
Fuzzy motion adaptive algorithm and its

hardware implementation for video

de-interlacing

J. Gutiérrez-Ŕıos1, P. Brox2,3, F. Fernández-Hernández1,
I. Baturone2,3 and S. Sánchez-Solano2

1Dept. Tecnoloǵıa Fotónica. Universidad Politécnica Madrid. Campus de
Montegancedo. 28660 Boadilla del Monte. Madrid (Spain) {jgr@dtf.fi.upm.es}
2Instituto de Microelectrónica de Sevilla. Centro Nacional de Microelectrónica

(CSIC). 41092 Américo Vespucio s/n. Sevilla (Spain) {brox@imse-cnm.csic.es}
3Dept. Electrónica y Electromagnetismo. Universidad de Sevilla (Spain)

Abstract

Interlacing techniques were introduced in the early analog TV transmission systems
as an efficient mechanism capable of halving the video bandwidth. Currently, inter-
lacing is also used by some modern digital TV transmission systems, however, there
is a problem at the receiver side since the majority of modern display devices require
a progressive scanning. De-interlacing algorithms convert an interlaced video signal
into a progressive one by performing interpolation. To achieve good de-interlacing
results, dynamical and local image features should be considered. The gradual adap-
tation of the de-interlacing technique as a function of the level of motion detected
in each pixel is a powerful method that can be carried out by means of fuzzy in-
ference. The starting point of our study is an algorithm that uses a fuzzy inference
system to evaluate motion locally (FMA algorithm). Our approach is based on con-
volution techniques to process a fuzzy rulebase for motion-adaptive de-interlacing.
Different strategies based on bi-dimensional convolution techniques are proposed. In
particular, the algorithm called ‘single convolution algorithm’ introduces significant
advantages: a more accurate measurement of the level of motion by using a matrix
of weights, and a unique fuzzification process after the global estimation, which
reduces the computational cost. Different architectures for the hardware implemen-
tation of this algorithm are described in VHDL language. The physical realization
is carried out on a RC100 Celoxica FPGA development board.

Key words: De-interlacing, Fuzzy Logic, Motion Adaptive, Convolution.

1 This work was partially supported by MOBY-DIC project FP7-INFSO-ICT-

Preprint submitted to Elsevier 11 January 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/132461813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Interlaced video is a method to halve video bandwidth by eliminating hori-
zontal lines in successive frames. An interlaced video sequence consists of a
set of alternating even and odd fields containing, respectively, the even- and
the odd-numbered lines of the original images. Even though this transmission
scheme was introduced by the first analogue TV broadcasting systems, it is
also used by some of modern digital video standards. However, modern TV
sets, computer displays, and LCD displays use progressive scanning, that is,
they require complete frames containing all the lines.

De-interlacing algorithms are required to convert interlaced video signals into
a progressive format by interpolating the missing lines of each field (see Fig.
1). To perform de-interlacing, many algorithms have been reported in the lit-
erature [1]. They can roughly be classified into two categories: non-motion
compensated (non-MC) and motion-compensated (MC) algorithms [1]. MC
techniques involve a huge computational cost but they offer the most effective
results in moving areas [2]. Among non-MC techniques, two categories are
distinguished: spatial interpolation or intra-field techniques, and temporal in-
terpolation or inter-field techniques. Spatial interpolation algorithms calculate
the lines by interpolating the adjacent lines from the same field. Spatial in-
terpolation may be vertical (only pixels from upper and lower lines in vertical
direction are considered), such as line averaging, or directional (a higher num-
ber of pixels from up and down lines are evaluated in several edge directions)
[3]-[8].

Temporal interpolation algorithms interpolate the missing lines by employ-
ing pixels from different fields. Among them, the simplest methods are: field
insertion (where lines from the previous field of the sequence are inserted),
and t-line average (that performs the average value between lines from the
previous and posterior fields of the video sequence).

Inter-field techniques work properly in the static parts of the image. However,
if the image contains dynamical areas, these methods produce undesired ef-
fects (lines get misaligned) in moving objects. On the other hand, intra-field
techniques work much better in the presence of motion, but offer poor re-
sults in static regions. This circumstance is the basic idea of motion adaptive
de-interlacing algorithms, which were originally proposed in [9]. This kind of
algorithms tries to combine an spatial or intra-field method and a temporal
or inter-field method according to the presence of motion [10].

248858 (www.mobydic-project.eu) from European Community, TIN2005-08943-
C02-01 and TEC2008-04920 projects from the Spanish Government (with support
from the European Regional Development Fund), and P08-TIC-03674 project from
the Andalusian Regional Government.

2

The weakest point of motion adaptive de-interlacing algorithms is the correct
detection of the motion level. The output signal of a motion detector may be
not always null in areas where there is no motion. Fundamentally this is due
to the presence of noise, but some systems have also additional problems. For
instance, interlacing causes false motion in vertically detailed parts and timing
jitter of the sampling clock is particularly harmful in horizontally detailed
areas. To avoid these effects, some motion detectors usually include any kind
of spatio-temporal filtering [11].

The universal approximation capability of fuzzy systems has been exploited
to interpolate images [12]-[14] and video sequences [15]-[17], [18]-[20]. For de-
interlacing purpose, several proposals have been reported in the literature. The
proposal in [18] uses soft-decision fuzzy logic techniques to remove noise and
de-interlace TV video signals. A fuzzy edge-direction detector is introduced in
[19] to orient a conventional vertico-temporal filter for de-interlacing. Other
possible option is to use fuzzy logic and to apply different heuristic rules with
approximate levels of uncertainty, which implicitly performs a non-linear filter-
ing [20]. The algorithm in [15]-[17] uses a fuzzy inference rule base to choose
de-interlacing strategy according to the detection of motion. More recently,
several proposals based on fuzzy techniques have been reported to perform
de-interlacing by enhancing edges in the sequence [3]-[7]. A fuzzy logic-based
approach that performs a weighted spatio-temporal de-interlacing is presented
in cite[21].

This paper is organized as follows: Section 2 summarizes the starting algorithm
of our study. Section 3 describes the proposed algorithms. The evaluation of
their performance and its comparison with other de-interlacing techniques are
established in Section 4. The hardware implementation of the most efficient
proposal called ‘single convolution algorithm’ is detailed in Section 5. Finally,
some conclusions are expounded in Section 6.

FIELD NUMBER n+1

n

n-1

FRAME NUMBER n+1

n

n-1

Interpolated

lines

Transmitted line

DE-INTERLACING

(a) (b)

Fig. 1. (a) Interlaced video signal. (b) De-interlaced video signal.

3

2 Description of the starting algorithm

The algorithm proposed by Van de Ville et al. in [15]-[17] describes heuristic
knowledge by means of a fuzzy rule set to look for an efficient trade-off between
line averaging and field insertion, gradually adapted to the level of motion
detected in every pixel. The approach presented by Van de Ville et al. will
be called Fuzzy Motion Adaptive (FMA) algorithm in this contribution to
simplify its citation. FMA achieves a good quality of the de-interlaced sequence
but it becomes expensive, in terms of computational cost. A derived fuzzy
approach from these contributions was proposed by Sanz et al. in [22]. This
proposal was oriented to software implementation and presents an adaptive
method that splits the corresponding fuzzy motion detector into 1D filters and
linear simulation functions. Additionally, the involved saturation parameters
were on-line adjusted taking into account the global frame motion.

Our proposal is inspired by it but it improves its performance and reduces its
cost considerably. In order to facilitate the understanding of the FMA, let us
first describe it briefly.

The luminance function of a video sequence is denoted by a three dimen-
sional function I(x, y, t) where x and y are the cartesian co-ordinates of the
pixels in every frame, and t is the field number in the sequence. As images
are digitized in pixels, x, y and t are discrete variables defined over natural
numbers. Initially, our case of study is a monochromatic video signal but the
procedure is easily extended to color image, considering the luminance of the
joint RGB signal and applying the obtained correction to each one of the RGB
components.

As temporal method, field insertion operation is chosen, which can be ex-
pressed as follows:

IT (x, y, t) = I(x, y, t− 1) (1)

while line averaging is selected as spatial method, which is expressed as:

IS(x, y, t) = (I(x, y − 1, t) + I(x, y + 1, t))/2 (2)

In this way, the luminance of the pixels of the missing lines will be calculated
and adapted to local motion, as follows:

I(x, y, t) = (1− γ(x, y, t)) · IT (x, y, t) + γ(x, y, t) · IS(x, y, t) (3)

where γ(x, y, t) is a value in the interval [0,1] which represents an estimation
of current motion in the pixel (x, y) and is obtained as the consequent of a
set of fuzzy rules for motion estimation. Then, as higher is the motion (higher
value of γ(x, y, t)), higher is the weight of spatial interpolation over temporal
interpolation and vice-versa.

4

small

!"#$"%&'("#)

)))))*+,-.-'/)

0)

1)

2) 3)

!)

large

Fig. 2. Fuzzy partition composed by linguistic terms ‘small’ and ‘large’.

The rules of FMA for getting γ(x, y, t) take the frame difference signal as the
input space. The frame difference signal is defined as:

H(x, y, t) = |(I(x, y, t+ 1)− I(x, y, t− 1)| /2 (4)

which denotes the variation in the luminance of every pixel.

The set of rules proposed in FMA for motion detection has the following
meaning:

(1) When the frame difference signals in the neighborhood of the current
pixel is small, the consequent states there is no motion present.

(2) When there are large frame difference signal only at left side of the current
pixel, the consequent still states there is no motion present.

(3) When there are large frame difference signal only at right side of the
current pixel, the consequent still states there is no motion present.

(4) When there are large frame difference signals at both sides of the current
pixel, the consequent states there is motion present.

(5) When the frame difference signal at the current pixel is large, the conse-
quent also assumes there is motion present.

where ‘frame difference’ is a linguistic variable whose values, small and large,
are represented by the fuzzy sets depicted in Fig. 2. Furthermore, the use
of piece-wise linear functions will ease the hardware implementation of the
algorithm.

These rules are also executed in the upper and lower lines of the previous field
in order to consider a rectangular window around the current pixel. The final
value of γ(x, y, t) is obtained after applying a defuzzification process, which is
expressed as follows:

γ(x, y, t) =
π(M(x,y,t)=true)

π(M(x,y,t)=true) + π(M(x,y,t)=false)

(5)

where πM(x,y,t)=true and πM(x,y,t)=false are defined as the combined plausibility

5

Table 1
Fuzzy rule set for 2 neighbors at each side of the current pixel

Rule Antecedents Consequent

1. (H(x+2,y,t) is small) AND (H(x+1,y,t) is small) AND

(H(x,y,t) is small) AND (H(x−1,y,t) is small) AND

(H(x−2,y,t) is small) M(x,y,t)=false

2. (H(x+2,y,t) is small) AND (H(x+1,y,t) is small) AND

(H(x,y,t) is small) AND ((H(x−1,y,t) is large) OR

(H(x−2,y,t) is large)) M(x,y,t)=false

3. ((H(x+2,y,t) is large) OR (H(x+1,y,t) is large)) AND

(H(x,y,t) is small) AND (H(x−1,y,t) is small) AND

(H(x−2,y,t) is small) M(x,y,t)=false

4. ((H(x+2,y,t) is large) OR (H(x+1,y,t) is large)) AND

((H(x−1,y,t) is large) OR (H(x−2,y,t) is large)) M(x,y,t)=true

5. H(x,y,t) is large M(x,y,t)=true

of the presence or absence of motion respectively, as follows:

π(M(x,y,t)=true) = max(M(x,y,t)=true,M(x,y−1,t−1)=true,M(x,y+1,t−1)=true) (6)

π(M(x,y,t)=false) = min(M(x,y,t)=false,M(x,y−1,t−1)=false,M(x,y+1,t−1)=false) (7)

M(x,y,t)=true and M(x,y,t)=false are defined as the consequents that state ‘true’
and ‘false’ motion respectively, and are calculated by combining the activation
degree, αi, of the corresponding rules as follows:

M(x,y,t)=false = max(α1(x, y, t), α2(x, y, t), α3(x, y, t)) (8)

M(x,y,t)=true = max(α4(x, y, t), α5(x, y, t)) (9)

The complexity of FMA approach depends on the number of the considered
pixels at each side of the current pixel in the same line. If this number is
denoted with the parameter K, the total number of antecedentes in the five
rules are 2K + 1. FMA rules when the parameter K equals two are shown in
Table 1.

Van de Ville et al. described the efficiency of their proposal by de-interlacing
several sequences [15]-[17]. After analyzing different values of parameters K,
a and b (a and b define the transition zone of the membership functions in

6

Fig. 2), they conclude, and we have corroborated, that the best results and,
therefore, the lower errors 2 , are obtained for K =2 and 0 ≤ a ≤ 1; 6 ≤ b ≤ 9.

FMA introduces important advantages over other conventional motion adap-
tive methods but it implies a high computational complexity since it requires
for its implementation a high number of max-min operators, a high number
of fuzzification processes (as many as the number of antecedents in the rules),
and one division as shown the expression in (5). Our proposal is inspired by
FMA, but it considerably reduces its computational cost and introduces two
improvements to achieve a superior performance. Firstly, the use of convolu-
tion techniques allows the system to evaluate better the presence of motion in
contrast to the use of max-min norms in FMA, which forces the system only
to consider the extreme values. And the second one is to assign weights to the
values of differences matrix. It seems logical to assign a higher value to pixels
that are closer to the current pixel location.

3 Inference by convolution

This section describes our proposal which applies convolution techniques to
perform rule inference. This is not a procedure for this particular application
but it is rather a general method specially useful in the case of a high number of
antecedents. Furthermore, convolution is a natural and very frequent operation
in signal processing, and a great effort has been dedicated to increase efficiency
for its execution, both at hardware and software levels. Besides, convolution
can be computed as a product in the frequency space, getting great efficiency
by using Fast Fourier Transform (FFT) algorithms.

In the case of two-dimensional signals, discrete convolution c(x,y) of two func-
tions w(x,y) and s(x,y) is defined as:

c(x, y) = w(x, y) ∗ s(x, y) =
∞∑

n=−∞

∞∑
m=−∞

w(m,n) · s(x−m, y − n) (10)

If we choose for w(x,y) in (10) a rectangular function of height 1, that is:

2 In order to be able to compare the efficiency of different algorithms and configu-
rations, quantifying image quality is carried out considering the Mean Square Error
(MSE) between original image and processed one. Since it is a standard measure-
ment and considers all the image pixels.

7

H(x,y,t-1) H(x,y,t) D(x,y,t)

Fig. 3. Line insertion in the differences matrix

w(x, y) = 1, if

−Kl ≤ x ≤ Kr

−Lu ≤ y ≤ Ld

else w(x, y) = 0

(11)

the convolution of s(x,y) and w(x,y) in (11) would be the addition of all the
elements of s(x,y) within the window. Furthermore, if the height of w(x,y) is
changed to 1/[(Kl+Kr+1)×(Lu+Ld+1)], the result of the convolution would
be the mean value of s(x,y) within the window.

Consequently, all the union operations in the rules may be globally imple-
mented by means of convolution. Intersection operations must be products in
this case. To convert products into convolutions is feasible by application of De
Morgan’s laws, since intersections are converted into unions. That is, convo-
lution of a window on the complementary of the matrix of differences H(x,y,t)
will provide an estimation of not-motion within this particular window.

According to this idea, the inference mechanism required by the FMA algo-
rithm may be implemented by a bi-dimensional convolution. As it was de-
scribed previously, the algorithm estimates motion by evaluating pixel dif-
ferences in vertical and horizontal directions. Our proposal realizes a bidi-
mensional convolution using the global differences matrix (D(x, y, t)) which
includes all the lines of the current field (H(x, y, t)) plus the lines from the
previous field (H(x, y, t − 1)). This matrix (D(x, y, t)) is calculated by inter-
weaving as shown in Fig. 3.

D(x, y, t) = H(x, y, t) +H(x, y, t− 1) (12)

Although our proposals could consider any window size, three lines are used
since this size offers a good trade-off between complexity and performance.
Furthermore, FMA algorithm works with three lines and the same number of
lines has to be used in order to establish a fair comparison.

8

3.1 The approach based on convolution with five rules

This approach calculates the motion-adaptative parameter γ(x, y, t) in equa-
tion (5). Let us consider, for example, the second rule of FMA (see Table 1). It
is evaluated by using the same neighbors that were used by FMA algorithm,
that is, a window size of 3x5. Since the first part of the antecedent is the esti-
mation of motion small in the right side of the window, including the current
pixel, we will make convolution (properly speaking, correlation) of the global
differences complementary matrix (D’(x,y,t) that evaluates ‘not motion’) as
follows:

C2a =
1

9

0 0 1 1 1

0 0 1 1 1

0 0 1 1 1

 ∗D
′
(x, y, t) (13)

where the factor 1/9 is to make averaging instead of addition. Since the val-
ues of the global differences matrix are restricted in the interval [0,1], the
complementary of the matrix of differences will be made as follows:

D
′
(x, y, t) = TOP −D(x, y, t) (14)

where TOP is the maximum value of the differences matrix. For example, if
luminance is encoded with eight bits, the maximum value is 255. The other
part of the antecedent of the second rule is the estimation of motion large in
the left part of the convolution window (excluding the current pixel), expressed
by using the following equation:

C2b =
1

6

1 1 0 0 0

1 1 0 0 0

1 1 0 0 0

 ∗D(x, y, t) (15)

Now, the consequent of this second rule is obtained by choosing an aggrega-
tion operator for making intersection of C2a and C2b. For example, minimum,
product, averaging in the form of geometric mean, etc... Any case, the mem-
bership function to make fuzzification must be suitable for the chosen aggre-
gator. This procedure is extended to the rest of the rules used by the FMA
algorithm (see Table 2). For instance, the third rule will be implemented with

9

Table 2
Fuzzy rule set for 2 neighbors at each side of the current pixel

Rule Antecedents Consequent

1. (C1 = 1
15 (11111; 11111; 11111) ∗D′

(x, y, t)) is large M(x, y, t) = false

2. (C2a∗D′(x, y, t)) AND C2b∗D(x, y, t)) is large M(x, y, t) = false

3. (C3a∗D(x, y, t) AND C3b∗D′(x, y, t)) is large M(x, y, t) = false

4. (C4 = 1
12 (11011; 11011; 11011) ∗D(x, y, t)) is large M(x, y, t) = true

5. (C5 = 1
3 (00100; 00100; 00100) ∗D(x, y, t)) is large M(x, y, t) = true

the following convolutions:

C3a =
1

6

0 0 0 1 1

0 0 0 1 1

0 0 0 1 1

 ∗D(x, y, t) (16)

C3b =
1

9

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

 ∗D
′
(x, y, t) (17)

The value of γ(x, y, t) is calculated by applying the expression in equation
(5), but the values of plausibility are evaluated by combining the activation
degree, αi, of the rules in Table 2 as follows:

π(M(x,y,t)=true) = α4 · α5 (18)

π(M(x,y,t)=false) = α1 · α2 · α3 (19)

3.2 Single Convolution algorithm

Instead of considering uniform weights within the matrix to perform convo-
lution, as shown in expressions (13), (15)-(17), it is possible to use variable
weights without additional computational cost. This provides to give more sig-
nificance to some positions with respect to the others, for example, it seems
logical to give more weight to those positions closer to the current pixel.

Taking into account their linguistic meaning, all the FMA rules can be sum-
marized in only one sentence: if there is a large frame difference at both sides

10

X

Y

C

Fig. 4. Model of matrix C for the algorithm of single convolution for single convo-
lution

Table 3
Fuzzy rule set for 2 neighbors at each side of the current pixel

Rule Antecedents Consequent

1. (C ∗D(x, y, t)) is small M(x, y, t) = false

2. (C ∗D(x, y, t)) is large M(x, y, t) = true

of the current pixel or there is a large frame difference in the current pixel
then motion is present. As a consequence, only the 4th and 5th FMA rules are
evaluated. To perform both rules by using a unique bi-dimensional convolu-
tion, a new convolution mask is proposed. Fig. 4 shows a model to illustrate
the shape of the proposed matrix called C. This matrix considers neighbors
all around the current pixel and the weight of each neighbor depends on the
distance to the current pixel.

With this new algorithm the number of rules is reduced to only two as shown
the Table 3, but only the second rule that corresponds to the presence of
motion is calculated to evaluate γ(x, y, t) since, as mentioned above, the fuzzy
concepts small and large are complementary (see Fig. 1) :

γ(x, y, t) = π(M(x,y,t)=true) = α2 (20)

The improvement in terms of computational efficiency is indubitable since
the number of antecedents and rules of the algorithm have been considerably
reduced. The improvement in execution time is difficult to quantify since it
always depends on the degree of quality of the designed software, the effi-
ciency of the used compilers, and, of course, the employed hardware. At this
moment, all our computer programs have been coded in Matlab. However,
our measurement about execution time are extremely cautious, since it is very
hard to estimate real computing power when a high level language is being
used. Any case, for a sequence of twelve frames, Matlab executes the algorithm

11

!"

!

"

!"

!

"

#$%&$'()*$%

!"#$$

!"

!

"

#$%&$'()*$%

$#%&'

+,-

+.-

!

"!

/!

0!

1!

2!
2! "!!

3+45657-

"

!

6 3+45657-

!

Fig. 5. Loss of information with the process of fuzzification

of Van de Ville et al. in 138 s (seconds), the algorithm that uses convolution
techniques with five rules in 4.8 s, and the single convolution algorithm in 1.4
s. The elimination of loops by working on a two dimensional matrix and the ef-
ficiency of convolution makes the developed algorithms to give rise additional
improvements. Concerning to the employed hardware, if execution is made
by general purpose processors, the execution time is directly related to the
computational power of the processor. However, efficiency can be drastically
improved by means of specific hardware as it is detailed in Section 5.

One important aspect of the procedure is the step in which the fuzzification
is applied. In FMA algorithm, fuzzification is made every time an input vari-
able is introduced in the antecedents of any rule (1-5). That is, each value
of the matrix of differences is initially evaluated with certain fuzzy sets to
determine the membership degree of that value to small or large (see Fig 2).
However, each time a fuzzification operation is made, certain loss of informa-
tion is produced as illustrated in Fig. 5. In principle, there is no restriction to
select the shape of the membership functions and other nonlinear fuzzy parti-
tions could be considered. Although the hardware complexity of our system is
considerable reduced if the analysis is limited to the linear ones. This is a rea-
sonable hypothesis in low-complexity motion detection systems for real-time
video applications

A more accurate result can be achieved if the fuzzification process is performed
after a global estimation of all the rules, that is, after calculating the convo-
lution, as employed by our proposals. Therefore, the final value of γ(x, y, t)
is the result of fuzzifying the global estimation and, in general terms, we can
say that the input variables of the fuzzy system is not the global differences
matrix, but the global differences matrix once convolved with C.

The quality of both proposals have been tested with the video sequence Sales-
man, also used as a benchmark sequence in [15]-[17]. Fig. 6 shows a small por-
tion of a de-interlaced frame of this sequence after applying the procedures of

12

ORIGINAL LINE AVERAGE FIELD INSERTION

MSE=29.84 MSE=14.95

MSE=10.91 MSE=8.97 MSE=8.88

FMA CONVOLUTION 5
RULES

SINGLE
CONVOLUTION

Fig. 6. Comparative results of the developed algorithms

line average, field insertion, FMA algorithm, and the developed algorithms of
convolution techniques with five rules and single convolution. Measurements
by means of mean squared error (MSE) have been indicated over the images
in Fig. 6 for this field of the sequence. Line average gives a MSE of 29.84, field

FMA
CONVOLUTION

5 RULES
SINGLE

CONVOLUTION

Fig. 7. Comparison about motion estimation

13

insertion 14.95, while the FMA algorithm gives 10.91, convolution technique
with 5 rules 8.97, and single convolution technique 8.88. Finally, the diagrams
of motion estimation in Fig. 7 show the major discrimination capacity of the
proposed algorithms. From the simulation results obtained by both proposals,
we conclude that the single convolution algorithm offers the most attractive
solution between the quality of the resultant interpolated images and com-
plexity, and this is why it has been selected to extend our study in Section
4.

4 Comparison with conventional de-interlacing algorithms: quality
and complexity

Before presenting data, it is necessary to indicate that the quality of results de-
pends on the kind of image, specially in what concerns to dynamical features.
Other subject is that all the motion adaptive algorithms under comparison
have a great deal of possible variants, as those relative to logical fuzzy oper-
ators used in the inference process previously mentioned. At the same time,
all of them are dependent on adjusting parameters, as the shape of fuzzy sets
large and small, size of window, location and weighting in the matrices to
make convolution and so on.

Table 4 shows the average MSE obtained when de-interlacing 50 fields of seven
video sequences with three different formats: TV(720x576), CIF(352x288) and
QCIF(176x144). These are standard video sequences that have been widely
used as benchmarks in video processing applications. The results shown in
Table 4 correspond to the proposed algorithm using the single convolution
with the following matrix of coefficients:

C =

1 2 3 2 1

1 3 5 3 1

1 2 3 2 1

 (21)

The proposed algorithm has been compared with other conventional algo-
rithms [1]: four spatial methods such as line doubling, line averaging and the
conventional ELA are used. ELA was reported in [23] and it is a well-known
edge adaptive de-interlacing algorithm, which consists of applying the average
of the luminance values along the direction with the maximum correlation.
The most adequate direction is selected by evaluating the absolute value of
luminance differences in 3+3 (ELA 3+3) or in 5+5 (ELA 5+5) taps. A re-
cent modified version of the ELA algorithm is presented in [24] to enhance
de-interlacing in horizontal edges. Furthermore, the following de-interlacing

14

techniques are selected: the simplest temporal de-interlacing algorithm (field
insertion), two vertico-temporal methods with two and three fields [1] 3 ; an
implicit median-based technique that uses a three-point VT median lter; a

3 These algorithms are implemented in many consumer equipments since they offer
a good trade-off between complexity and performance.

Table 4
Average MSE for different de-interlacing methods

Sequence Tokyo Paris Trevor Salesman News Mother

Format TV CIF CIF CIF QCIF QCIF

Line doubling 123.33 283.19 51.05 68.87 197.27 42.86

Line averaging 46.46 139.98 20.37 28.84 77.28 16.56

ELA 3+3 64.72 182.01 25.23 40.01 141.27 18.79

ELA 5+5 91.21 223.39 30.34 62.52 166.37 37.42

Enhanced ELA [24] 61.95 178.68 25.23 37.85 123.33 16.41

Field insertion 14.59 67.15 23.82 15.706 31.62 15.81

VT 2fields 13.46 54.96 14.19 14.42 18.49 7.11

VT 3fields 19.95 47.43 12.504 13.12 17.62 5.29

Median technique [25] 20.94 61.11 18.62 14.19 28.97 9.21

Van de Ville et al. (FMA) 21.13 31.71 18.83 11.24 21.88 7.31

MC field insertion [1] 4.69 23.17 12.64 9.57 14.86 6.93

S.Convolution 11.01 19.27 13.93 9.64 11.53 4.22

DE-INTERLACING RESULTS: Salesman sequence

7

14

21

28

35

3 8 13 18 23 28 33 38 43 48 53
Frame number

M
S

E
E

Line
averaging

 Field insertion

 FMA

S.convolution

MSE

Frame number

Fig. 8. MSE values obtained by the Salesman sequence

15

MC algorithm called ‘MC field insertion’; and, finally, the proposal of Van de
Ville et al.

As it can be seen in Table 4, the proposed algorithm achieves the lowest
MSE errors in three of the six sequences (Paris, News, Mother). The MC
algorithm works better in two sequences (Tokyo and Salesman), whereas the
VT technique with three fields slightly improves the results in the Trevor
sequence.

For the Salesman sequence, the MSE value for each de-interlaced frame is
shown in Fig. 8. This graph also proves the advantage of motion adaptive
proposals that considerably reduces the error values by combining the spatial
(line average) and the temporal (field insertion) techniques.

Complexity is analyzed using two figures of merit: 1) hardware resources to
store luminance values of the pixels involved in the calculation; and 2) prim-
itive operations (POs). Table 5 shows the storage devices that are required
by each de-interlacing algorithm. The motion adaptive algorithms require field
memories to evaluate the presence of motion. Specifically, FMA approach uses
two field memories to evaluate the five rules for the current pixel and another
more to store the consequents of the pixels in the previous field. To calculate
the convolution, the single convolution proposal requires three fields mem-
ories. The second figure of merit is estimated by evaluating the number of
POs to calculate an interpolated value. Addition, subtraction, shifting, abso-
lute difference and sign function are considered as operation of complexity 1
PO, while multiplication and division are considered with complexity 2 POs.
As can be seen in Table 5, the proposal considerably reduces the number of
POs in comparison with the FMA approach, and slightly increases the POs
of vertico-temporal algorithms. In terms of computational cost, the heaviest
technique is the MC algorithm. The calculation of the number of POs is not
included in Table 5 since it depends on the strategy used to calculate the mo-
tion vector and the size of the block processing. For instance, the implemented
version of the MC field insertion used the 3-DRS algorithm described in [26]
and it requires 529 POs.

Between simple linear de-interlacing algorithms and complex motion-compensated
ones, motion-adaptive algorithms represent a suitable midpoint. The analysis
of de-interlacing results shows the efficiency of the proposed motion- adaptive
algorithm. Furthermore, it reduces the complexity of the FMA algorithm up
to a percentage of 56% in terms of POs.

16

Table 5
Analysis of storage resources and primitive operations (POs) required by each de-
interlacing algorithm

Resources Complexity

De-interlacing Line Field Register POs

Algorithm buffer memory

Line doubling - - - -

Line averaging 1 - - 2

ELA 3+3 1 - 2 11

ELA 5+5 1 - 4 20

Enhanced ELA [24] 1 - 2 16

Field insertion - 1 - -

VT 2fields 2 1 - 16

VT 3fields 2 2 - 12

Median technique [25] 1 1 - 11

Van de Ville et al. (FMA) 2+1 2 4 103

S.convolution 1 3 4 45

5 Hardware implementation

Hardware implementation of the single de-interlacing algorithm has been de-
veloped with the tool XSG (Xilinx System Generator) [27]. This tool con-
sists of a Simulink library, called Xilinx blockset, and software to translate a
Simulink model into a hardware realization of the model described in VHDL
language. XSG maps the system parameters (defined like mask variables
in Xilinx blockset blocks) into entities, architectures, ports, signals, and at-
tributes in the hardware realization.

Three different system architectures have been considered to implement the
single convolution de-interlacing algorithm. They differ at the level of paral-
lelism employed to implement the convolution. The first one is a completely
parallel architecture in which thirty values of luminance, stored in memory,
are necessary to calculate the luminance of each pixel in the new inserted line
(Fig. 9(a)). As a result, a value is obtained for the pixel in a clock period.
The second design (see Fig. 9(b)) employs a mixed architecture which carries
out the operations in sequential form for the five values of each row of the dif-
ferences matrix, whereas operations from different columns of the difference

17

H(x-2,y,t)

H(x-1,y,t)

H(x,y,t)

H(x+1,y,t)

H(x+2,y,t)

H(x-2,y+1,t+1) H(x-2,y+1,t+1)+

+2H(x-2,y+1,t+1)+

+3H(x-2,y+1,t+1)+

+2H(x-2,y+1,t+1)+

+H(x-2,y+1,t+1)

H(x-1,y+1,t+1)

H(x,y+1,t+1)

H(x+1,y+1,t+1)

H(x+2,y+1,t+1)

FUZZIFICATION

CONVOLUTIONH(:,:,:)

2nd LINE

CONVOLUTION
H(:,y,t)

1st LINE

CONVOLUTION
H(:,y-1,t)

3rd LINE

CONVOLUTION
H(:,y+1,t)

(a)

(b)

(c)

H(x-2,y-1,t+1)

H(x-1,y-1,t+1)

H(x,y-1,t+1)

H(x+1,y-1,t+1)

H(x+2,y-1,t+1)

H(x-2,y-1,t+1)+

+2H(x-2,y-1,t+1)+

+3H(x-2,y-1,t+1)+

+2H(x-2,y-1,t+1)+

+H(x-2,y-1,t+1)

H(x-2,y,t+1)+

+3H(x-2,y,t+1)+

+5H(x-2,y,t+1)+

+3H(x-2,y,t+1)+

+H(x-2,y,t+1)

(1-γ)·IT+γ·IS

FUZZIFICATION

(1-γ)·IT+γ·IS

(1-γ)·IT+γ·IS

FUZZIFICATION

Fig. 9. (a) Parallel, (b) mixed and (c) sequential implementation architectures de-
veloped with XSG.

matrix are realized in parallel. A result is obtained after five clock periods in
this case. The third design uses a totally sequential architecture (Fig. 9(c)).
In this case a new value of luminance is calculated after fifteen clock periods.

Fuzzification process is performed after convolution in these three architec-
tures. This strategy provides two advantages: firstly, fuzzification always im-
plies a lost of information, and the idea is to process convolution without
information loss. Secondly, this strategy simplifies the architectures since a
unique fuzzification block is used independently of the selected architecture
(see Fig. 9).

To give a physical medium to the different hardware implementation architec-
tures of the algorithm, a RC100 Celoxica board has been employed. This board
is specially suitable to implement algorithms for video processing applications.
It includes a medium size FPGA from Xilinx called Spartan II. Since the al-
gorithm does not involve a huge computational cost, this FPGA should be
adequate to achieve real-time applications. Furthermore, the RC100 includes
a XCR3128XL CPLD and two 36-bit x 256k location independent synchronous
RAM banks, in which three correlative fields are stored, which are necessary
for the calculus of the algorithm.

The system includes a CVBS video input and a video decoding chip (SAA7111
from Philips), enabling the FPGA to capture and decode NTSC and PAL video
sources. All control signals are directly mapped with the pins of the FPGA.
Finally, the board has the ability to generate 24-bit color VGA output to be
displayed on a monitor. The board features a 24-bit Video DAC to convert

18

the digital output from the FPGA to the appropriate analog signals on the
VGA connector.

Celoxica provides a development environment which uses the Handel-C lan-
guage for hardware description. Thus, it incorporates a library of Handel-C
macros and functions designed to make it possible to start producing Handel-
C designs right away on the RC100 Celoxica board [28]. This library includes
macros for accessing each bank of SRAM and video drivers for the D/A con-
verter which provides the VGA output and for the video decoder SAA7111.

The high level of our design is a description in Handel-C of the behavior of
the system. The generated code describes the capture of video signal through
the CVBS video input and the writing process of data stored in memories.
The reading process from SRAM provides the input to a black box defined in
Handel-C which integrates the design of the de-interlacing algorithm described
by XSG. Data of the new lines are ordered in a process to be able to display
the data on a monitor through the VGA output. Fig. 10(a) shows a block
diagram with the processes implemented on the FPGA.

Both HDLs descriptions are synthesized individually. The VHDL description
obtained from XSG is synthesized with FPGA Express Compiler II from
Synopsys. On the other hand, the Handel-C description is synthesized with
DK1, the software tool provided by Celoxica. Both designs are incorporated at
a post-synthesis level when the implementation of the global system is carried
out. Fig. 10(b) shows a block diagram of the tools used in the design.

CAMERA

CVBS INPUT

VIDEO CHIP

READ
INTERLACED

DATA

WRITE
DATA

READ
DATA

INTERFACE
WITH XSG

DESIGN

DISPLAY
DATA ON
SCREEN

MONITOR

VGA OUTPUT

DAC

SRAM0 SRAM1 RC100
CELOXICA

SPARTAN2 XC2S200

(a)

SYSGEN

FPGA
COMPILER

II

FPGA

XILINX
TOOLS

DK1
CELOXICA

MODELSIM

.edf

.vhd

.edf

.bit

.cTestbench.vhd

VHDL
Description

Synthesis
Synthesis

Implementation

(b)

Fig. 10. (a) Block diagram of processes implemented in the FPGA. (b) Tools used
in the development of the design.

19

DE-INTERLACING RESULTS: Salesman sequence

8

9

10

11

12

13

14

15

16

17

3 8 13 18 23 28 33 38 43 48

Frame number

M
S

E
E

Hardware (16-bits)

Proposed (64-bits)

Hardware (8-bits)
MSE

8-bits

16-bits

64-bits

Fig. 11. MSE values obtained by several implementations of the single convolution
algorithm.

5.1 Implementation results

The different alternatives for implementing the single convolution de-interlacing
algorithm can be evaluated from results obtained in the Simulink environment
or by modeling the VHDL description generated by XSG with the ModelSim
tool from Mentor Graphics. MSE results achieved by the XSG designs for the
Salesman sequence is shown in Fig. 10.

As can be seen from the results in Fig. 10, MSE value is higher for the hardware
implementations since the algorithm described in Matlab works with double-
precision numbers (64-bits) whereas XSG models has been implemented with

Table 6
Implementation results of the designs generated with XSG

FPGA SPARTAN2 xc2s200

XSG Design No. slices No. slices Processing time

XSG design Global design (ns) / (MHz)

Parallel 8 bits 588(25%) 1906(81%) 36/27.7

Parallel 16 bits 894(38%) 2216(94.2%) 39/25.6

Mixed 8 bits 196(8.3%) 1514(64.4%) 115/8.7

Mixed 16 bits 381(16.9%) 1698(72.2%) 125/6.9

Sequential 8 bits 98(4.16%) 1424(60.5%) 345/2.8

Sequential 16 bits 233(9.9%) 1550(65.9%) 390/2.6

20

integer numbers of 8 and 16 bits. Obviously, the implementation with 16-bits
achieve lower errors than the implementation with 8-bits.

Implementation results in terms of device utilization are shown in Table 6. An-
alyzing these results, the number of slices for the sequential design is obviously
lower than the others and the parallel design requires the highest number of
devices. Table 6 also includes the results obtained in terms of the occupational
level of the FPGA when the global design written in Handel-C is implemented.

The Philips SAA7111 video decoding chip on the RC100 board is controlled
using the I2C bus in-system communication protocol. It provides a data rate
of 13.5 MHz and thus, this forces the system to compute a new interpolated
pixel value at 27 MHz. According to the timing results in Table 6, the suitable
architecture for a real-time implementation in this hardware platform would
be the 8-bit parallel one.

6 Conclusions

A fuzzy de-interlacer for video sequences proposed by Van de Ville et al. has
been the inspiration to propose other algorithms for video de-interlacing based
on convolution techniques.

Motion estimation is crucial to adjust the interpolation technique. The level
of motion is evaluated with a fuzzy system and its performance depends on
the quality of the input variables. A global matrix that considers inter and
intra-field pixel differences is used to obtain robust input variables.

The developed techniques consist on making convolution of the input variables
with a selected function that gets a weighted averaging among them, carrying
out a kind of fuzzy union. Fuzzy intersection may be computed in a similar
way and with similar level of complexity, by the application of convolution
techniques.

The developed de-interlacers are essentially two: one of them makes use of
the same set of rules of the starting algorithm and applies convolution in the
inference. The other takes advantage from the fact that the function to make
convolution is able to configure a weighting scheme among the input variables
and simplifies the set of rules in only one convolution (single convolution algo-
rithm). This single convolution approach has been implemented on a FPGA
development board using the Xilinx’s System Generator tool in combination
with the Handel-C development environment provided by Celoxica. Three dif-
ferent system architectures, which differ at the level of parallelism employed
to implement the convolution, have been considered. Timing results prove

21

that an 8-bit parallel implementation of the algorithm is capable of provide
real-time operation for this hardware platform.

The quality of the results are better than these obtained by the starting algo-
rithm. However, the most significant improvement has been the reduction of
the computational complexity.

References

[1] G. de Haan - De-interlacing. Chapter book of Digital Video Post Processing, pp.
185-201, University Press Eindhoven, Sep. 2006.

[2] Y-L. Chang, S-F. Lin, C-Y. Chen, L-G. Chen - Video de-interlacing by adaptive
4-field global/local motion compensated approach. IEEE Trans. on Circuits and
Systems for Video Technology, vo. 15, no.12, pp 1569-1582, 2005.

[3] G. Jeon, M. Anisetti, V. Bellandi, J. Jeong - Fuzzy rule-based edge-restoration
algorithm in HDTV interlaced sequences. IEEE Trans. on Consumer Electronics,
vol. 53, no.2, pp 725-731, May 2007.

[4] G. Jeon, R. Lee, D. Kim, J. Lee, J. Jeong - Weighted fuzzy filter on interlaced-
to-progressive conversion. Proc. IEEE International Conference on Multimedia
and Expo, pp 173-176, Apr. 2008.

[5] G. Jeon, Y. Fang, K. Lee, M. Y. Jung, R. Lee, J. Jeong - Video deinterlacing
algorithm based on fuzzy reasoning with angle extraction approach. Studies in
Computational Intelligence, vol. 226, pp. 369-379, 2009.

[6] G. Jeon, M. Anisetti, V. Bellandi, E. Damiani, J. Jeong - Designing of a
type.2 fuzzy logic filter for improving edge-preserving restoration of interlaced-
to-progressive conversion. Information Sciences, vol. 179, no. 13, pp. 2194-2207,
Jun. 2009.

[7] G. Jeon, M. Anisetti, J. Lee, V. Bellandi, J. Jeong - Concept of linguistic variable-
based fuzzy ensemble approach: Application to interlaced HDTV sequences.
IEEE Trans. on Fuzzy Systems, vol. 17, no. 6, pp. 1245-1258, Dec. 2009.

[8] S.-J. Park, G. Jeon, J. Jeong - Deinterlacing algorithm using edge direction
from analysis of the DCT coefficeint distribution. IEEE Trans. on Consumer
Electronics, vol. 55, no. 3, pp.1674-1684, 2009.

[9] A. M. Bock - Motion adaptive standards conversion between formats of similiar
field rates. Signal Processing: Image Communication, vol. 6, no. 3, pp. 275-280,
Jan. 1994.

[10] C. Stiller, S. Kammel, J. Horn and T. Dang - The computation of motion.
Digital Image Sequence Processing, Compression and Analysis. Todd R. Reed
Ed. CRC Press, 2005.

22

[11] D. Wang, A. Vincent, P. Blanchfield - Hybrid de-interlacing algorithm based
on motion vector reliability. IEEE Trans. on Circuits and Systems for Video
Technology, vol.15, no. 8, pp. 1019-1025, 2005.

[12] H. C. Ting, H. M. Hang - Spatially adaptive interpolation of digital images
using fuzzy inference. Proc. SPIE, vol. 2727, pp 1206-17, Mar. 1996.

[13] N. Shezaf, H. Abromov-Segal, I. Sutskoner, R. Bar-Sella - Adaptive low
complexity algorithm for image zooming at fractional scaling ratio. Proc. 21st

IEEE Convention of the Electrical and Electronics Engineers, pp 253-256, Tel
Aviv (Israel), Apr. 2005.

[14] T. Aso, N. Suetake, T. Yamakawa - A code-reduction technique for an image
enlargement by using a sum-based fuzzy interpolation. Proc. 9th Int. Conf. on
Neural Information Processing (ICONIP), vol. 3, pp 711-721, Torino (Italy), Aug.
1989.

[15] D. Van de Ville, B. Rogge, W. Philips, I. Lamahieu - De-interlacing using
fuzzy-based motion detection. Proc. Int. Conf. on Knowledge-Based Intelligent
Information Engineering Systems, 1999.

[16] D. Van de Ville, B. Rogge, W. Philips, I. Lamahieu - Evaluation of several
operators for fuzzy-based motion adaptive de-interlacing. Proc. of the PRORISC
IEEE Benelux Workshop on Circuits, Systems and Signal Processing, pp 535-544,
Nov. 1999.

[17] D. Van de Ville, R. Van de Wall, W. Philips and I. Lamahieu - Motion
adaptive de-interlacing using fuzzy logic. Proc. of International Conference on
Information Processing and Management of Uncertainty in Knowledge-Based
Systems(IPMU), pp 1989-1996, Jul. 2002.

[18] M. Mancuso, V. D’Alto, R. Poluzzi - Fuzzy edge-oriented motion-adaptive noise
reduction and scanning rate conversion. Proc. IEEE Asia-Pacific Conference on
Circuits and Systems (APCCAS), pp 652-656, Dec. 1994.

[19] F. Michaud, C. T. Le Dinh, G. Lachiver - Fuzzy detection of edge-direction for
video line doubling. IEEE Trans. on Circuits and Systems for Video Technology,
vo. 7, no. 3, pp 539-542, Jun. 1997.

[20] H. Jiang, D. Huu, E. Tinyork and M. Vasquez - Motion Adaptive De-interlacing.
United States Patent (US 6,459,455), Oct. 2002.

[21] G. Jeon, J. You, J. Jeong - Weighted fuzzy reasoning scheme for interlaced
to progressive conversion. IEEE Trans. on Circuits and Systems for Video
Technology, vol. 19, no. 6, pp 842-855, Jun. 2009.

[22] A. Sanz, F. Fernández, J. Gutiérrez-Ŕıos, G. Triviño, A. Sánchez, J.C.
Crespo, A. Mazadiego - Video deinterlacing using adaptive fuzzy filters. Applied
Computational Intelligence - Proc. of the 6th International FLINS Conference,
pp 397-402, 2004.

23

[23] T. Doyle, M. Looymans - Progressive scan conversion using edge information.
Signal Processing of HDTV, II. L. Chiariglione ED., Elsevier Science Publishers,
pp.711-721, 1990.

[24] H. Y. Lee, J. W. Park, T. M. Bae, S. U. Choi, Y. H. Ha - Adaptive scan rate
up-conversion system based on human visual characteristics. IEEE Trans. on
Consumer Electronics, vol.46, no.4, pp 999-1006, Nov. 2000.

[25] P. Haavisto, Y. Neuvo - Motion adaptive scan rate up-conversion.
Multidimensional Systems Signal Processing, no. 3, pp 113-130, 1992.

[26] G. de Haan - Motion estimation, chapter book of Video Processing, pp 221-269,
University Press Eindhoven, 2004.

[27] Xilinx - Xilinx System Generator v2.1 for Simulink User Guide.
(http://www.mathworks.com/applications/dsp comm/xilinx ref guide.pdf),
2004.

[28] Celoxica - RC100 Function Library Manual. 2002

24

