
1

Abstract—This paper presents a small, fast, low power consumption
solution for piecewise-affine (PWA) controllers. To achieve this goal, a
digital architecture for Very Large Scale Integration (VLSI) circuits is
proposed. The implementation is based on the simplest lattice form,
which eliminates the point location problem of other PWA representa-
tions and is able to provide continuous PWA controllers defined over
generic partitions of the input domain. The architecture is parame-
terized in terms of number of inputs, outputs, signal resolution, and
features of the controller to be generated. The design flows for Field
Programmable Gate Arrays (FPGAs) and Application Specific Integrated
Circuits (ASICs) are detailed. Several application examples of explicit
model predictive controllers (such as an adaptive cruise control and the
control of a buck-boost DC-DC converter) are included to illustrate the
performance of the VLSI solution obtained with the proposed lattice-
based architecture.

Index Terms—Piecewise-affine controllers, PWA, Model Predictive
Control, Lattice, digital VLSI, FPGAs, ASICs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/132461833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Digital VLSI Implementation of Piecewise-Affine
Controllers Based on Lattice Approach

M.C. Martínez-Rodríguez, P. Brox, and I. Baturone

F

1 INTRODUCTION

THE attraction of piecewise-affine (PWA) functions
lies in their capability to approximate any nonlin-

ear behavior within any specified error (including linear
threshold events and mode switching). They are also
the simplest extension to linear functions with which
engineers are familiar. The use of PWA functions in the
control community started with the seminal work in
[1]. Some years later, the development of PWA analysis
and synthesis techniques was favored by the advent of
new computational techniques and environments, such
as [2] and [3]. More recently, PWA functions have arisen
naturally as a solution to many engineering problems
such as those of model predictive control (MPC).

Model predictive controllers have become popular as
a way of approaching non-linear controller design for
linear systems with constraints, piecewise-affine systems
and both non-linear constrained and hybrid systems [4]-
[7]. For the problem of regulating to the origin the linear
time invariant system

x(t+1)=Ax(t)+Bu(t)
y(t)=Cx(t)

(1)

with the constraints

ymin ≤ y(t) ≤ ymax, umin ≤ u(t) ≤ umax, for t > 0 (2)

where x(t)εRn, u(t)εRm and y(t)εRp are the state, input,
and output vectors, respectively, and the pair (A, B) is
stabilizable, the optimization problem that arises in MPC
and is solved at each time instant, t, is as follows

min
U

J(U, x(t)) = xT

t+Ny|t
· P · xt+Ny|t

+
Ny−1∑
k=0

[
xT

t+k|t
·Q · xt+k|t + uT

t+k ·R · ut+k

]
 (3)

where
U , {ut, ..., ut+Nu−1} (4)

is subject to

M.C. Martínez-Rodríguez, P. Brox, and I. Baturone are with the In-
stituto de Microelectrónica de Sevilla, Spanish National Research Coun-
cil (IMSE-CNM-CSIC) and University of Seville, Seville, Spain (e-mail:
macarena@imse-cnm.csic.es; brox@imse-cnm.csic.es; lumi@imse-cnm.csic.es).

xt|t = x(t)
ymin ≤ yt+k|t ≤ ymax k = 1, ..., Nc
umin ≤ ut+k ≤ umax k = 0, ..., Nc
xt+k+1|t = Axt+k|t +But+k k ≥ 0

yt+k|t = Cxt+k|t k ≥ 0
ut+k = Kxt+k|t Nu ≤ k ≤ Ny

(5)

where the predicted state vector at time t + k, xt+k|t is
obtained by applying the input sequence ut, ..., ut+Nu−1
to the system model (1) starting from the state x(t);
Ny, Nu, Nc are the output, input, and constraint horizons,
respectively; K is some feedback gain; and it is assumed
that Q = QT � 0, R = RT � 0, and P � 0 [8].

The solution of the optimization problem in (3) to (5)
is a PWA controller u(x) : M ⊂ Rn → Rm as follows [4],
[8]

u(x) = Fix+Gi ifxεOi, i = 1, ..., D (6)

where xεRn is the input to the controller function, which
is usually the state vector fully measured at time t,
x(t); FiεRm×n are gain matrices and GiεRm are offset
vectors. The input domain, M , is partitioned into D non
overlapping regions, called polytopes , M = O1∪...∪OD.
Each polytope, Oi, is defined as a closed set of points
delimited by Ei edges in the form of (n−1)-dimensional
hyper-planes, hTj x+kj = 0, as follows

Oi = {xεRn|hTj x+kj 6 0, j = 1, ..., Ei} (7)

where hjεRn, kjεR, and hT denotes the transpose of h.
Evaluation of the explicit MPC approach in (6) is much

simpler than solving the optimization problem in (3) to
(5) on line.

Hence, the issue of implementing the explicit MPC ap-
proach in (6) in hardware has recently been given much
attention [7]-[11]. Implementation of PWA functions in
hardware has also been contemplated for fuzzy control
and virtual sensors [12]-[17].

Several digital approaches have recently been pro-
posed for hardware realizations of PWA functions [7],
[13]-[26]. The implementation of PWA functions is solved
using a Digital Signal Processor (DSP) in [13] and [16],
while the generation of PWA functions using FPGAs is
reported in [14]-[15], [17]-[20], [22], [25]-[26]. The pro-
posal described in [14] implements a nonlinear controller

http://macarena@imse-cnm.csic.es
http://brox@imse-cnm.csic.es
http://lumi@imse-cnm.csic.es

3

(a) Generic partition (b) Simplicial partition (c) Rectangular partition

Figure 1. Different partitions of a bi-dimensional input domain into polytopes.

(including PWA) as an intellectual property (IP) module
that accelerates the inferring task of a general-purpose
processor. Solutions using digital ASICs are proposed in
[7], [21], [23] and mixed-signal ASICs are described in
[24]. In general, digital VLSI implementations of PWA
controllers have many practical applications when very
small size, low power consumption and/or short re-
sponse times are required [9], [17], [27].

Several approaches have been adopted for imple-
menting PWA functions. They differ in how the affine
function corresponding to the input is found (the point
location problem) and how the input domain is parti-
tioned into polytopes. Polytopes can be of any shape
if the partition is generic (Fig. 1a) [7], [18], [21]; they
are simplexes if the partition is simplicial (Fig. 1b) [19],
[23], [24]; and they are hyper-rectangles if the partition is
hyper-rectangular (Fig. 1c) [22]. Hardware solutions that
implement simplicial and hyper-rectangular approaches
usually provide faster responses than solutions that im-
plement a generic approach. As a drawback, explicit
MPC approaches in (6) usually employ generic partition,
so simplicial and hyper-rectangular approaches have to
approximate the generic polytopes with simplexes or
hyper-rectangles. This type of approximation may neg-
atively impact the controller performance, in particular,
its closed-loop stability.

Another solution is the realization of PWA controllers
with a hierarchical architecture, which decomposes the
multivariate PWA controller into modules, preferably
uni-dimensional PWA modules connected in cascade
[20].

Lattice representations of PWA controllers eliminate
the point location problem [28], reducing memory re-
quirements because the edges in (7) do not have to be
computed. Another advantage of lattice PWA controller
representations is that they can implement without ap-
proximation any continuous explicit MPC that employs a
generic partition. Moreover, there exists a systematic way
to find the simplest lattice form of a given PWA func-
tion [29]-[31]. A preliminary (non-parameterized) digital
architecture for implementing PWA functions with two

inputs and one output in lattice form is presented in
[25]. The architecture is addressed to FPGAs from Xilinx
and uses the Xilinx DSP blockset for Simulink in System
Generator. A design methodology for implementing the
architecture shown in [25] in FPGAs is briefly described
in [26]. The methodology uses The Mathworks model-
based design environment Simulink for FPGA design.
All of the FPGA implementation steps are automatically
performed by System Generator tool from Xilinx, so RTL
design methodologies are not employed.

This paper proposes a digital architecture for imple-
menting PWA controllers based on lattice representa-
tion. The architecture is parameterized in terms of the
number of inputs and outputs (to handle Multi-Input
Multi-Output or MIMO PWA controllers), the input,
output and the parameters involved resolution and the
complexity of the PWA controller (more or less affine
control laws). The implementation of the architecture
into FPGAs and ASICs is detailed together with the
computer-aided design flow employed in both cases. The
starting point for the design flow is the PWA function
to be implemented and the end point is the set of
design files for the FPGA realization or the set of con-
figuration/programming files for the ASIC realization.
In particular, the paper illustrates how the design flow
can be linked to tools from the control domain, so that
the digital implementation of a given explicit MPC is
obtained automatically. The architecture does not use the
Xilinx DSP blockset for Simulink in System Generator, as
in [25], but has been described in Verilog. Unlike the
methodology in [26], this proposal does employ RTL
design methodologies.

The paper is organized as follows. Section 2 sum-
marizes the lattice representation of a PWA function.
Section 3 describes the digital architecture proposed
and compares it with other solutions. The design flows
for implementing the architecture in FPGAs and ASICs
are described in Section 4. Application examples in the
control domain are shown in Section 5 and, finally,
conclusions are given in Section 6.

4

2 PWA FUNCTIONS BASED ON THE LATTICE
APPROACH

2.1 The lattice representation
The work done in [28] shows how a continuous PWA
function can be represented by a lattice form. In the
lattice form it is not necessary to locate the input in
a polytope as a first step when computing the PWA
function and consequently, the edges that define the
polytopes do not have to be computed explicitly.

For the sake of simplicity, let us consider the PWA
function in (6) but with only one output, that is,
fPWA(x) : M ⊂ Rn → R, as follows

fPWA(x) = fTi x+ gi ifxεOi i = 1, ..., D (8)

with fiεRn and giεR.
According to the notation in [29], this can be expressed

as

fPWA(x) = φTi
[
xT 1

]T
= l(x|φi) = li(x)

ifxεOi
(9)

where φiεRn+1 is the parameter vector that defines the
affine function at polytope Oi (φi =

[
fTi gi

]T). The
parameter matrix, φ, is a D × (n + 1) matrix containing
the D parameter vectors.

The PWA function is continuous if

fPWA(x) = φTj
[
xT 1

]T
= φTk

[
xT 1

]T ∀xεOj ∩Ok
with j, kε{1, ..., D}.

Any continuous PWA function can be fully specified
by a parameter matrix, φ, and a structure matrix, ψ, in
the following lattice representation L(x|φ, ψ) = fPWA(x)

L(x|φ, ψ) = min
1≤i≤D

{
max

1≤j≤D,ψij=1
{lj(x)}

}
, ∀xεRn (10)

The matrix, ψ, is defined as a structure matrix if its
elements are calculated as

ψij =

{
1 if li(x) ≥ lj(x), ∀xεOi
0 otherwise

(11)

for i, j = {1, ..., D}.
The lattice representation in (10) is not unique because

there are several ways of combining the local affine
functions with minimum and maximum operators. To
obtain an efficient VLSI realization, it is best to im-
plement the simplest lattice form, as addressed in the
following subsection. More details about lattice PWA
representation can be found in [29].

As example, let us consider the PWA function shown
in Fig. 2 and described as follows

fPWA(x) =

l1(x) = 2x+ 1 if 0 ≤ x ≤ 1

l2(x) = −3x+ 6 if 1 ≤ x ≤ 2

l3(x) = 0.75x− 1.5 if 2 ≤ x ≤ 6

(12)

3

2

1

1 2 3 4 5 6

fPWA

x

Figure 2. Example of a one-dimensional PWA function

One of its lattice representations is the following

fPWA(x) = min

 max {l1(x), l3(x)} ,
max {l2(x), l3(x)} ,
max {l2(x), l3(x)}

 (13)

where the structure matrix, ψ, and the parameter matrix,
φ, are given by

ψ =

1 0 1
0 1 1
0 1 1

 φ =

 2 1
−3 6
0.75 −1.5

 (14)

2.2 The simplest lattice representation
The way to obtain the simplest lattice representation
of a continuous PWA function was addressed in [29]-
[33]. Herein, the algorithm used to find the simplest
lattice representation of a PWA function with the form
described in (10) is the one presented in [29] and updated
in [30] and [31]. The steps of the algorithm can be
summarized as follows
• Given an explicit PWA function, record the local

affine functions (li(x), 1 ≤ i ≤ D), the constrained
inequalities (hTj x + gj ≤ 0, j = 1, ..., Ei) that define
the polytopes, and the ki vertexes vk of each poly-
tope Oi.

• Calculate the values of each affine function at each
set of vertexes, li(vk).

• Calculate the structure matrix using

ψij =

{
1

0

if li(vk) ≥ lj(vk), 1 ≤ k ≤ ki
otherwise

(15)

• Simplify the rows in the structure matrix as de-
scribed in Lemma 3 in [29]. After such simplification,
the rows of the new simplified structure matrix
correspond to super-regions made up of several
polytopes. Super-regions can be concave or even
disconnected.

• Simplify the columns in the structure matrix and
the consequent rows in the parameter matrix as
described in Lemma 1 in [31]. After this last step,
super-regions that are not involved in the PWA
function are removed.

The new simplified structure matrix is ψ̃ ∈ RX×W and
the new simplified parameter matrix is φ̃ ∈ RW×(n+1),

5

with X ≤ W ≤ D. The simplest lattice representation,
L(x|φ̃, ψ̃), of the PWA function, fPWA(x), is the follow-
ing

L(x|φ̃, ψ̃) = min
1≤i≤X

{
max

1≤j≤W,ψ̃ij=1

{
l̃j(x)

}}
,∀x ∈ Rn

(16)
This calculates the minimum of X maxima, where

each maximum is applied to as many affine functions
as there are logic 1’s in the corresponding row of ψ̃.

Applying the simplification procedure to the example
shown in Fig.2, the simplified structure matrix, ψ̃, and
the simplified parameter matrix, φ̃, are given by

ψ̃ =

[
1 0 1
0 1 1

]
φ̃ =

 2 1
−3 6
0.75 −1.5

 (17)

Hence, the simplest lattice representation of the func-
tion in Fig. 2 is given by (in this case φ̃ = φ)

fPWA(x) = min

 max
{
l̃1(x), l̃3(x)

}
,

max
{
l̃2(x), l̃3(x)

} (18)

3 DIGITAL ARCHITECTURE

This section presents a configurable, programmable dig-
ital architecture that implements the simplest lattice
representation in (16). First, the main building blocks
are introduced, then the timing performance is described
secondly and, finally, the proposed architecture is com-
pared with existing architectures used to implement
other forms of PWA controllers. The architecture is de-
scribed in terms of the following parameters:
• n: number of inputs.
• X : number of rows in the simplified structure ma-

trix.
• W : number of columns in the simplified structure

matrix or rows in the simplified parameter matrix.
• U : defined as U = 2

∑X
i=1

⌈
Ui

2

⌉
, where Ui is the

number of logic 1’s in the i-th row of the simplified
structure matrix ψ̃.

• no: number of outputs.

3.1 Building blocks
In order to implement the simplest lattice representation
in (16), the following building blocks are required.

ArithUnit
This block calculates the local affine expressions, l̃j(x)
in (16), for a given input, x, with one multiplier per
xk and one adder per element in the parameter vector
(for a parallel implementation) or with a multiplier-
accumulator (for a serial one)

l̃j(x) =
∑n
k=1 fjkxk + gj (19)

Max
This block calculates the maximum among several local
affine control laws (l̃j)

maxi = max
1≤j≤W,ψ̃ij=1

{
l̃j(x)

}
(20)

Min
This block calculates the minimum among the maximum
local affine control laws of each row in the structure
matrix (maxi)

min = min
1≤i≤X

{maxi} (21)

Acquisition
This block can acquire the input serially or in parallel ac-
cording to the external communication protocol selected.

MemPar
This element is a memory that stores the simplified
parameter matrix, φ̃. The j-th word of the memory stores
the n+1 parameters, fj1, ..., fjn, gj , associated to the local
affine control law l̃j(x). The depth of this memory is at
least W , so that the memory is addressed by a bus of
dlog2W e bits.

MemLat
This block is another memory whose words are related
to the pair of indices (i, j) of those elements of the
simplified structure matrix that have a logic value ‘1’
(ψ̃ij = 1). The index j refers to the address of the
memory MemPar where the parameters associated to the
local affine function l̃j(x) are stored. Each word of this
memory has dlog2W e+ 1 bits. The first dlog2W e bits are
used to codify that address. The last bit is related to
the index i. Since the memory MemLat is read from the
beginning to the end, if the last bit is ‘0’, it means that
i is unchanged and the same row of matrix ψ̃ is being
processed. Otherwise, if the last bit takes the logic value
‘1’, it means that the row is finished, the index i has
to be increased, and the next row has to be processed.
The depth of the memory MemLat is at least U , so this
memory is addressed by a bus of dlog2Ue bits.

Let us illustrate the structure of the memories MemLat
and MemPar with the example in Fig. 2. Given the sim-
plified structure matrix, ψ̃, and the simplified parameter

0 0 100

01

10

11

0 0 0 0 0 0 1 0 0

1 1 0 1 0 0 0 1 1 0 0 0

0 0 0 0 1 1 1 1 1 0 1 0

address address content

0 0 0

1 0 1

0 1 0

00

01

10

11 1 0 1

content

Figure 3. MemLat (left) and MemPar (right) memories for
the example described in Fig. 2.

6

matrix, φ̃, in (17), the words stored in these memories are
shown in Fig. 3. In this example, the parameters stored
in MemPar are coded with 6 bits in two’s complement
format, using the 4 most significant bits for the integer
part.

It can be seen how the number of super-regions and
different affine functions is correlated with the memory
resources.

Control
This element sets the addresses of the memory MemLat
and handles the enable signals of the blocks in the
architecture according to the timing schedule described
below.

3.2 Description of the architecture

When choosing between parallel and serial architectural
solutions there is always a trade-off, mainly in terms
of area consumption and time processing. The solutions
selected here are as follows. The inputs, x1, ..., xn, are
acquired serially, one after the other, and each input
is acquired in parallel, so that the input bus has the
same width as the input bit resolution. The memories
selected are dual-port memories, so the parameters of
two local affine functions can be read simultaneously
from MemPar. The Control block therefore has to si-
multaneously address two words of MemLat, which in
turn addresses two words of the memory MemPar. The
ArithUnit block is fully parallel and computes two lo-
cal affine functions in one clock cycle. The Max block
computes the maximum among both local functions
and the maximum value previously computed, maxold,
provided by the Control block. The first value of maxold
is set to the minimum value of the PWA function. The
output provided by the Max block is as follows

li(x) = fi1x1 + · · ·+ finxn + gi
lj(x) = fj1x1 + · · ·+ fjnxn + gj

maxnew = max (li(x), lj(x), maxold)
(22)

MemPar

Control

Min

address

w/r

endrow

w/r

address

fi,gi

minnewmaxold
enable

x

x

enable

outarithmax

maxnew
Max

minold

enable

input
Acquisition MemLat

ArithUnit

Figure 4. Block diagram of the architecture for computing
lattice-based PWA controllers

n

1

Figure 5. State diagram of the operation

The block diagram of the proposed architecture is
shown in Fig. 4. Fig. 5 shows the state diagram that ex-
plains the operation. Once the system exits the reset state
(Start), it remains in a non-operating state (NonOp). The
output signal ready takes a high logic value to indicate
that the system can acquire new inputs. When the input
signal valid_in takes a high logic value, it indicates that
there is an input available and ready to be processed. The
first input is acquired in parallel during state AcqX1. The
state changes from AcqX1 to AcqXn until, one after the
other, all the n inputs are acquired. Thereafter, the Control
block provides the first two MemLat addresses. The data
stored in MemLat provides the two addresses where the
first two sets of parameters are located in the memory
MemPar. This is done at state Mem. Once the parameters
have been retrieved, the two local affine functions and
the maximum between them and the previously calcu-
lated maximum (the maxold value) are computed. This is
done at state CompMax. The endrow signal, which comes
from the last bit of the words provided by MemLat,
indicates whether the row in the simplified structure
matrix, ψ̃, that is being processed has already finished
(endrow=‘1’) or not (endrow=‘0’). If it has not finished, the
maximum value of the local affine functions associated
to the row is still being calculated. In this case, the
current maximum value is stored (at state ContRow), new
parameters are retrieved from MemPar (at state Mem),
and a new maximum is calculated (at state CompMax).
If the row is finished (endrow=‘1’) then the minimum
value is calculated between the maximum value of the
row and the previously calculated minimum value (the

7

Table 1
Comparison between architectures

Latency (Number of clock cycles) Bits to store Multipliers Exact optimal MPC

PWAG (A) n+ 2d+ nd+ 2 nbit(n+ 1)(D + E) 1 Yes
PWAG (B) n+ 2d nbit(n+ 1)(D + E) +Ndlog2T e n Yes
PWAS (A) n+ 4 nbit

∏i=n
i=1 (mi + 1) 1 No (approx.)

PWAS (B) 3 nbit(n+ 1)
∏i=n

i=1 (mi + 1) n+ 1 No (approx.)
PWAR (A) n+ 2 nbit(n+ 1)

∏i=n
i=1 mi 1 No (approx.)

PWAR (B) 2 nbit(n+ 1)
∏i=n

i=1 mi n No (approx.)
MultiTree hM + 2 − nM Yes

PWAL n+ U + 1 nbit(n+ 1)W + U(dlog2Xe+ 1) 2n Yes

minold value). This is done at state EndRow. While there
are rows in the simplified structure matrix, ψ̃, still to
be processed, the current minimum value is stored and
the processing of a new row is started (state named
BegRow), by repeating the steps described above. If there
are no more rows (fin=‘1’), the minimum calculated is
the system’s output (the value of the PWA function) and
valid_out signal is set to ‘1’. The Control block sets the
value of fin signal to ‘1’ when the address of the memory
MemLat reaches the value X , which is the number of
rows in the simplified structure matrix.

In the case of a Multiple Input Single Output (MISO)
PWA function, if fin signal is ‘1’ then the system has
finished processing the input and the nout signal is ‘1’.
The circuit is ready to receive a new input, so the ready
signal is set to ‘1’. In the case of a Multiple Input Multiple
Output (MIMO) PWA function, the nout signal is set to
‘0’, because the other outputs have to be computed. The
same process is then repeated except for the steps of
acquiring the inputs, because the outputs are calculated
for the same inputs. When all the outputs have been
calculated, the nout signal is set to ‘1’ and the ready
signal is set to ‘1’, the latter indicating that the system
is ready to receive a new input. The next state is the
non operation state whenever a new valid input is not
provided.

The latency of the architecture to provide each output
depends on several operations. One cycle is needed
to acquire each input (at states AcqXi). Two cycles are
needed to compute the maximum of two affine functions
(one to extract the parameters, at state Mem, and other to
compute it, at state CompMax). In a row of the simplified
structure matrix, the maximum of Ui affine functions has
to be computed, and so Ui clock cycles are needed. The
minimum operation at the end of each row is computed
in one clock cycle. However, this cycle is not necessary
if there are more rows to valuate, since the minimum
is calculated at the same time as the parameters are
extracted (at state BegRow, the minimum is computed
and the parameters are extracted). Hence, only one more
cycle is needed, in addition to the U cycles, to compute
all the rows. The latency of the architecture to provide
each output is therefore n + U + 1, U being as defined
at the beginning of this section. The throughput for each

output is U + 1.

3.3 Comparison with other architectures

Different ways of implementing multivariate PWA con-
trollers have been reported in literature. In the method
known as the Piecewise-Affine Generic (PWAG) method,
three steps are taken to compute the PWA function. The
first, called the point location step, determines the poly-
tope where the input is located. The second step retrieves
the parameters of the affine control law associated to
the polytope and, finally, the PWA controller is com-
puted [34]. A digital architecture for FPGA realizations
is proposed in [18]. The point location step is performed
by sweeping on line a binary search tree that has been
constructed off line, prior to programming the FPGA.
The work in [7] uses the hardware design program
PICOExpress to translate the C source code of the PWAG
controller evaluation algorithm into a hardware descrip-
tion language definition that is implemented in an ASIC.
The digital architecture presented in [21] sweeps on
line the binary search tree that is configured and pro-
grammed into the ASIC. PWAG forms can implement
PWA controllers defined over polytopes of any shape,
but they are costly for certain controllers that require a
very deep and/or non-balanced search tree. A PWAG
representation based on multiway trees to accelerate the
control law evaluation is described in [10].

To cut down the time needed to solve the point
location problem, the method known as the Piecewise-
Affine Simplicial (PWAS) method employs a partition
of regular polytopes called simplexes [35]. Architectures
for the realization of mixed-signal integrated circuits
(ASICs) that implement PWAS controllers have been
described in [23], [24], with several architectures being
presented for the realization of PWAS controllers with
FPGAs. The architecture proposed in [19] allows for two
versions (one parallel and one serial). PWAS implemen-
tations often provide faster solutions than PWAG, but
they have two important limitations. The first, known
as ’the curse of dimensionality’, means that the number
of parameters needed to define the PWAS controllers
grows exponentially with the number of dimensions of
the input domain, requiring high memory resources. The

8

second limitation is that PWAS representation has to
approximate a PWA controller defined over a generic
partition of the input domain, as commented in Section
1.

To further reduce the time needed to solve the point
location problem and to allow the realization of very
simple digital architectures, the method known as the
Piecewise-Affine Rectangular (PWAR) method performs
a hyper-rectangular partition of the input domain [22].
A multi-resolution PWAR architecture is also proposed
in [22] to mitigate the curse of dimensionality. It allows
memory requirements to be reduced at the cost of a
slightly higher latency and greater circuit complexity.
The PWAR representation also has to approximate a
PWA controller defined over a generic partition.

Another solution to reduce the curse of dimen-
sionality is to implement PWA controllers with a hi-
erarchical architecture, thus decomposing the multi-
variate PWA controller into modules, preferably uni-
dimensional cascade-connected PWA modules. This type
of architecture implemented in FPGAs has been explored
in different case studies in [20]. The problem is that there
is no systematic way to find the best hierarchical PWA
form to approximate a given controller.

In Table 1, the proposed architecture is compared
with the above-mentioned architectures. The architec-
ture labeled PWAG(A) is an architecture that calculates
a PWA function based on a binary search tree con-
structed off-line, with an arithmetic unit implemented as
a multiplier-accumulator [18]. The architecture reported
in [21] for calculating a PWA function based on a binary
search tree constructed on line is labeled PWAG(B). The
mostly serial and mostly parallel architectures based on
simplicial partition, as presented in [19]], are labeled
PWAS(A) and PWAS (B) respectively . The architecture
based on the hyper-rectangular partition proposed in
[22] is labeled PWAR(A) for the serial version and
PWAR(B) for the parallel version. The architecture based
on multiway trees is labeled MultiTree [10].

The symbols employed in the comparison are: the in-
put dimension of the PWA function (n), the depth of the
binary search tree (d), the number of nodes in the search
tree (N), the number of different local affine functions
(W), the number of edges defining the polytopes (E), the
number of bits representing the input (nbit), the number
of vertices in the simplicial partition,

∏i=n
i=1 (mi + 1), mi

being the number of partitions for each input, the order
of the trees in the Multitree (M), the internal height of
the Multitree (hM) and U , which is related to the number
of logic 1’s in the simplified structure matrix (ψ̃).

Compared to PWAS and PWAR architectures, the pro-
posed PWAL architecture can generate any continuous
PWA function defined over a generic partition with-
out approximations and usually requiring less mem-
ory. Compared to PWAG architectures, the proposed
PWAL architecture offers the advantage of requiring less
memory while maintaining competitive performance in
terms of latency. The performance of PWAL architecture

improves as the value of U gets smaller, since U is
related to the stored parameters and the response time.
The worst case scenario for a PWAL implementation
is when the structure matrix has not been simplified
and U = D × (D − 1). These conclusions are illustrated
quantitatively in the examples shown in Section V.

4 VLSI IMPLEMENTATION

The architecture described above was implemented in
FPGAs and ASICs, with the following specifications:
• Input resolution: 12 bits.
• Parameter resolution: 12 bits.
• Fixed-point arithmetic.
The steps of both design flows are summarized below.

4.1 FPGA design flow

Since the FPGAs considered were from Xilinx, the Xilinx
ISE Design Suite was employed as the design envi-
ronment. The RTL description of the architecture was
developed in the HDL language Verilog. The description
was parameterized to allow a different number of inputs,
n, outputs, no, and simplified structure and parameter
matrices, ψ̃, φ̃.

Depending on the specifications of the simplified
structure and parameter matrices of the PWAL controller
to be implemented, the Xilinx tool Core Generator was
used to generate the memories MemLat and MemPar.
Core Generator provides Intellectual Property (IP) cores
for Xilinx FPGAs. More specifically, two dual-port mem-
ories were generated using the block RAMs available in
the selected FPGA family. MemLat has an address bus
width of log2U and a data bus width of log2W + 1.
MemPar has an address bus width of log2W and a data
bus width of 12(n+ 1).

The arithmetic unit comprised of n 2-input signed
multipliers with 12 bits of input resolution. These multi-
pliers were implemented with dedicated hardware gen-
erated with the Core Generator tool. The arithmetic unit
also contained n+1 2-input signed adders implemented
with dedicated hardware. Since all these resources were
generated by the Core Generator tool, they were opti-
mized in terms of area, speed, and power.

The Xilinx ISE environment contains all the tools
needed to translate the design described in Verilog into a
bitstream configuration file for the selected FPGA device.

4.2 ASIC design flow

An ASIC is not a programmable device like an FPGA.
Hence, the RTL description developed in Verilog cor-
responded to a programmable, configurable core that
implemented a MIMO PWA function with the following
versatility:
• Number of inputs: up to 4 (configurable from 1 to

4).
• Number of outputs: from 1 to 2.

9

• Maximum of logic 1’s in the simplified structure
matrix: 128 for one output and 64 for two outputs.

• Maximum number of affine functions in the simpli-
fied parameter matrix: 32.

The RTL specification was written in Verilog, using
high level constructs. The synthesis tool (Design Analyzer
from Synopsis) transformed this RTL specification into a
set of logic gates, taking into account technology infor-
mation. The arithmetic unit comprised 4 signed 2-input
multipliers with 12 bits input resolution and 5 signed 2-
input adders with 24 bits input resolution. The place and
route tool employed was SoC Encounter from Cadence.
The selected technology was TSMC (Taiwan Semicon-
ductor Manufacturing Company) 90-nm, 9-layer metal,
since this offered a good trade-off between performance
and cost.

The MemLat and MemPar memory blocks were im-
plemented with IP modules provided by Europractice.
These IP modules are high-performance synchronous
dual-port memory designs that take full advantage of
TSMC’s N90LP-LK CMOS Process. The size of the mem-
ory MemLat was 128 words coded with 6 bits (5 bits to
address MemPar). Hence, the width of the address bus
was 7 and the width of the data bus was 6. The depth of
this memory indicates that the lattice representation can
have a maximum of 128 logic 1’s in the structure matrix
(Umax = 128) for PWA functions with one output, or 64
logic 1’s in each structure matrix for functions with two
outputs (Umax = 64 for each output). The width of the
words means that this memory can address a memory
with a depth of 32 words, since the 6th bit was used to
indicate the end of a row in the structure matrix. The size
of the memory MemPar was 32 words coded with 60 bits,
and so the width of the address bus was 5 and the width
of the data bus was 60. The depth of this memory meant
that 32 different affine functions could be stored. The
width allows storage of 5 parameters with a resolution
of 12 bits.

The layout is shown in Fig. 6. The active area was
0.29mm2.

Figure 6. Layout after place&routing in SoC Encounter
from Cadence

4.3 Programming and verification flow
Given a PWA controller of the type described in (6), a de-
sign flow was developed that made it possible to obtain
either the bitstream to program a selected FPGA or the
configuration files to configure and program the ASIC
realization described above. Some fundamental steps of
this design flow are devoted to extracting the contents to
be stored in the memories MemLat and MemPar. These
steps were carried out exclusively in MATLAB as shown
in Fig. 7. First, a mathematical formulation of the PWA
controller was described in MATLAB. After that, the
parameter and structure matrices (ψ, φ) were generated.
Then, the rows and columns were simplified to ob-
tain a simplified structure matrix (ψ̃) and a simplified
parameter matrix (φ̃) and finally a MATLAB function
was used to generate the parameters required for the
hardware realization (n, X, W, U, W, no). This function
set the number of bits in the signals, the parameters
that the memories were to store and the control circuitry
specifications.

The design flow developed also facilitates the verifica-
tion of the VLSI implementation. A MATLAB function
generates a Verilog file called <Testbench.v> that pro-
vides input values for the VLSI implementation. A sim-
ulator, such as ModelSim from Mentor Graphics or ISim
from Xilinx, takes this <Testbench.v> file, together with
the file describing the VLSI design (<Lattice_FPGA.v>
or <Lattice_ASIC.v>) and computes the output values.
The MATLAB function takes the output values and can
either compare them with the output values given by the
implemented PWA controller (open-loop verification) or
employ them in the application domain where the VLSI
design is going to be embedded (for example, closed-
loop verification, as will be shown in Section V). The
block diagram of this verification flow is shown in Fig.
8.

5 APPLICATION EXAMPLES IN MODEL PRE-
DICTIVE CONTROL

The design flow described above was used to design
digital VLSI implementations of PWA controllers. PWA
controllers of the type shown in (6) were obtained with
the Moby-dic Toolbox [36] from MATLAB&Simulink and
its interfaces to Hybrid Toolbox [37] and to MPT Toolbox

Ψ, Φ

Developed Matlab code for Lattice-PWA form

PWA
controller

.m

Lattice-PWA
form

.m

Row
Simplification

Ψ, Φ
.m

Column
Simplification

Ψ, Φ
.m

Software-hardware
Interface

MemLat
^ ~ ~

MemPar

Figure 7. Design flow for extracting the contents of the
MemLat and MemPar memories

10

configuration

Lattice_ASIC.v

Testbench.v

 Matlab

Generation of
parameters of the

lattice PWA controller
and verification

Lattice_FPGA.v

Testbench.v

Input values and
configuration parameters

Input values

configuration

Figure 8. Block diagram of the verification scheme

[38], which can solve control problems using explicit
model predictive control approaches.

To illustrate the whole design and verification process
of PWA controllers based on lattice representation and
implemented as digital circuits with the proposed ar-
chitecture, three application examples are summarized.
The examples considered are the control of a double
integrator system, a typical benchmark in the control
domain, and two real world applications: an adaptive
cruise control (ACC) system and a controller for a buck-
boost DC-DC converter. The last two examples are well
suited to the inclusion of the proposed VLSI solution:
the adaptive cruise control because digital circuits are
embedded in current automotive solutions and the DC-
DC converter control because a sampling time of only 5
microseconds is employed (which requires fast response
from the implementation).

Firstly, the design flow in Fig. 7 was employed to
extract the contents of the memories for each particular
problem. The verification flow in Fig. 8 was then carried
out. Controller performance was verified in an open-loop
configuration, by comparing the desired outputs with
the current outputs provided by the circuit for a given
set of inputs. Controller performance was also verified in
a closed-loop configuration, by connecting the simulated
circuit with the system to be controlled (the double
integrator, the adaptive cruise control and the buck-boost

DC-DC converter) modeled in MATLAB&Simulink.

5.1 Double Integrator
Let us consider the double integrator

u(t) = ÿ(t) (23)

and its equivalent discrete-time state-space representa-
tion with a sampling time Ts = 1 s.

x(t+ 1) =

[
1 1
0 1

]
x(t) +

[
0
1

]
u(t)

y(t) =
[
1 0

]
x(t)

(24)

The optimal explicit PWA controller is obtained as the
first element of U from (3)-(5) with the weight matrices
(Q, R) and the horizons given as follows

Q =

[
1 0
0 0

]
, R = 0.01

Ny = Nu = 4
(25)

The state domain is given by M = [−8, 8]× [−4, 4] and
umin= − 1 ≤ u(t) ≤ 1 = umax.

The simplest lattice PWA representation for the ob-
tained optimal PWA controller is given by the expression

fPWA(x) = min{max {l1(x), l3(x), l5(x), l7(x)} ,
l6(x), l2(x), l4(x)} (26)

where the structure and parameter matrices are

ψ̃ =

1 0 1 0 1 0 1
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0

 (27)

φ̃ =

−0.8166 −1.7499 0
−0.4077 −1.4014 0.8271
−0.4077 −1.4014 −0.8271
−0.5528 −1.5364 0.4308
−0.5528 −1.5364 −0.4308
−0.32125 −1.3185 1.2127
−0.32125 −1.3185 −1.2127

(28)

The optimal explicit controller employs 41 affine func-
tions whereas only 7 different affine functions are em-
ployed by the lattice PWA representation.

The stars in Fig. 9 show the evolution of the plant
state (ẏ versus y), the control variable (u) and the plant
output (y) at each state (k) when the plant is controlled
by the VLSI realization, as described in the verification
flow in Section IV.C, with the specifications shown at
the beginning of Section IV. The continuous lines show
the evolution when the controller is the optimal PWA
function obtained with the Moby-dic Toolbox (software
results in MATLAB&Simulink with 64 bits of resolution).

Table 2 shows the performance of different PWA
controllers for the double integrator plant. The im-
plementations PWAG(A) [18], PWAS(A) and PWAS(B)

11

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

y

ẏ

(a) Plant state

5 10 15 20
−1

−0.5

0

0.5

1

k

u

(b) Control variable

5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

k

y

(c) System output

Figure 9. Performance of the designed lattice-based PWA VLSI controller for a double integrator system (stars)
compared with the optimal controller in software (continuous line)

Table 2
Comparison of PWA controllers for the double integrator system.

Device Latency (µs) Freq. (MHz) Nclk Memory (KB) Mult. Error (MRE)
PWAG (A) FPGA 1.6 20 32 3.35 1 0.0013
PWAG (B) ASIC 1.4 20 18 0.99 2 0.016
PWAS (A) FPGA 0.3 20 6 3.07 1 0.45
PWAS (B) FPGA 0.15 20 3 9.22 3 0.45
PWAR (A) FPGA 0.2 20 4 9.22 1 0.29
PWAR (B) FPGA 0.1 20 2 9.22 2 0.29
PWAH FPGA 0.55 20 11 0.07 2 0.29
MultiTree* FPGA 0.06 50 3 - 54 0.38%**
LOTBST* AVR-XMEGA 5.1-26.9 165-861 - - - -
PWAL FPGA/ASIC 0.6 20 13 0.03 4 0.00077

0 10 20 30 40
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

k

u

(a) Control variable

0 10 20 30 40
−5

0

5

10

15

20

25

30

35

k

e

(b) Tracking error

0 10 20 30 40
−3

−2

−1

0

1

2

k

ah

(c) Host acceleration

Figure 10. Performance of the designed lattice-based PWA VLSI controller for an adaptive cruise control (stars)
compared with the optimal MPC controller in software (continuous line)

[19], PWAR(A) and PWAR(B) [22], and PWAH [20]
correspond to realizations on a Xilinx Spartan 3 FPGA
(xc3s200). The implementation PWAG(B) [21] corre-
sponds to an ASIC implemented in a 90-nm technol-
ogy. The realization labeled LOTBST is an algorithm
executed on a low-cost AVR-XMEGA processor [39].
The implementation labeled MultiTree was implemented
in a Xilinx Spartan 3-E FPGA (xc3s500e). The results
of the PWAL realization correspond to the proposed
architecture which can be implemented in a FPGA or
an ASIC. If the architecture is implemented on ASIC, a
maximum frequency of 144MHz can be achieved. All the
implementations were coded with 12 bits for the inputs
and the parameters except for the one marked with *,

where the data was coded with 18 bits. Error (MRE)
was calculated as the maximum absolute difference be-
tween the optimal MPC control law and the control
law in hardware, except in ** where the error was the
absolute relative error. The PWAL realization provided
the best performance in terms of memory requirements
and approximation error (the optimal controller was not
approximated), with competitive latency time.

5.2 Adaptive Cruise Control
The second application example is the adaptive cruise
control, described in [40]. The goal of this application
problem was for a car, called the host vehicle, to follow
a preceding vehicle, called the target vehicle, at a desired

12

Table 3
Comparison between PWA controllers for ACC system.

Throughput Memory Occ. Slices Mult.
µs KB %

PWAG (A) 5.2 3.3 87 1
PWAS (A) 0.2 11.5 31 1
PWAS (B) 0.15 57.6 95 5
PWAL 1.45 1.06 5 8

distance, with full control of the throttle and the brakes
of the host vehicle. The host vehicle was defined by its
host speed, vh, and its host acceleration, ah. The target
vehicle was defined by its target speed, vt, and its target
acceleration, at, both unknown. The inter-vehicle relative
distance, xr, and relative speed, vr = vt−vh were defined
and measured by a radar installed on the host vehicle.
Thus, the desired relative distance, xr,d, was defined as
xr,d = xr,o + vh,dthw,d ,xr,o being the desired distance at
a standstill and thw,d, the desired headway time.

Taking into account the considerations expressed in
[11] the model of the system to be controlled was as
follows

xk+1 =

1 −Ts 0 Tsthw,d + 1

2T
2
s

0 1 0 −Ts
0 0 1 0
0 0 0 1

xk +

0
0
0
1

uk
(29)

with the state variable xk =
[
ek vr,k vt,k ah,k

]T ,
with ek = xr,d,k − xr,k, uk = ah,k+1 − ah,k and with the
following constraints

xr,o + (vt − vr)thw,d − xr,r ≤ e ≤ xr,o + (vt − vr)thw,d
0 ≤ vt ≤ vt,max

vt − vh,max ≤ ah ≤ ah,max
jh,min ≤ u ≤ jh,max

(30)
where jh,min and jh,max are the constraints of the host
jerk (derivative of the acceleration) and xr,r is the radar
range. The values of the constants were: xr,o = 3.5, xr,r =
200, thw,d = 1.5, vt,max = 50, vh,max = 50, ah,min = −3,
ah,max = 2, jh,min = −0.3, jh,max = 0.3. The sampling
time was Ts = 0.1 s.

Last included element to obtain the optimal explicit
PWA controller are the control specifications. The weight
matrices and the horizons in are the following

Q =

2.5 0 0 0
0 5 0 0
0 0 0 0
0 0 0 1

 , R = 1

Ny = Nu = 4

(31)

and the state domain is
[
−196 −50 0 −3

]T ×[
56 50 50 2

]T and −0.3 ≤ u ≤ 0.3.
Fig. 10 shows the evolution of the control variable and

the host acceleration (ah). The stars refer to the designed
lattice PWA controller implemented as a VLSI digital

circuit, as described in the verification flow in Section 4.3,
with the specifications shown at the beginning of Section
4. The continuous lines show the evolution when the
controller is the optimal PWA controller obtained with
the Moby-dic Toolbox [36] (software results in MAT-
LAB&Simulink with 64 bits of resolution). The NRMSE
calculated over Npts = 400 points in the control variable
is 0.037, where NRMSE is calculated as follows

NRMSE =

Npts

Σ
i=1

√
1

Npts
(û(i)− u(i))

2

umax − umin
(32)

û being the control law of the optimal MPC, u the
control law of the implemented controller and umax and
umin the saturation values of the control law.

Table 3 shows the features of the controller as imple-
mented in different architectures: PWAG (A), PWAS(A),
PWAS (B), and the implementation proposed here in a
Xilinx Spartan 3AN (xc3s700AN) as in [11]. Throughput
values are provided for a frequency of 20MHz in all
cases.

5.3 Buck-boost DC-DC converter
A lattice controller for a buck-boost DC-DC converter
(Fig. 12), as described in [27], was obtained. The control
signals were the duty-cycle ratios of switches, (s1 and
s2), that determined the stages in the buck-boost DC-
DC converter: d1 for the buck stage and d2 for the boost
stage.

The continuous-time model was as follows

dvC
dt = d2iL−iload

C

diL
dt = d1vS−iLRL−d2RL

C

(33)

where diε[dmin, dmax], vS is the supply voltage, iload is
the load current, iL is the inductance current and vC is
the capacitor voltage.

The goal of the converter was to maintain the output
voltage (vC) at the reference level Vref while keeping the
inputs and states within the limits.

Several considerations were taken into account when
employing the model in (33) to compute the MPC control

vs

VC

RC

c

RLL

S2S1

iload

iL

Figure 11. Schematic of buck-boost DC-DC converter

13

0 25 50 75 100 125

14

16

18

20

22

24

26

time (µs)

Vs

0 25 50 75 100 125

0.3

0.4

0.5

0.6

0.7

time (µs)

i load

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

time (ms)

iL

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

time (ms)

vc

Figure 12. Performance of the designed lattice-based PWA VLSI controller for the buck-boost DC-DC converter (stars)
compared with the optimal MPC in software (continuous line)

law. The model was discretized using the Euler forward
method, and d2 was considered constant, d2 = ci, for a
given range of vSεVi. The resulting model was affine for
the entire sampling period, as follows

xk+1 = Aixk +Buk + fvS,k
vS,kεVi

(34)

with:

Ai =

[
1 Tsci

C
−Tsci
L

−TsRL+L
L

]

B =

[
0
Ts

L

]
f =

[−Ts

C
0

] (35)

where uk = d1,k · vS,k, vS,k and iload,k remain constant
during each sampling period, TS and x = [vC iL]T .

The optimization problem in (3)-(5) was addressed
and solved as a multiparametric mixed-integer linear
problem with 4 parameters

[
vC,k iL,k vS,k iload,k

]
with Ny = Nc = 2 and Q =

[
1 0
0 1

]
obtaining a PWA

function u(vC , iL, vs, iload).
The following converter parameters and constraints

were used: RL = 0.2Ω, L = 220µH , C = 22µF ,
vC,min = 0V , vC,max = 22V , vS,min = 10V , vS,max = 30V ,
iload,min = 0.02A, iload,max = 1A, iL,min = 0A, iL,max =
3A, dmin = 0, dmax = 1, and Vref = 20V . The sampling
time was Ts = 5µs.

The lattice PWA representation obtained for the opti-
mal controller is given by

f(x) = min{max{l1(x), l3(x)},max{l2(x), l3(x)},
max{l3(x), l4(x)},max {l3(x), l7(x), l8(x)} ,
max{l3(x), l6(x)},max {l3(x), l7(x), l9(x)} ,
max{l14(x), l16(x)},max{l8(x), l10(x)}, l4(x)
max{l3(x), l5(x)},max{l3(x), l7(x), l10(x), l11(x)},
max{l5(x), l7(x)},max{l3(x), l7(x), l10(x), l12(x)},
max{l3(x), l7(x), l10(x), l13(x), l14(x)},
max{l3(x), l7(x), l10(x), l13(x), l15(x)},
max{l7(x), l10(x), l13(x)}, l14(x)},
max{l3(x), l7(x), l10(x), l13(x), l18(x)},
max{l7(x), l19(x)},max{l11(x), l13(x)}}

(36)
In this case, the optimal explicit controller employed

144 affine control laws and regions, while the PWAL

Table 4
Comparison of PWA controllers for buck-boost DC-DC

converter.

Latency Memory Occ. Slices Mult.
µs KB %

PWAG_ser 3.15 6.875 14 4
PWAG_par 1.2 6.875 10 4
PWAS_ ser 0.5 12 17 2
PWAS_ par 0.25 60 38 6
PWAL 3.55 1.45 5 8

controller only employed 19 different affine functions in
21 super-regions.

The stars in Fig. 12 show the evolution of the input
voltage source vS , the load current iL, the output voltage
vC and output current iL obtained when the plant was
controlled with the lattice PWA implemented as a VLSI
digital circuit with 12-bit precision, as described in the
verification flow in Section IV.C. The continuous lines
show the evolution when the controller was the optimal
PWA controller obtained with the Moby-dic Toolbox and
implemented in MATLAB&Simulink with 64-bit resolu-
tion. The NRMSE was 0.055 calculated as in (32) over
Npts = 10000 points.

Table 4 compares different PWA controllers for
the buck-boost DC-DC converter, PWAG_ser and
PWAG_par correspond to the serial and parallel PWAG
realizations described in [27]. PWAS_ser and PWAS_par
are the serial and parallel versions, respectively, of the
PWAS controllers described in [27], and PWAL is the
digital VLSI implementation proposed here. All the con-
trollers were implemented in a Spartan 3AN (xc3s700AN).
Latency values were provided for a frequency of 20MHz.
The PWAL implementation was advantageous in terms
of memory and occupation resources.

6 CONCLUSIONS

A novel digital implementation for piecewise-affine
(PWA) controllers has been presented. The solution is
based on the simplest lattice representation of a given
PWA controller. It has been implemented in Xilinx FP-
GAs using the block RAMs required for the particular
function, configured as dual-port memories, and the
necessary multipliers from those available in the FPGA.

14

The architecture has also been implemented in a con-
figurable, programmable core for ASIC realizations in
TSMC 90-nm CMOS technology. This realization used
dual-port intellectual property (IP) memories provided
by TSMC. A design flow was developed that made
it possible to obtain the bitstream for programming a
selected FPGA or the configuration files for configuring
and programming the ASIC realization. Some funda-
mental steps of this design flow were devoted to ex-
tracting the contents to be stored in the memories of
the proposed architecture. These steps were carried out
exclusively in MATLAB. A MATLAB function was also
developed to facilitate verification of the VLSI imple-
mentation. The proposed solution was evaluated in three
application examples (a double integrator, an adaptive
cruise control, and the control of a buck-boost DC-DC
converter). The generated PWA functions corresponded
to explicit model predictive controllers (MPC) obtained
with the Moby-dic Toolbox. Compared to other solutions
reported in literature for the same examples, the im-
plementation proposed here provides the optimal MPC
with very low approximation error, very low memory
resources, a very low number of slices (in the case of
FPGA realizations), and competitive latency.

ACKNOWLEDGMENTS

This work was partially supported by MOBY-DIC project
FP7-INFSO-ICT- 248858 (www.Moby-dic-project.eu)
from European Community, and TEC2011-24319
projects from the Spanish Government (with support
from FEDER). M.C. Martínez-Rodríguez is supported
by FPI fellowship program for Ph.D. Students from
Spanish Government. P. Brox is supported by ‘V Plan
Propio de Investigación’ from the University of Seville.
The authors acknowledge helpful discussions with A.
Oliveri regarding Moby-dic Toolbox.

REFERENCES
[1] E. D. Sontag, “Nonlinear regulation: The piecewise linear ap-

proach,” IEEE Trans. on Automatic Control, vol. 26, pp. 346 – 358,
1981.

[2] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, “Linear ma-
trix inequalities in control theory,” Studies in Applied Mathematics,
SIAM, vol. 15, 1994.

[3] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, “The LMI
control toolbox,” in IEEE Conf. on Decision and Control, 1994, pp.
2038 – 2041.

[4] A. Bemporad, F. Borelli, and M. Morari, “Model predictive control
based on linear programming: the explicit solution,” IEEE Trans.
on Automatic Control, vol. 47, no. 12, pp. 1974 – 1985, 2002.

[5] M. Lazar and W. Heemels, “Predictive control of hybrid systems:
Input-to-state stability results for sub-optimal solutions,” Auto-
matica, vol. 45, no. 1, pp. 180 – 185, 2009.

[6] A. Alessio and A. Bemporad, “A survey on explicit model pre-
dictive control,” in Nonlinear Model Predictive Control, ser. Lecture
Notes in Control and Information Sciences. Springer Berlin
Heidelberg, 2009, vol. 384, pp. 345 – 369.

[7] T. Johansen, W. Jackson, R. Schreiber, and P. Tφndel, “Hardware
synthesis of explicit model predictive controllers,” IEEE Trans. on
Control Systems Technology, vol. 15, no. 1, 2007.

[8] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The
explicit linear quadratic regulator for constrained systems,” Au-
tomatica, vol. 38, pp. 3 – 20, 2002.

[9] A. Bemporad, A. Oliveri, T. Poggi, and M. Storace, “Ultra-fast
stabilizing model predictive control via canonical piecewise affine
approximations,” IEEE Trans. on Automatic Control, vol. 56, no. 12,
pp. 2883 – 2897, Dec. 2011.

[10] M. Mönnigmann and M. Kastsian, “Fast explicit model predictive
control with multiway trees,” in 18th IFAC world congress 2011 :
Milan, Italy, Sept. 2011, vol. 2, pp. 1356 – 1361.

[11] A. Oliveri, G. Naus, M. Storace, and W. P. M. Heemels, “Low-
complexity approximations of pwa functions: A case study on
adaptive cruise control,” in 20th European Conference on Circuit
Theory and Design (ECCTD), Aug 2011, pp. 669 – 672.

[12] R. Rovatti, M. Borgatti, and R. Guerrieri, “A geometric approach
to maximum-speed n-dimensional continuous linear interpolation
in rectangular grids,” IEEE Trans. on Computers, vol. 47, no. 8, pp.
894 – 899, 1998.

[13] R. Rovatti, C. Fantuzzi, and S. Simani, “High-speed DSP-based
implementation of piecewise-affine and piecewise-quadratic
fuzzy systems,” Signal Processing, vol. 80, no. 6, pp. 951 – 963, 2000.

[14] S. Sánchez-Solano, A. Cabrera, I. Baturone, F. J. Moreno-Velo, and
M. Brox, “FPGA implementation of embedded fuzzy controllers
for robotic applications,” IEEE Trans. on Industrial Electronics,
vol. 54, no. 4, pp. 1937 – 1945, 2007.

[15] P. Echevarria, M. V. Martínez, J. Echanobe, I. del Campo, and J. M.
Tarela, “Digital hardware implementation of high dimensional
fuzzy systems,” Applications of Fuzzy Sets Theory, Springer, pp.
245 – 252, 2007.

[16] I. Baturone, F. J. Moreno-Velo, V. Blanco, and J. Ferruz, “Design of
embedded DSP-based fuzzy controllers for autonomous robots,”
IEEE Trans. on Industrial Electronics, vol. 55, pp. 928 – 936, 2008.

[17] T. Poggi, M. Rubagotti, A. Bemporad, and M. Storace, “High-
speed piecewise affine virtual sensors,” IEEE Trans. on Industrial
Electronics, vol. 59, no. 2, pp. 1228 – 1237, 2012.

[18] A. Oliveri, T. Poggi, and M. Storace, “Circuit implementation of
piecewise-affine functions based on a binary search tree,” in IEEE
European Conf. on Circuit Theory and Design, 2009, pp. 145 – 148.

[19] M. Storace and T. Poggi, “Digital architectures realizing
piecewise-linear multi-variate functions: two fpga implementa-
tions,” Int. Journal of Circuit Theory and Applications, vol. 39, no. 1,
pp. 1 – 15, 2009.

[20] I. Baturone, M. C. Martínez-Rodríguez, P. Brox, A. Gersnoviez,
and S. Sánchez-Solano, “Digital implementation of hierarchical
piecewise-affine controllers,” in IEEE Int. Symposium on Industrial
Electronics, Jun. 2011, pp. 1497 – 1502.

[21] P. Brox, J. Castro, M. C. Martínez-Rodríguez, E.Tena, C. Jiménez,
I. Baturone, and A. J. Acosta, “A programmable and configurable
ASIC to generate piecewise-affine functions defined over general
partitions,” IEEE Trans. on Circuits and Systems I: Regular Papers,
vol. 60, no. 12, pp. 3182–3194, Dec. 2013.

[22] F. Comashi, B. A. G. Genuit, A. Oliveri, W. P. M. H. Heemels,
and M. Storace, “FPGA implementations of piecewise affine
functions based on multi-resolution hyperrectangular partitions,”
IEEE Trans. on Circuits and Systems I, vol. 59, no. 12, pp. 2920–2933,
Dec. 2012.

[23] J. Rodríguez, O. D. Lifschitz, V. M. Jiménez-Fernández, P. Julián,
and O. E. Agamennoni, “Application-specific processor for piece-
wise linear functions computation,” IEEE Trans. on Circuits and
Systems I: Regular Papers, vol. 58, no. 5, pp. 971–981, 2011.

[24] M. Di Federico, T. Poggi, P. Julián, and M. Storace, “Integrated cir-
cuit implementation of multi-dimensional piecewise-linear func-
tions,” Digital Signal Processing, vol. 20, no. 6, pp. 1723 – 1732, 2010.

[25] M. C. Martínez-Rodriguez, I. Baturone, and P. Brox, “Circuit
implementation of piecewise-affine functions based on lattice rep-
resentation,” in 20th European Conf. on Circuit Theory and Design,
Aug. 2011, pp. 644 – 647.

[26] M. C. Martínez-Rodríguez, I. Baturone, and P. Brox, “Design
methodology for FPGA implementation of lattice piecewise-affine
functions,” in IEEE Int. Conf. on Field-Programmable Technology,
Dec. 2011, pp. 1 – 4.

[27] V.Spinu, A.Oliveri, M.Lazar, and M.Storace, “Fpga implementa-
tion of optimal and approximate model predictive control for a
buck-boost dc-dc converter,” in IEEE International Conference on
Control Applications (CCA), 2012, Oct 2012, pp. 1417–1423.

[28] J. M. Tarela and M. V. Martínez, “Region configurations for
realizability of lattice piecewise-linear models,” Mathematical and
Computer Modelling, vol. 30, no. 11 - 12, pp. 75 – 83, 1999.

15

[29] C. Wen, X. Ma, and B. E. Ydstie, “Analytical expression of explicit
MPC solution via lattice piecewise-affine function,” Automatica,
vol. 45, no. 4, pp. 910 – 917, 2009.

[30] F. Bayat, “Comments on "analytical expression of explicit MPC
solution via lattice piecewise-affine function " Automatica 45
(2009) 910 - 917,” Automatica, vol. 48, no. 11, pp. 2993 – 2994, 2012.

[31] “Reply to "comments on "analytical expression of explicit MPC
solution via lattice piecewise-affine function" Automatica 45
(2009) 910 - 917",” Automatica.

[32] J. Tarela, J. Perez, and V. Aleixandre, “Minimization of lattice
polynomials on piecewise linear functions (part I),” Mathematics
and Computers in Simulation, vol. 17, no. 2, pp. 79 – 85, 1975.

[33] J. Tarela, L. Bailon, and E. Sanz, “Minimization of lattice poly-
nomials on piecewise linear functions (part II),” Mathematics and
Computers in Simulation, vol. 17, no. 2, pp. 121 – 127, 1975.

[34] P. Tφndel, T. A. Johansen, and A. Bemporad, “Computation and
approximation of piecewise affine control laws via binary search
trees,” in IEEE Conf. on Decision and Control, vol. 3, 2002, pp. 3144 –
3149.

[35] P. Julián, A. Desages, and O. Agamennoni, “High-level canonical
piecewise linear representation using a simplicial partition,” IEEE
Trans. on Circuits and Systems I: Fundamental Theory and Applica-
tions, vol. 46, no. 4, pp. 463 – 480, 1999.

[36] “MOBY-DIC toolbox.” [Online]. Available: http://ncas.dibe.
unige.it/software/MOBY-DICToolbox/

[37] A. Bemporad, “Hybrid Toolbox - User’s Guide,” 2004, http://cse.
lab.imtlucca.it/~bemporad/hybrid/toolbox.

[38] M. Kvasnica, P. Grieder, and M. Baotić, “Multi-Parametric
Toolbox (MPT),” 2004. [Online]. Available: http://control.ee.ethz.
ch/~mpt/

[39] F. Bayat, T. A. Johansen, and A. A. Jabli, “Flexible piecewise
function evaluation methods based on truncated binary search
trees and lattice representation in explicit MPC,” IEEE Trans. on
Control Systems Technology, 2011.

[40] G. Naus, J. Ploeg, M. V. de Molengraft, W. Heemels, and M. Stein-
buch, “Design and implementation of parameterized adaptive
cruise control: An explicit model predictive control approach,”
Control Engineering Practice, vol. 18, no. 8, pp. 882 – 892, 2010.

http://ncas.dibe.unige.it/software/MOBY-DIC Toolbox/
http://ncas.dibe.unige.it/software/MOBY-DIC Toolbox/
http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox
http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox
http://control.ee.ethz.ch/~mpt/
http://control.ee.ethz.ch/~mpt/

	1 Introduction
	2 PWA functions based on the lattice approach
	2.1 The lattice representation
	2.2 The simplest lattice representation

	3 Digital architecture
	3.1 Building blocks
	3.2 Description of the architecture
	3.3 Comparison with other architectures

	4 VLSI implementation
	4.1 FPGA design flow
	4.2 ASIC design flow
	4.3 Programming and verification flow

	5 Application examples in model predictive control
	5.1 Double Integrator
	5.2 Adaptive Cruise Control
	5.3 Buck-boost DC-DC converter

	6 Conclusions
	References
	References

