algorithm IP2 with

∑
n δ

2
n < ∞, converges linearly to

a point x̄ ∈ A−1
1 (0), and {xn} is superlinearly convergent if limn→∞ λn = 0, while

Corollary 4.7 is applied to A2 to conclude that any sequence {xn}, generated by
Algorithm IP2 with {δn} satisfying

∑
δ2n < +∞ and the parameters {λn} satisfying

(4.15), terminates in a finite number of iterations.
The numerical simulation aims to verify the linear convergence and finite con-

vergence of Algorithms P, IP1, and IP2, established in the present paper. These
algorithms are implemented for vector fields A1 and A2 on the symmetry positive
matrix manifold S10++ in Example 6.3, respectively. In both cases, we randomly gen-
erate X0, Y0 ∈ S10++ and initial point x0 ∈ S10++. Figure 1 plots the distances to the
solution set along the number of iterations in a random trial: (a) is for algorithms
P and IP1, and (b) is for algorithms P and IP2. It is illustrated by Figure 1 that
the algorithms P, IP1, and IP2 are linearly convergent in the case when each λn = 1

3
and superlinearly convergent when each λn = 1

n+1 . The finite convergence results for
vector field A2 are demonstrated in Tables 1, 2, and 3 for algorithms P, IP1, and IP2,
respectively.

We end this paper with an example on the unit sphere in R3, which shows that
our results obtained in the present paper cannot be extended directly to a general
Riemannian manifold setting.
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Fig. 1. Example 6.3 for A1.

Table 1

Example 6.3: P for A2.

dS(xn)

Iteration number n λn := 2 λn :=
√
n+ 4

0 2.233920999084185 2.233920999084185
1 1.733920999084184 1.733920999084184
2 1.233920999084183 1.286707403584226
3 0.733920999084186 0.878459113120364
4 0.233920999084186 0.500494640111139
5 x5 ∈ S 0.146941249517865
6 x6 ∈ S

Table 2

Example 6.3: IP1 for A2 with εn := 1
3n

.

dS(xn)

Iteration number n λn := 2 λn :=
√
n+ 4

0 2.233920999084185 2.233920999084185
1 1.821521307724848 2.217547128688538
2 1.193546460337486 1.885254581098946
3 0.693365113332030 1.515619721840838
4 0.193670632261136 1.160862584759840
5 x5 ∈ S 0.828914576382055
6 0.512671258870780
7 0.211117999117864
8 x8 ∈ S

Table 3

Example 6.3: IP2 for A2 with εn := 1
3n

.

dS(xn)

Iteration number n λn := 2 λn :=
√
n+ 4

0 2.233920999084185 2.233920999084185
1 1.502241607420368 2.766956223934800
2 1.310317523279516 2.416771773578742
3 0.887048452410537 3.129591719836815
4 0.614692318479917 1.548693180993704
5 0.419260719126130 0.500470820802963
6 x6 ∈ S 0.069219843701401
7 x7 ∈ S
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Example 6.4. Let

M = S
2 :=

{
(y1, y2, y3) ∈ R

3| y21 + y22 + y23 = 1
}

be the 2-dimensional unit sphere. Write x =: (0, 0, 1) and y := (0, 0,−1). Then
S2 \ {x,y} can be parametrized by Φ : (0, π) × [0, 2π] ⊂ R2 → S2 \ {x,y} defined by
Φ(θ, ϕ) := (y1, y2, y3)

T for each θ ∈ (0, π) and ϕ ∈ [0, 2π], where⎧⎨⎩
y1 : = sin θ cosϕ,
y2 : = sin θ sinϕ,
y3 : = cos θ.

Clearly, for each x ∈ S2 \ {x,y}, (S2 \ {x,y},Φ−1) is a system of coordinates around
x. Then the Riemannian metric on S2 \ {x,y} is given by

g11 = 1, g12 = 0, g22 = sin2 θ for each θ ∈ (0, π), ϕ ∈ [0, 2π].

The geodesics of S2 \ {x,y} are great circles or semicircles. By the definition of the
Riemannian metric on S2, one can check

(6.8) 〈u, v〉x̄ = 〈u, v〉 for any pair (u, v) ∈ Tx̄S
2 × Tx̄S

2,

where 〈·, ·〉x̄ and 〈·, ·〉 denote the inner product in Tx̄S
2 and R3, respectively; see, for

example, [54, p. 84].
Let

(6.9) z1 :=

(
0,

√
3

3
,

√
6

3

)
, z2 :=

(
0,

√
6

3
,

√
3

3

)
,

and consider the set C given by

C := {(y1, y2, y3) ∈ S
2| y1 = 0, y2 > 0, y3 > 0}.

Clearly C is strongly convex. Define the multivalued A : M ⇒ TM by

(6.10) A(x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− exp−1

x z1
d(x,z1)

− exp−1
x z2

d(x,z2)
+NC(x) for each x ∈ C and x �= z1, z2,

Bz1 −
exp−1

z1
z2

d(z1,z2)
+NC(z1), x = z1,

Bz2 −
exp−1

z2
z1

d(z1,z2)
+NC(z2), x = z2,

∅, otherwise,

where Bzi := {v ∈ TziM
∣∣ ‖v‖ ≤ 1} for each i = 1, 2. Then, one checks that A is

monotone and

A−1(0) = S :=

{
(y1, y2, y3) ∈ S

2

∣∣∣∣∣ y1 = 0, y2, y3 ∈
[√

3

3
,

√
6

3

]}
.

We first show that Problem (3.1) with A given by (6.10) satisfies the global weak
sharp minima-like condition (with modulus α := 1)

(6.11) Bx̄ ⊂ A(x̄) + Tx̄S for any x̄ ∈ S

(and so A is metrically subregular by Remark 4.1). To do this, let x̄ ∈ S. If x̄ �= z1
and x̄ �= z2, then Tx̄S = Tx̄C and so NC(x̄) + Tx̄S = Tx̄M . Therefore, the inclusion
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in (6.11) holds for any x̄ ∈ S \ {z1, z2}. Thus, it remains to consider the case when
x̄ = z1 or z2. Without loss of generality, we assume that x̄ = z1. Then, we conclude
that Tx̄C = {(0, y2, y3) ∈ R3| y2 +

√
2y3 = 0} and then

NC(x̄) = {(y1, 0, 0)| y1 ∈ R}.
Moreover, one checks that

Tx̄S =
{
(0, y2, y3) ∈ R

3
∣∣∣ y2 +√

2y3 = 0, y3 ≤ 0
}
.

Hence,

NC(x̄) + Tx̄S =
{
(y1, y2, y3) ∈ R

3
∣∣∣ y2 +√

2y3 = 0, y3 ≤ 0
}
.

By the definition of A, we have that

A(x̄) = Bx̄ +

{
−exp−1

x̄ z2
d(x̄, z2)

}
+NC(x̄) = Bx̄ +

1√
3

(
0,−

√
2, 1
)
+NC(x̄).

Noting that 1√
3
(0,

√
2,−1) ∈ NC(x̄) + Tx̄S, we see that

A(x̄) + Tx̄S = Bx̄ +
1√
3

(
0,−

√
2, 1
)
+NC(x̄) + Tx̄S ⊇ Bx̄.

Hence, (6.11) is shown.
Next take w0, w1 ∈ C as follows:

w0 :=

(
0,

√
35

6
,
1

6

)
, w1 :=

(
0,

3
√
7

8
,
1

8

)
.

Define sequences {xn} ⊂ M and {λn} ⊆ R+, respectively, by
(6.12)

xn :=

{
w0, n = 2k,
w1, n = 2k + 1,

and λn :=

{ 2
2π−(arctan 1√

35
−arctan 1

3
√

7
)
, n = 2k,

2
arctan 1√

35
−arctan 1

3
√

7

, n = 2k + 1

for any k := 0, 1, 2, . . . . Below, we show that

(6.13) 0 ∈ A(xn+1)− λn exp−1
xn+1

xn for all n = 0, 1, . . . ,

granting this, {xn} is the sequence generated by Algorithm P with initial point x0

and the parameters {λn} (noting that supn λn < ∞). Clearly {xn} doesn’t converge;
hence Corollaries 3.6 and 4.9 (and so Theorems 3.4 and 4.6) fail.

To show (6.13), recall that z1 and z2 are given by (6.9). Then

u1 :=

[
2π −

(
arctan

1√
35

− arctan
1

3
√
7

)](
0,

1

8
,−3

√
7

8

)
∈ exp−1

w1
w0,

u2 :=

(
arctan

√
2− arctan

1

3
√
7

)(
0,−1

8
,
3
√
7

8

)
∈ exp−1

w1
z1,

u3 :=

(
arctan

1√
2
− arctan

1

3
√
7

)(
0,−1

8
,
3
√
7

8

)
∈ exp−1

w1
z2.
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It follows from (6.10) that

A(w1) = − exp−1
w1

z1

d(w1, z1)
− exp−1

w1
z2

d(w1, z2)
+NC(w1)

and

(6.14) 0 = − u2

‖u2‖ − u3

‖u3‖ + 0− λ0u1 ∈ A(w1)− λ0 exp
−1
w1

w0.

Similarly,

v1 :=

(
arctan

1√
35

− arctan
1

3
√
7

)(
0,

1

6
,−

√
35

6

)
∈ exp−1

w0
w1,

v2 :=

(
arctan

√
2− arctan

1√
35

)(
0,−1

6
,

√
35

6

)
∈ exp−1

w0
z1,

v3 :=

(
arctan

1√
2
− arctan

1√
35

)(
0,−1

6
,

√
35

6

)
∈ exp−1

w0
z2.

Then one can check that

(6.15) 0 = − v2
‖v2‖ − v3

‖v3‖ + 0− λ1v1 ∈ A(w0)− λ1 exp
−1
w0

w1.

In view of the definitions of {xn} and {λn} in (6.12), (6.13) follows from (6.14) and
(6.15).

x2n = w0, w2n+1 = w1, λ2n =
2

2π − (arctan 1√
35

− arctan 1
3
√
7
)
,

λ2n+1 =
2

arctan 1√
35

− arctan 1
3
√
7

.
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and monotone-transformable mathematical programming problems and a proximal-like
point method, J. Global Optim., 35 (2006), pp. 53–69.

[16] J. X. Da Cruz Neto, O.P. Ferreira, and L. R. Lucambio Pérez, Monotone point-to-set
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[58] J. H. Wang, G. López, V. Mart́ın-Márquez, and C. Li, Monotone and accretive operators

on Riemannian manifolds, J. Optim. Theory Appl., 146 (2010), pp. 691–708.
[59] J. H. Wang, C. Li, G. Lopez, and J.-C. Yao, Convergence analysis of inexact proximal point

algorithms on Hadamard manifolds, J Global Optim., 61 (2015), pp. 553–573.
[60] E. Zeidler, Nonlinear Functional Analysis and Applications. II B, Nonlinear Monotone Op-

erators, Springer, New York, 1990.
[61] L.-H. Zhang, Riemannian Newton method for the multivariate eigenvalue problem, SIAM J.

Matrix Anal. Appl., 31 (2010), pp. 2972–2996.
[62] X. Y. Zheng and K. F. Ng, Metric subregularity and constraint qualifications for convex

generalized equations in Banach spaces, SIAM. J. Optim., 18 (2007), pp. 437–460.
[63] X. Y. Zheng and K. F. Ng, Metric subregularity and calmness for nonconvex generalized

equations in Banach spaces, SIAM J. Optim., 20 (2010), pp. 2119–2136.

D
ow

nl
oa

de
d 

03
/2

9/
17

 to
 1

50
.2

14
.1

82
.1

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


	Introduction
	Preliminaries
	Metrical subregularity and rate of convergence
	Finite termination of the algorithm
	Applications
	Linear convergence
	Finite termination

	Numerical examples
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


