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Expansion for the Moments of a Nonlinear Stochastic Model
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We present a procedure to systematically evaluate all the moments of the Fokker-Planck equation
by expanding them in a power series in a given functiorr.ofThe expansion coefficients are easily
determined in terms of algebraic recursion relations. Applications to a linear Fokker-Planck equation, as
well as to a truly nonlinear mean-field model, whose drift coefficient exhibits a functional dependence
on the distribution function, show this formalism to be advantageous over the standard time series
expansion of the moments which is shown to be rather impractical. [S0031-9007(96)01444-5]

PACS numbers: 05.40.+j, 02.50.Ey, 02.50.—r

There is a growing literature on the study of fluctuationsabove limits, a number of approximate methods have been
in nonlinear systems far from equilibrium. Here, weintroduced in order to solve Eq. (1) numerically [2,6,7]
will deal with one of the extensively studied models, (see also a collection of references in Ref. [7]). However,
namely, the so-called mean-field model, which describes spite of the advances of even the fastest algorithms and
a system of infinitely many nonlinear coupled oscillatorscomputers, the calculation of the dynamical properties of
in the presence of an external white noise. It wasonlinear systems for all times is known to be a difficult
originally introduced by Kometani and Shimizu to study problem in statistical mechanics.
self-organization processes in biological systems such In this Letter we outline a method for systematically
as muscle contraction [1]. A more complete statistical-calculating the moments of the Fokker-Planck equation in
mechanical treatment given later by Desai and Zwanzig straightforward analytical way. To keep the presentation
[2] and by Dawson [3] pointed out its relation with simple we have avoided considering systems with many
the Weiss-Ising model. These authors also showed thategrees of freedom or the case of other nonlinearities
the combined effect of thermal noise and mean-fieldn Eqg. (1). The method explained below can be easily
interaction gives rise to a truly nonlinear Fokker-Planckmodified to cover those cases. The key point of the
equation for the probability density associated with themethod is the same as in a power series expansion
order parameter. The equation reads formalism which has been used so far in studying linear
systems [8—12] (for a recent review see Ref. [13]). One
0P (x, 1) = :Lx* + (0 — Tx — 00x(1) o¥ the unEjerIyirlg( ideas of this formalism is re[pre]:z,enting
+ Do, IP(x, 1), (1) the propagator as a power seriestin In the simplest

realization it reads
where the drift force depends upon the state of the system

through the average Px,t|y) = e™s(x —y)

x@)) = / ) dx P(x,t)x . 2 — e’U()’)g(x —y) = i Pmt_’”"
m=0 nm:

An important feature of the above model is that it shows
a genuine order-disorder phase transition. Because of
the nonlinear termd{x(z))d,P(x, t), there exists a critical
line in the parameters space such that wlizrand/or
0 are varied across this line the equilibrium distribution
bifurcates [2,4]. Below the critical line the equilibrium
is unique regardless of the initial conditions. Above the
critical line there are three equilibrium solutions, one e
unstable, and two stable ones, and agoes to infinity, (8(x) = jw dx P(x,1 | y)g(x), )
the system approaches one of the equilibria depending . diatelv obtai
upon the value ofx(0)), or, in other words, upon the ne immediately obtains
initial preparation of the system. = tm -

It is not hard to construct an approximate solution of a (g(x)) = Z gm(y) m’ gn(y) = (L7)"g(y). (5)
Fokker-Planck equation which is valid in the short time m=0
limit, e.g., by using an operator decoupling technique [5].[Equation (5) constitutes the main result of a recent
Exact results are also available in the long time limitpaper by Weiss and Gitterman [11]. Unfortunately,
when the system approaches equilibrium [4]. Beyond th¢éhese authors have only illustrated the feasibility of their

Py =L"8(x —y) = L)"8(x —y), Q)

whereL and L™ are the forward and backward Fokker-
Planck operators which are assumed to be linear and
time independent and act on theand they variables,
respectively. Applying Eqg. (3) to the average
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expansion in linear exactly solvable models. Little iswith the initial conditions

known about the convergence properties of the series, o

although our experience with similar problems [10,12,13] (x*0)) = [ dx P(x,0)x*. 9)
suggests that its utility is restricted to short times. Indeed, -

the calculations we performed with Eq. (5) on modelThe above equations can be exactly solved by expanding
systems show that the method is accurate in this limit if x*) in powers of a given function of,

one truncates the series at high enough onder M. w0

With increasings, however, the error begins to grow (x5 () = Z X" (1) (10)
very rapidly, and beyond somg,.x which is usually m=0

noticeably smaller than unity, the expansion fails to . . .
produce convergent results with a finite number of termj;ere’ we restrict ourselves to the same functiér) as in
taken into account. The reason for this is that any finit efs. [12,13],

truncation of the series in Eg. (5) tends to plus or minus
infinity depending on the sign @fy;. The same is true, in
one sense or another, to many other different Taylor-lik

expansions available in the literature [8~10]. is also possible. This particular time dependence has been

Drozdov has recently presented an alternative poW€lp sen s it is associated with the width of the fluctuations
series expansion of the propagator which is free of th(.a,n a linear problem, and so it is expected to provide

above drawback [12,13]. A few terms of this expansionone with a reasonable time scale of the fluctuations in

are sufficient to attain an accurate description of the, general case. From a computational point of view, the
dynamlps in th_e .Wh0|e time domain. .Certamly, the most appealing feature of expanding inin place of¢
expansion coefficients OT this more rap@ly convergentg perhaps that witlw > 0 the time transformation maps
power series representation are more difficult to evaluat e singular point = « to finite 7 = 1/w. Moreover

than thgse .Of Ea. (5). bl.Jt it .iS hot so highly dramatic inthe frequencyw, which is a free parameter, can be chosen
many situations of practical Interest [13]. Unfortunately, g oy that the convergence of the series in Eg. (10) is as
the same is not true for nonlinear problems. Althoughfast as possible.

it is not difficult to formally apply the results of [12,13] Inserting Eq. (10) into (8) and equating like powers in
to Eqg. (1), the calculation of the expansion coefficientsT gives the recursion relation
becomes very arduous in this case.

Our aim is to develop an alternative power seriegm + 1)x;,+1 = @mx;n,
expansion for the moments which is convergent over a .
broader range of, and easily applicable to both linear o T
and nonlinear problems. As the treatment outlined below * izok[G’xkﬂ_l’m (k= DDixesi=2.m
is fairly straightforward, we will omit the details of the n
calculations and show only the main results. For the + ZFixl,jka—l,m—j}
sake of generality we consider a nonlinear Fokker-Planck j=0
equation of the form

T = é(l — e @), (11)

‘?hough a generalization to an arbitrary dependencé ¢

(12)

0,P(e 1) = —0[G) + FO) (x(0) — 0. D@,

(6)

where power series expansions for the coefficients

xko = (x*(0)), Xom = Oom (13)

where the last statement means the normalization condi-
tion. It is a simple matter to show that the conventional

Taylor series expansion (5) follows from the above results
in the linear cas& = 0 with o = 0(7 = r). When ap-

R(x) = > Rix', R=G,F,D, (7)
=0 plied to the mean-field model (1), Eq. (12) yields

are assumed to exist. Multiplying both sides of Eq. (6)

with x* and integrating overx, one arrives at the (m + Dxgmer = [om + k(1 — 0)]xm
following hierarchy of first order coupled differential
equations for the moments: — kxg4om t+ k(k — 1)Dxg—om
at<xk> = k[Z(Gz + Fi(x)) <xk+i_1> + kﬁxljxkflmfj. (14)
i=0 =0
+ (k — l)Di<xk+i2>} It is thus seen that with this technique the treatment of the
nonlinear problem (1) does not present a more difficult
k=12,..., (8) task than that of the conventional linear cése= 0. The
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expansion coefficients are easily determined recursively ifts fundamental solution is unique and has the form
terms of Eq. (14) starting withy .

The above expansion is formally exact and, therefore, P(x,t | y) = [2aD(1 — e >")/r]" '/
independent of the choice of the free parameter As 2
we are unable to handle the infinite expansion in Eq. (10), X ex;{—w} (18)
we have to truncate it at some finite = M. Then, the 2D(1 — e72)

resulting approximationé* (), of the moments depend A straightforward application of the above formalism
on w. Unfortunately, establishing general convergencqp Eq. (17) shows that the exact expressions for the

criteria for the expansion (10), which depend on the fregnoments are already obtained with just the first term of
paramete, seems a quite difficult task. Since, however,the expansion (10),

the error introduced ix*(7)) due to the series truncation

depends onw and z, a rigorous way to minimize it (x(2))y = ye ",

is to considerw as a function ofs and to optimize D

its time evolution as discussed in Ref. [13]. Here we (x2(1)y = y2e 2 + = (1 — e ). (19)
r

employ a time-independent criterion for determiniag
which is based on the true evolution equations for theBy contrast, infinitely many terms are to be included in
moments. For example, if we are interested in the timadhe Taylor series (5) to obtain the same results [11].
evolution of the first moment of Eq. (1), one expects that As a second and more challenging example, we con-
a good approximation for this moment can be obtained byider Eq. (1). This equation has been solved with the ini-
minimizing the error functional tial condition

P(x,0]y) =38k —y) (20)

T
Hw) = [ drat) = @+ G (9)

0 for different initial valuesy and for several point&d, D)
where[0, 7] is the interval in which an accurate descrip- above the critical line. The numerically exact results
tion of (x(s)) is desirable, and where the subscrift  have been calculated by means of a finite-difference
means that the moments in the parentheses are not thgethod which will be published elsewhere [7]. The
exact ones but their approximations obtained by using thgnain findings are as follows. The present power series
series representation (10) truncatednat= M. The re-  expansion converges rapidly over a broad range df is
sulting equation is readily solved fas by any root find-  particularly efficient in dealing with a situation when the
ing procedure. We note that the optimal valuessofurn  system starts not too far from the stationary value of the
out to be rather insensitive with respectito On the other  first moment(x()). With an increasing difference —
hand, as the truncation error does not necessarily tend @ (<)) the convergence slowly becomes worse. What
zero with ¢ going to infinity, the upper integration limit s especially pleasing is that the expansion turns out to
in Eq. (15) has to be chosen finite, in order to avoid di-produce surprisingly accurate results not only in the short-
vergence. In our calculations we have taker= 2. The  to-intermediate but also in the long time regime. Accurate
corresponding generalization of Eq. (15) to an arbitraryalues for the stationary moment («¢)) can be obtained

moment of the process (6) reads with just a few terms of the series in Eq. (10). These are
T ‘ 1 found to be dependent of the initial conditignshowing
I(w) = [0 di[9,(x") — k(x*"G) all the peculiarities of the considered system. To the best

of our knowledge, the present work is the first application
— k(x)(*'F)y — k(k — D) (x*72D)J};.  of the power series expansion formalism to nonlinear
problems.
(16) As expected, the above results are in drastic contrast
Minimizing the above functional provides one with a to those obtained with the Taylor series expansion of the
minimal average error of the momeft*(r))), in the moments int. The latter follows from Eq. (10) fow =
interval [0, 7], and, consequently, a reasonable choice of), and fails to converge starting already with= 0.5
the free parameter for a given powkrand truncation even though the system is initially locatedyat= (x(=)).
number M. In principle, a time-dependent criterion Our findings are well illustrated in Fig. 1 which shows
for minimizing the error at each time moment and, the relative error in the first momerf()) made by
therefore, for optimizing the time evolution ef(r) in the ~ truncating the series in Eq. (10) & = 3, 5, and 7 as
whole time domain can also be constructed, but we willa function ofz for D = 0.1, = 2, andy = 0.5. Each
not do so here. successive higher order is seen to reduce the error over a
In order to illustrate the power of the present techniqudarger range of, and a very accurate description in the
we first consider a linear Fokker-Planck equation given bywvhole time domain is already achieved with = 7. In
particular, the corresponding stationary valugx)); =
9;P(x,t) = 0,(rx + Da,)P(x,1). (A7)  0.955 is in excellent agreement with the numerically exact
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\ method) are in order. Recursion relations for the moments,
i Eqg. (8), are known to be computationally efficient when
\

0.5 17 A fort. From this point of view the present method is both
oc L / theoretically and numerically advantageous with respect
8 5\,1\30 ,,/ to various approximate Runge-Kutta algorithms that have
5 i / been used so far to numerically integrate the hierarchy of

o 5 equations for the moments (8) [2,6].
w 0 < 7 Finally, a few remarks on the validity of the moment
e \ 7 3 description itself (but not the power series expansion
|
L
o

5 dealing with systems that remain monostable for rall

In such a case, they converge rapidly, and neglecting
moments of high enough order is known to be sufficient
to get accurate results in the entire time domain. But they
FIG. 1. Relative error, (approximate exactyexact, in the become ineffective and may even give divergent results for
moment (x(z)) for a mean-field stochastic model [Eq. (1)] pistable systems [14], as well as for globally monostable

for D =0.1,0 =2, and y = 0.5. The solid lines are the : : ; .
results of the present power series expansionor 3 (o — systems, which demonstrate the transient bimodality for an

143),5 (@ = 1.40), and 7 (w = 1.53), and the dashed lines INitial period, provided this period is not too.shor.t,[7].
are the results of the Taylor series expansion in the time We acknowledge the support of the Direccion Gen-
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