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We present a procedure to systematically evaluate all the moments of the Fokker-Planck eq
by expanding them in a power series in a given function oft. The expansion coefficients are easi
determined in terms of algebraic recursion relations. Applications to a linear Fokker-Planck equat
well as to a truly nonlinear mean-field model, whose drift coefficient exhibits a functional depend
on the distribution function, show this formalism to be advantageous over the standard time
expansion of the moments which is shown to be rather impractical. [S0031-9007(96)01444-5]
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There is a growing literature on the study of fluctuation
in nonlinear systems far from equilibrium. Here, we
will deal with one of the extensively studied models
namely, the so-called mean-field model, which describ
a system of infinitely many nonlinear coupled oscillator
in the presence of an external white noise. It wa
originally introduced by Kometani and Shimizu to study
self-organization processes in biological systems su
as muscle contraction [1]. A more complete statistica
mechanical treatment given later by Desai and Zwanz
[2] and by Dawson [3] pointed out its relation with
the Weiss-Ising model. These authors also showed th
the combined effect of thermal noise and mean-fie
interaction gives rise to a truly nonlinear Fokker-Planc
equation for the probability density associated with th
order parameter. The equation reads

≠tPsx, td ­ ≠xfx3 1 su 2 1dx 2 ukxstdl

1 D≠xgPsx, td, (1)

where the drift force depends upon the state of the syste
through the average

kxstdl ­
Z `

2`

dx Psx, tdx . (2)

An important feature of the above model is that it show
a genuine order-disorder phase transition. Because
the nonlinear termukxstdl≠xPsx, td, there exists a critical
line in the parameters space such that whenD and/or
u are varied across this line the equilibrium distributio
bifurcates [2,4]. Below the critical line the equilibrium
is unique regardless of the initial conditions. Above th
critical line there are three equilibrium solutions, on
unstable, and two stable ones, and, ast goes to infinity,
the system approaches one of the equilibria dependi
upon the value ofkxs0dl, or, in other words, upon the
initial preparation of the system.

It is not hard to construct an approximate solution of
Fokker-Planck equation which is valid in the short tim
limit, e.g., by using an operator decoupling technique [5
Exact results are also available in the long time lim
when the system approaches equilibrium [4]. Beyond th
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above limits, a number of approximate methods have b
introduced in order to solve Eq. (1) numerically [2,6,
(see also a collection of references in Ref. [7]). Howev
in spite of the advances of even the fastest algorithms
computers, the calculation of the dynamical properties
nonlinear systems for all times is known to be a difficu
problem in statistical mechanics.

In this Letter we outline a method for systematical
calculating the moments of the Fokker-Planck equation
a straightforward analytical way. To keep the presentat
simple we have avoided considering systems with ma
degrees of freedom or the case of other nonlineari
in Eq. (1). The method explained below can be eas
modified to cover those cases. The key point of t
method is the same as in a power series expans
formalism which has been used so far in studying line
systems [8–12] (for a recent review see Ref. [13]). O
of the underlying ideas of this formalism is representi
the propagator as a power series int. In the simplest
realization it reads

Psx, t j yd ­ etLsxddsx 2 yd

­ etL1syddsx 2 yd ­
X̀

m­0

Pm
tm

m!
,

Pm ­ Lmdsx 2 yd ­ sL1dmdsx 2 yd, (3)

whereL and L1 are the forward and backward Fokke
Planck operators which are assumed to be linear
time independent and act on thex and they variables,
respectively. Applying Eq. (3) to the average

kgsxdl ­
Z `

2`
dx Psx, t j ydgsxd, (4)

one immediately obtains

kgsxdl ­
X̀

m­0

gmsyd
tm

m!
, gmsyd ­ sL1dmgsyd. (5)

Equation (5) constitutes the main result of a rece
paper by Weiss and Gitterman [11]. Unfortunate
these authors have only illustrated the feasibility of th
© 1996 The American Physical Society
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expansion in linear exactly solvable models. Little
known about the convergence properties of the ser
although our experience with similar problems [10,12,1
suggests that its utility is restricted to short times. Inde
the calculations we performed with Eq. (5) on mod
systems show that the method is accurate in this limi
one truncates the series at high enough orderm ­ M.
With increasing t, however, the error begins to grow
very rapidly, and beyond sometmax which is usually
noticeably smaller than unity, the expansion fails
produce convergent results with a finite number of ter
taken into account. The reason for this is that any fin
truncation of the series in Eq. (5) tends to plus or min
infinity depending on the sign ofgM . The same is true, in
one sense or another, to many other different Taylor-l
expansions available in the literature [8–10].

Drozdov has recently presented an alternative pow
series expansion of the propagator which is free of
above drawback [12,13]. A few terms of this expansi
are sufficient to attain an accurate description of t
dynamics in the whole time domain. Certainly, th
expansion coefficients of this more rapidly converge
power series representation are more difficult to evalu
than those of Eq. (5), but it is not so highly dramatic
many situations of practical interest [13]. Unfortunate
the same is not true for nonlinear problems. Althou
it is not difficult to formally apply the results of [12,13
to Eq. (1), the calculation of the expansion coefficien
becomes very arduous in this case.

Our aim is to develop an alternative power seri
expansion for the moments which is convergent ove
broader range oft, and easily applicable to both linea
and nonlinear problems. As the treatment outlined bel
is fairly straightforward, we will omit the details of the
calculations and show only the main results. For t
sake of generality we consider a nonlinear Fokker-Plan
equation of the form

≠tPsx, td ­ 2≠xfGsxd 1 Fsxd kxstdl 2 ≠xDsxdgPsx, td,

(6)

where power series expansions for the coefficients

Rsxd ­
X̀
i­0

Rix
i , R ­ G, F, D , (7)

are assumed to exist. Multiplying both sides of Eq. (
with xk and integrating overx, one arrives at the
following hierarchy of first order coupled differentia
equations for the moments:

≠tkxkl ­ k

∑X̀
i­0

sGi 1 Fikxld kxk1i21l

1 sk 2 1dDikxk1i22l
∏

,

k ­ 1, 2, . . . , (8)
is
ies,
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with the initial conditions

kxks0dl ­
Z `

2`

dx Psx, 0dxk . (9)

The above equations can be exactly solved by expandi
kxkl in powers of a given function oft,

kxkstdl ­
X̀

m­0

xk,mtmstd. (10)

Here, we restrict ourselves to the same functiontstd as in
Refs. [12,13],

t ­
1
v

s1 2 e2vtd, (11)

though a generalization to an arbitrary dependencet of t
is also possible. This particular time dependence has be
chosen as it is associated with the width of the fluctuation
in a linear problem, and so it is expected to provid
one with a reasonable time scale of the fluctuations
a general case. From a computational point of view, th
most appealing feature of expanding int in place of t
is perhaps that withv . 0 the time transformation maps
the singular pointt ­ ` to finite t ­ 1yv. Moreover,
the frequencyv, which is a free parameter, can be chose
such that the convergence of the series in Eq. (10) is
fast as possible.

Inserting Eq. (10) into (8) and equating like powers in
t gives the recursion relation

sm 1 1dxk,m11 ­ vmxk,m

1
X̀
i­0

k

∑
Gixk1i21,m 1 sk 2 1dDixk1i22,m

1

mX
j­0

Fix1,jxk1i21,m2j

∏
,

(12)

with

xk,0 ­ kxks0dl, x0,m ­ d0,m , (13)

where the last statement means the normalization con
tion. It is a simple matter to show that the conventiona
Taylor series expansion (5) follows from the above resul
in the linear caseF ­ 0 with v ­ 0st ­ td. When ap-
plied to the mean-field model (1), Eq. (12) yields

sm 1 1dxk,m11 ­ fvm 1 ks1 2 udgxk,m

2 kxk12,m 1 ksk 2 1dDxk22,m

1

mX
j­0

kux1,jxk21,m2j . (14)

It is thus seen that with this technique the treatment of th
nonlinear problem (1) does not present a more difficu
task than that of the conventional linear caseu ­ 0. The
3281
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expansion coefficients are easily determined recursively
terms of Eq. (14) starting withxk,0.

The above expansion is formally exact and, therefor
independent of the choice of the free parameterv. As
we are unable to handle the infinite expansion in Eq. (10
we have to truncate it at some finitem ­ M. Then, the
resulting approximationskxkstdlM of the moments depend
on v. Unfortunately, establishing general convergenc
criteria for the expansion (10), which depend on the fre
parameterv, seems a quite difficult task. Since, howeve
the error introduced inkxkstdl due to the series truncation
depends onv and t, a rigorous way to minimize it
is to considerv as a function oft and to optimize
its time evolution as discussed in Ref. [13]. Here w
employ a time-independent criterion for determiningv

which is based on the true evolution equations for th
moments. For example, if we are interested in the tim
evolution of the first moment of Eq. (1), one expects th
a good approximation for this moment can be obtained
minimizing the error functional

Isvd ­
Z T

0
dts≠tkxl 2 kxl 1 kx3ld2

M , (15)

wheref0, T g is the interval in which an accurate descrip
tion of kxstdl is desirable, and where the subscriptM
means that the moments in the parentheses are not
exact ones but their approximations obtained by using t
series representation (10) truncated atm ­ M. The re-
sulting equation is readily solved forv by any root find-
ing procedure. We note that the optimal values ofv turn
out to be rather insensitive with respect toT . On the other
hand, as the truncation error does not necessarily tend
zero with t going to infinity, the upper integration limit
in Eq. (15) has to be chosen finite, in order to avoid d
vergence. In our calculations we have takenT ­ 2. The
corresponding generalization of Eq. (15) to an arbitra
moment of the process (6) reads

Isvd ­
Z T

0
dtf≠tkxkl 2 kkxk21Gl

2 kkxl kxk21Fl 2 ksk 2 1d kxk22Dlg2
M .

(16)

Minimizing the above functional provides one with a
minimal average error of the momentkxkstdlM in the
interval f0, T g, and, consequently, a reasonable choice
the free parameter for a given powerk and truncation
number M. In principle, a time-dependent criterion
for minimizing the error at each time momentt, and,
therefore, for optimizing the time evolution ofvstd in the
whole time domain can also be constructed, but we w
not do so here.

In order to illustrate the power of the present techniqu
we first consider a linear Fokker-Planck equation given b

≠tPsx, td ­ ≠xsrx 1 D≠xdPsx, td. (17)
3282
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Its fundamental solution is unique and has the form

Psx, t j yd ­ f2pDs1 2 e22rtdyrg21y2

3 exp

∑
2

rsx 2 ye2rtd2

2Ds1 2 e22rtd

∏
. (18)

A straightforward application of the above formalism
to Eq. (17) shows that the exact expressions for th
moments are already obtained with just the first term
the expansion (10),

kxstdl ­ ye2rt ,

kx2stdl ­ y2e22rt 1
D
r

s1 2 e22rtd. (19)

By contrast, infinitely many terms are to be included i
the Taylor series (5) to obtain the same results [11].

As a second and more challenging example, we co
sider Eq. (1). This equation has been solved with the in
tial condition

Psx, 0 j yd ­ dsx 2 yd (20)

for different initial valuesy and for several pointssu, Dd
above the critical line. The numerically exact result
have been calculated by means of a finite-differenc
method which will be published elsewhere [7]. The
main findings are as follows. The present power seri
expansion converges rapidly over a broad range oft. It is
particularly efficient in dealing with a situation when the
system starts not too far from the stationary value of th
first momentkxs`dl. With an increasing differencey 2

kxs`dl the convergence slowly becomes worse. Wh
is especially pleasing is that the expansion turns out
produce surprisingly accurate results not only in the sho
to-intermediate but also in the long time regime. Accura
values for the stationary momentskxks`dl can be obtained
with just a few terms of the series in Eq. (10). These a
found to be dependent of the initial conditiony showing
all the peculiarities of the considered system. To the be
of our knowledge, the present work is the first applicatio
of the power series expansion formalism to nonlinea
problems.

As expected, the above results are in drastic contra
to those obtained with the Taylor series expansion of th
moments int. The latter follows from Eq. (10) forv ­
0, and fails to converge starting already witht $ 0.5
even though the system is initially located aty ­ kxs`dl.
Our findings are well illustrated in Fig. 1 which shows
the relative error in the first momentkxstdl made by
truncating the series in Eq. (10) atM ­ 3, 5, and 7 as
a function of t for D ­ 0.1, u ­ 2, and y ­ 0.5. Each
successive higher order is seen to reduce the error ove
larger range oft, and a very accurate description in the
whole time domain is already achieved withM ­ 7. In
particular, the corresponding stationary valuekxs`dl7 ­
0.955 is in excellent agreement with the numerically exac
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FIG. 1. Relative error, (approximate2 exact)yexact, in the
moment kxstdl for a mean-field stochastic model [Eq. (1)
for D ­ 0.1, u ­ 2, and y ­ 0.5. The solid lines are the
results of the present power series expansion forM ­ 3 sv ­
1.43d, 5 sv ­ 1.40d, and 7 sv ­ 1.53d, and the dashed lines
are the results of the Taylor series expansion in the tim
sv ­ 0d for M ­ 3, 5, 7, and 30.

result kxs`dl ­ 0.958. We did not use a time-dependen
criterion for determining the free parameterv but expect
a further improvement of the results especially for sma
M ’s in the intermediate-to-long time regime. Also show
are results obtained from the corresponding (i.e., of t
same order int) Taylor series expansion in the time. I
is seen to diverge very rapidly with any finite numbe
of terms taken into account, being thus of no practic
importance.

In closing we would like to emphasize that the abov
examples are not exhaustive with respect to methodolo
Besides the moments of the Fokker-Planck equation,
present power series expansion method can also be u
for systematically treating various correlation function o
the form

kastdbs0dl ­
Z `

2`

dx dy asxdPsx, t j ydbsyd (21)

that play an important role in the theory of stochastic pr
cesses. It is a method that can be applied to simple
complex systems and neither nonlinearity nor high dime
sionality seem to present special problems. We also n
the relative ease with which this method can be impl
mented. Almost all calculations are doable analytical
in a simple, economical way, thus allowing one to g
very accurate results with a minimal computational e
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fort. From this point of view the present method is both
theoretically and numerically advantageous with respe
to various approximate Runge-Kutta algorithms that hav
been used so far to numerically integrate the hierarchy
equations for the moments (8) [2,6].

Finally, a few remarks on the validity of the moment
description itself (but not the power series expansio
method) are in order. Recursion relations for the momen
Eq. (8), are known to be computationally efficient when
dealing with systems that remain monostable for allt.
In such a case, they converge rapidly, and neglectin
moments of high enough order is known to be sufficien
to get accurate results in the entire time domain. But the
become ineffective and may even give divergent results f
bistable systems [14], as well as for globally monostab
systems, which demonstrate the transient bimodality for a
initial period, provided this period is not too short [7].
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