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SEMI-IMPLICIT FORMULATIONS OF THE NAVIER–STOKES
EQUATIONS: APPLICATION TO NONHYDROSTATIC

ATMOSPHERIC MODELING∗

F. X. GIRALDO† , M. RESTELLI‡ , AND M. LÄUTER§

Abstract. We present semi-implicit (implicit-explicit) formulations of the compressible Navier–
Stokes equations (NSE) for applications in nonhydrostatic atmospheric modeling. The compressible
NSE in nonhydrostatic atmospheric modeling include buoyancy terms that require special handling
if one wishes to extract the Schur complement form of the linear implicit problem. We present re-
sults for five different forms of the compressible NSE and describe in detail how to formulate the
semi-implicit time-integration method for these equations. Finally, we compare all five equations and
compare the semi-implicit formulations of these equations both using the Schur and No Schur forms
against an explicit Runge–Kutta method. Our simulations show that, if efficiency is the main crite-
rion, it matters which form of the governing equations you choose. Furthermore, the semi-implicit
formulations are faster than the explicit Runge–Kutta method for all the tests studied, especially if
the Schur form is used. While we have used the spectral element method for discretizing the spatial
operators, the semi-implicit formulations that we derive are directly applicable to all other numerical
methods. We show results for our five semi-implicit models for a variety of problems of interest in
nonhydrostatic atmospheric modeling, including inertia-gravity waves, density current (i.e., Kelvin–
Helmholtz instabilities), and mountain test cases; the latter test case requires the implementation
of nonreflecting boundary conditions. Therefore, we show results for all five semi-implicit models
using the appropriate boundary conditions required in nonhydrostatic atmospheric modeling: no-flux
(reflecting) and nonreflecting boundary conditions (NRBCs). It is shown that the NRBCs exert a
strong impact on the accuracy and efficiency of the models.

Key words. compressible flow, element-based Galerkin methods, Euler, implicit-explicit, La-
grange, Legendre, Navier–Stokes, nonhydrostatic, spectral elements, time-integration
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1. Introduction. It can be argued that the single most important property of
an operational nonhydrostatic mesoscale atmospheric model is efficiency. Clearly, this
efficiency should not come at the cost of accuracy, but if a weather center has the
choice between a very accurate model and one that is efficient, they will probably
pick the efficient one; however, as numerical analysts, we would like to build models
that are both accurate and efficient. One way to achieve this goal is to construct
numerical models based on high-order methods: this class of methods offers expo-
nential (spectral) convergence for smooth problems and achieves excellent scalability
on modern multicore systems if they are used in an element-based approach (i.e., if
the approximating polynomials have compact/local support). This is the idea behind
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element-based Galerkin (EBG) methods such as spectral element (SE) and discon-
tinuous Galerkin (DG) methods (see [17] and [29] for nonhydrostatic models based
on these methods), and in this work we use the SE method to approximate spatial
derivatives. Almost all nonhydrostatic mesoscale models currently in existence are
based on the finite difference (FD) method. The only nonhydrostatic atmospheric
models not based on the FD method are the finite volume (FV) models found in
[5, 3, 1], the spectral model found in [9], and our SE and DG models found in [17] and
[29]. Finite element (FE), SE, and DG methods are preferable to spectral methods
because they can be shown to scale on massively parallel computers; this is not the
case with spectral methods due to the all-to-all communication required. One of the
biggest advantages that FE, SE, and DG methods have over the FD method is that no
terrain following coordinates of the type introduced in [12] needs to be included in the
governing equations. Of course, the orography (e.g., mountains) has to be accounted
for in some manner, but EBG methods, such as FE, SE, FV, and DG, incorporate the
orography via the definition of the grid. EBG methods do not require either orthog-
onal grids (see [15, 20, 27, 18]) or grids with specific directions (such as the I and J
indices in FD models); EBG models are inherently unstructured and, while requiring
additional data structures for bookkeeping, completely liberate the method from the
grid. This freedom from the grid has major repercussions in the implementation of
these methods on distributed-memory computers in that no halo is required which
translates to truly local algorithms that require very little communication across pro-
cessors; instead, the communication stencil consists of the perimeter values of each
processor (see [19, 14]). Another advantage that FE, SE, and DG methods have over
the FD and FV methods is that high-order solutions (greater than third order) can
be constructed quite naturally within the framework; such high-order properties are
desirable because they reduce the dispersion errors associated with the discrete spatial
operators [13]. In fact, the SE formulation used in this paper allows for arbitrarily
high-order spatial operators to be constructed by an input parameter; all the results
presented in section 4 use tenth-order polynomials per element. Although lower-order
(fourth) can certainly be used, we have chosen high-order as a worst case scenario
with respect to efficiency; we discuss this point below.

Once the spatial discretization method has been selected, one is then faced with
choosing a method for evolving time-dependent partial differential equations forward
in time. The simplest choice is to use explicit time-integrators (e.g., Runge–Kutta
methods), but these may not be the most efficient methods to use, especially taking
the following two points into consideration: (1) methods that are high-order in space
require a much smaller time-step than low-order methods because the time-step is
proportional to the polynomial order, and (2) the fastest waves in the compressible
Navier–Stokes equations are the acoustic waves that have little to no effect on the
large-scale processes in the linear regime. The fact that the acoustic waves are so fast
but have little significance in the accuracy of the simulations means that if one uses
explicit methods, then one must adhere to a very small time-step restriction caused by
a physical phenomenon that is essentially inconsequential. To overcome these issues,
almost all operational (limited area) nonhydrostatic weather models use split-explicit
methods [25], where the fast acoustic waves use a smaller time-step while the slower
waves use a larger time-step, typically using a time-integration strategy based on
explicit Runge–Kutta methods; some exceptions are the global models of the United
Kingdom Meteorological Office [7], the global environmental multiscale (GEM) model
of Canada [40], and the Arome model of Meteo-France [9]. However, there are many
more models that use the split-explicit approach including the operational models of
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the U.S. Navy [21], the National Center for Atmospheric Research [24], Pennsylvania
State University/National Center for Atmospheric Research [39], U.S. National Center
for Environmental Prediction [22], German Weather Service [31], and the Japanese
Meteorological Agency [30], to name only a few. Some centers have experimented with
semi-implicit approaches but have found them lacking with respect to the currently
used explicit approach [38]. The goal of this paper is to confirm that semi-implicit
methods, indeed, compete with explicit methods; semi-implicit methods are currently
under scrutiny by many operational weather and climate research centers, especially
for petascale to exascale computing where it is believed that the iterative solvers used
in semi-implicit methods may not be able to achieve the linear scalability expected
with explicit methods.

To construct semi-implicit formulations, i.e., implicit-explicit (IMEX), that are
competitive with the explicit approach currently used by all operational models re-
quires the development of state-of-the-art iterative solvers and preconditioners. Our
current work is a step toward building such models and, here we show that the semi-
implicit formulations are, indeed, more efficient than explicit Runge–Kutta methods,
at least for our spatial discretization methods (SE methods); however, our results
should hold for all other spatial discretization methods, the only exceptions are Go-
dunov methods that require special treatment in the construction of the Schur form
(see [29] for issues facing these methods); we will extend these results to Godunov-type
methods in a future paper. The next step will be to compare the semi-implicit for-
mulations in all directions (as we have done here) with the semi-implicit formulations
along the vertical; this we shall do in a future paper.

The remainder of the paper is organized as follows. Section 2 describes the five
forms of the equations that we study. In section 3 we describe the semi-implicit
method used to march the equations in time. In this section, we discuss in detail the
construction of the semi-implicit operators for all five equation sets and describe how
to extract the Schur complement that is necessary in order to further increase the
efficiency of the semi-implicit models. In section 4 we present the results for all five
semi-implicit models using three test cases. In addition, we compare the efficiency
of an explicit method with the semi-implicit methods both with the Schur and No
Schur forms. Finally, in section 5 we summarize the key findings of this research and
propose future directions.

2. Governing equations. In this paper we study five different forms of the
equations that govern the dynamics of nonhydrostatic atmospheric processes, namely,
the compressible Euler equations including the gravitational force and a diffusion-like
term. Depending on the form of the diffusion term, the complete compressible Navier–
Stokes equations can be recovered. Specifically, we study the following equation sets:

1. (set 1) the nonconservative form using Exner pressure, velocity, and potential
temperature,

2. (set 2NC) the nonconservative form using density, velocity, and potential
temperature,

3. (set 2C) the conservative form using density, momentum, and potential tem-
perature density,

4. (set 3) the conservative form using density, momentum, and total energy, and
5. (set 4) the nonconservative form using density, velocity, and pressure.

For the purposes of this study we restrict ourselves to two dimensions (x-z) and omit
the Coriolis terms. These two assumptions place no restrictions on the analysis of
this paper, but they do simplify the discussion considerably. Compared to standard
problems considered in computational fluid dynamics, a distinctive feature of atmo-
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spheric flows is the important role played by the gravitational force, resulting in a
vertically stratified fluid. In fact, the vertical profiles of pressure, density, and tem-
perature are determined to first-order by the hydrostatic balance, and nonhydrostatic
effects typically represent perturbations from this equilibrium condition. This fact
poses some challenges to prospective numerical methods and is usually dealt with by
introducing a fixed hydrostatic state and by using as prognostic variables the nonhy-
drostatic deviations from this state. We use this approach in the present work and
describe it in more detail in the following summary of the considered equation sets.
The fixed hydrostatic reference state will also prove useful in the construction of the
semi-implicit time integrator. Let us now describe each of the five equations that we
compare. In what follows, we shall use the notation SE1, SE2NC, etc., where SE
is an abbreviation for spectral element. We use this naming convention in order to
be able to compare the results of this paper with those of our paper [17], where we
used both SE and DG forms of the equations; however, it should be understood that
the emphasis of what follows is on the time-integration and resulting semi-implicit
formulations.

2.1. Equation set 1 (SE1). Since none of the prognostic variables used in the
SE1 equation set represents a conserved quantity, it is natural to state the problem
in nonconservation form. We thus consider the system

∂π

∂t
+ u ·∇π + (γ − 1)π∇ · u = 0,

∂u

∂t
+ u ·∇u+ cpθ∇π + gk = μ∇2u,

∂θ

∂t
+ u ·∇θ = μ∇2θ,(2.1)

where the solution vector is (π,uT , θ)T , π = ( P
PA

)R/cp is the Exner pressure, u =

(u,w)T is the velocity field, θ = T
π is the potential temperature, and T denotes the

transpose operator. In these equations, P is the pressure, PA is a constant reference
pressure at the surface (PA = 1 × 105 Pa), and T is the temperature. Other vari-
ables and symbols requiring definition are the gradient operator ∇ = ( ∂

∂x ,
∂
∂z )

T , the
gravitational constant g, the gas constant R = cp − cv, the specific heats for con-
stant pressure cp and constant volume cv, the specific heat ratio γ = cp/cv, and the
directional vector along the vertical (z) direction k = (0, 1)T .

Introducing the following splitting of the Exner pressure π(x, t) = π0(z)+π′(x, t)
and potential temperature θ(x, t) = θ0(z) + θ′(x, t), where the reference values are in
hydrostatic balance, i.e., cpθ0

dπ0

dz = −g, allows us to rewrite (2.1) as

∂π′

∂t
+ u ·∇π′ + w

dπ0

dz
+ (γ − 1) (π′ + π0)∇ · u = 0,

∂u

∂t
+ u ·∇u+ cpθ∇π′ − g

θ′

θ0
k = μ∇2u,

∂θ′

∂t
+ u ·∇θ′ + w

dθ0
dz

= μ∇2θ(2.2)

that has been expanded and simplified in order to enforce hydrostatic balance for zero
initial perturbation fields. It should be noted that the viscous terms on the right-hand
side of the momentum and energy equations are not the true Navier–Stokes viscous
stresses but rather are ad hoc terms used to satisfy one of the test cases (i.e., the
density current as defined in [35]). We shall use a similar diffusion operator for all

D
ow

nl
oa

de
d 

03
/2

7/
17

 to
 1

50
.2

14
.1

82
.1

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3398 F. X. GIRALDO, M. RESTELLI, AND M. LÄUTER

equation sets except for set 3, where it is natural to use the true viscous stresses (see
[17] for a discussion of the complication of using the true viscous stresses for the other
equation sets and the reason for choosing simpler forms).

2.2. Equation set 2NC (SE2NC). These equations are written as follows:

∂ρ

∂t
+∇ · (ρu) = 0,

∂u

∂t
+ u ·∇u+

1

ρ
∇P + gk = μ∇2u,

∂θ

∂t
+ u ·∇θ = μ∇2θ,(2.3)

where the prognostic variables are (ρ,uT , θ)T and ρ is the density. The pressure P
that appears in the momentum equation is obtained from the equation of state

P = PA

(
ρRθ

PA

)γ

.

Introducing the following splitting of the density ρ(x, t) = ρ0(z) + ρ′(x, t) and
potential temperature θ(x, t) = θ0(z) + θ′(x, t), where the reference values are in
hydrostatic balance, i.e., dP0

dz = −ρ0g, allows us to rewrite (2.3) as

∂ρ′

∂t
+ u ·∇ρ′ + w

dρ0
dz

+ (ρ′ + ρ0)∇ · u = 0,

∂u

∂t
+ u ·∇u+

1

ρ′ + ρ0
∇P ′ +

ρ′

ρ′ + ρ0
gk = μ∇2u,

∂θ′

∂t
+ u ·∇θ′ + w

dθ0
dz

= μ∇2θ.

2.3. Equation set 2C (SE2C). These equations are written as follows:

∂ρ

∂t
+∇ ·U = 0,

∂U

∂t
+∇ ·

(
U ⊗U

ρ
+ PI2

)
+ ρgk = ∇ ·

(
μρ∇U

ρ

)
,

∂Θ

∂t
+∇ ·

(
ΘU

ρ

)
, = ∇ ·

(
μρ∇Θ

ρ

)
,(2.4)

where the conserved, prognostic variables are (ρ,UT ,Θ)T , U = (ρu, ρw)T is the
momentum, Θ = ρθ is the potential temperature density, and I2 is a rank-2 identity
matrix. The pressure P that appears in the momentum equation is obtained from the
equation of state

P = PA

(
RΘ

PA

)γ

.

Introducing the following splitting of the density ρ(x, t) = ρ0(z) + ρ′(x, t) and
potential temperature density Θ(x, t) = Θ0(z) + Θ′(x, t), where the reference values
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are in hydrostatic balance, i.e., dP0

dz = −ρ0g, allows us to rewrite (2.4) as

∂ρ′

∂t
+∇ ·U = 0,

∂U

∂t
+∇ ·

(
U ⊗U

ρ
+ P ′I2

)
+ ρ′gk = ∇ ·

(
μρ∇U

ρ

)
,

∂Θ′

∂t
+∇ ·

(
ΘU

ρ

)
= ∇ ·

(
μρ∇Θ

ρ

)
.

2.4. Equation set 3 (SE3). Since these equations, when written in nonconser-
vation form, are quite unwieldy, they are discussed here only in conservation form.
We thus consider the system

∂ρ

∂t
+∇ ·U = 0,

∂U

∂t
+∇ ·

(
U ⊗U

ρ
+ PI2

)
+ ρgk = ∇ · F visc

u ,

∂E

∂t
+∇ ·

[
(E + P )U

ρ

]
= ∇ · F visc

e ,(2.5)

where the conserved, prognostic variables are (ρ,UT , E)T , E = ρcvT + 1
2
U ·U

ρ + ρφ
is the total energy, and φ = gz is the geopotential. The pressure P is obtained from
the equation of state that, in terms of the solution variables, reads

P = (γ − 1)

(
E − U ·U

2ρ
− ρφ

)
.

The viscous fluxes F visc are defined as follows:

F visc
u = μ

[
∇u+ (∇u)T + λ (∇ · u)I2

]
,

and

F visc
e = u · F visc

u +
μcp
Pr

∇T,

where λ = − 2
3 comes from the Stokes hypothesis, Pr is the Prandtl number, and μ is

the dynamic viscosity.
Introducing the following splitting of the density ρ(x, t) = ρ0(z) + ρ′(x, t) and

total energy E(x, t) = E0(z) + E′(x, t), where ρ0 and E0 are in hydrostatic balance,
allows us to rewrite (2.5) as

∂ρ′

∂t
+∇ ·U = 0,

∂U

∂t
+∇ ·

(
U ⊗U

ρ
+ P ′I2

)
+ ρ′gk = ∇ · F visc

u ,

∂E′

∂t
+∇ ·

[
(E + P )U

ρ

]
= ∇ · F visc

e .
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2.5. Equation set 4 (SE4). As for SE1, it is natural to consider this equation
set in the nonconservation form

∂ρ

∂t
+∇ · (ρu) = 0,

∂u

∂t
+ u ·∇u+

1

ρ
∇P + gk = μ∇2u,

∂P

∂t
+ u ·∇P + γP∇ · u = μγ

P

θ
∇2θ,(2.6)

where the prognostic variables are (ρ,uT , P )T .
Introducing the following splitting of the density ρ(x, t) = ρ0(z) + ρ′(x, t) and

pressure P (x, t) = P0(z) + P ′(x, t), where the reference values are in hydrostatic
balance, i.e., dP0

dz = −ρ0g, allows us to rewrite (2.6) as

∂ρ′

∂t
+ u ·∇ρ′ + w

dρ0
dz

+ (ρ′ + ρ0)∇ · u = 0,

∂u

∂t
+ u ·∇u+

1

ρ′ + ρ0
∇P ′ +

ρ′

ρ′ + ρ0
gk = μ∇2u,

∂P ′

∂t
+ u ·∇P ′ + w

dP0

dz
= μγ

P

θ
∇2θ.

Before describing the semi-implicit time-integration for all five equation sets, let us
say a few words about the spatial discretization method. Although we have chosen to
use the SE method, the semi-implicit method for all five equation sets does not change
for other discretization methods as long as the resulting mass matrix is diagonal, as
is the case for FD and SE methods. For the construction of semi-implicit methods for
Godunov-type methods, such as the FV and DG methods, see Restelli and Giraldo
[29], where the method is described only for equation set 3. In a forthcoming paper,
we will perform a similar analysis of the semi-implicit method on various forms of
the equation sets with the DG discretization; this analysis will then be applicable to
all other Godunov-type methods. For further details on the SE discretization for the
equations described herein, see [17]. Let us now describe the semi-implicit formulation
of the five equation sets.

3. Semi-implicit time-integration. The governing equations can be written
in the compact vector form

(3.1)
∂q

∂t
= S(q),

where, e.g., for set 3 q = (ρ′,UT , E′)T and the right-hand side S(q) represents the
remaining terms in the equations apart from the time derivatives. In order to obtain
the semi-implicit time discretization of (3.1), we introduce a linear operator L(q) that
approximates S(q) and contains the terms responsible for the acoustic and gravity
waves (the precise form of which will be defined in section 3.2), rewrite (3.1) as

(3.2)
∂q

∂t
= {S(q)− δL(q)} + [δL(q)],

and discretize explicitly in time the terms in curly brackets and implicitly those in
square brackets. The parameter δ is introduced in (3.2) to obtain a unified formalism
for semi-implicit discretizations, for δ = 1, and fully explicit ones, for δ = 0.
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As was done in [14, 16], we now consider a generic K-step (multistep method)
discretization of (3.2) of the form

(3.3) qn+1 =

K−1∑
k=0

αkq
n−k + χΔt

K−1∑
k=0

βk[S(q
n−k)− δL(qn−k)] + χΔtδL(qn+1),

where Δt is the time-step, assumed to be constant for simplicity, and qn denotes
the solution at time level nΔt for n = 0, 1, . . . . To simplify the discussion of the
semi-implicit formulation, let us now introduce the following variables

qtt = qn+1 −
K−1∑
k=0

βkq
n−k, q̂ = qE −

K−1∑
k=0

βkq
n−k,

qE =

K−1∑
k=0

αkq
n−k + χΔt

K−1∑
k=0

βkS(q
n−k)

that then allows us to write (3.2) as

(3.4) qtt = q̂ + λL(qtt),

where λ = χΔtδ. For example, the coefficients for the second-order backward dif-
ference formula (BDF2) method, assuming constant time-stepping, are α0 = 4/3,
α1 = −1/3, χ = 2/3, β0 = 2, and β1 = −1 (see [18] for BDF-K methods of orders one
through six); in this work, we use BDF2 exclusively, i.e., K = 2. Ideally one would like
to balance the errors between space and time (and boundary conditions) as we show
in [28] for a simple equation. However, in this work, we use BDF2 only as a proxy
for measuring the efficiency of multistep IMEX methods. We cannot use higher-order
BDFs because they are not A-stable (e.g., see [18]). Clearly, using a second-order
method in time with a tenth-order method in space means that the time-integrator
will dominate the model error.

The crux of the semi-implicit method, as is evident in (3.2), is the derivation
of the linear operator L. The success of the semi-implicit method depends on this
operator because it must be chosen such that the fastest waves in the system are
retained, albeit in their linearized form. If the correct operator L is not obtained,
the semi-implicit method will not work. Fortunately, deriving the linear operator is
rather straightforward. We follow a similar approach used to split the variables into a
hydrostatically balanced reference state and the perturbation from this state; in other
words, we define the variables as q = q0(z) + q(x, t).

3.1. Boundary conditions. In this paper, we consider only two types of bound-
ary conditions: no-flux (i.e., reflecting) and nonreflecting boundary conditions
(NRBCs). For the no-flux boundary conditions, we apply the condition nΓ · u = 0,
where nΓ is the outward pointing normal vector of the boundary Γ. Since u and nΓ

both live in R2, then we can define an augmented normal vector n̂Γ =
(
0,nT

Γ , 0
)T ∈

R4 that then allows us to satisfy no-flux boundary conditions as follows: n̂Γ · q = 0.
For explicit time-integration methods, one can apply all boundary conditions in an a
posteriori fashion, but this is not correct for an implicit method; for such methods, all
boundary conditions need to be applied differently. We apply the boundary conditions
through Lagrange multipliers as follows:

(3.5)
∂q

∂t
= S(q) + τnf n̂Γ + τnr(q − qb),
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where τnf and τnr are the Lagrange multipliers for the no-flux and NRBCs, respec-
tively, and qb is the free-stream (boundary) values of the state variable q.

It turns out that, to impose the NRBCs given above in a strong sense, one can
write the semidiscrete (in time) equations as

qtt = α (q̂ + λL(qtt)) + βq̂b,

where α and β are Newtonian relaxation coefficients that drive the solution toward
the boundary reference value such that α → 1, β → 0 in the interior and α → 0,
β → 1 as the nonreflecting boundaries are approached; this boundary condition is
applied to the entire solution vector q. In general, we define these parameters as

β =

(
z − zs
zt − zs

)4

and α = 1− β,

and specifically for the linear hydrostatic mountain (case 3, where we refer to this
NRBC as a sponge), we define zs = 12km, zt is the top of the model, and z ∈ [zs, zt];
otherwise, β = 0. A similar approach is used for the lateral boundaries, where, for the
left boundary, we define xleft

s = 20km and xleft
t = xmin, and for the right, we define

xright
s = xmax − 20km and xright

t = xmax.
In contrast, for the no-flux boundaries, the boundary condition need be applied

only to the velocity field u. In this case, we rewrite the momentum equations as

U tt = α
(
Û + λL(qtt)

)
+ βU b + τnfnΓ.

Taking the scalar product of this equation with nΓ and rearranging the results in the
following equivalent system,

U tt = P
[
α
(
Û + λL(qtt)

)
+ βU b

]
,

where P is the projection matrix,

(3.6) P =

(
1− n2

x −nxnz

−nxnz 1− n2
z

)
,

that imposes the no-flux boundary condition; note that we have dropped the subscript
Γ from the normal vector nΓ for convenience. It should be understood that P is
defined only on Γ in the interior domain, i.e., Ω - Γ, P simplifies to the identity
matrix.

3.2. Definition of the implicit linear problem. In this section, we address
the precise definition, in the case of the various considered forms of the governing
equations, of the linear operator L that has been introduced in (3.2) for the case of
an abstract problem. In order to ensure stability, it is important that this operator
includes the terms responsible for the fastest waves in the system, albeit in their
linearized from. Once the operator L has been defined, the linear system to be solved
at each time step is given by (3.4) in terms of the unknown qtt, from which the updated
solution qn+1 can be readily obtained. For the two-dimensional compressible Navier–
Stokes equations, this requires the inversion of a 4Np×4Np matrix, where Np denotes
the total number of degrees of freedom for each scalar unknown in the problem.
Such a system can be solved with a monolithic approach; however, a better strategy
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is to reformulate it into a smaller one with a technique known in the literature by
many names, including block LU decomposition, collapsing the equations to a pseudo-
Helmholtz operator form, or solving the Schur complement of the system. In the
remainder of this section, we construct the pseudo-Helmholtz operators for all the
equation sets one at a time and shall refer to the full (monolithic) system as the No
Schur form and the other as the Schur form. We will see that the Schur form invariably
leads to an equation for a single pressure-like variable, requiring the inversion of an
Np ×Np matrix, 16 times smaller compared to the matrix inverted in the monolithic
approach (see, e.g., [2] for why it must be pressure and not some other variable).
Since our discussion is independent from the chosen spatial discretization, we refer
here to the time semidiscretized problem; the fully discrete problem is obtained by
substitution of the continuous differential operator with the discrete ones. One final
note is in order: for all of our simulations, we use GMRES as our nonsymmetric
iterative solver with Jacobi preconditioning (see [10] for a description). In future
work, we will explore the effects of various preconditioners.

As an example to show the construction of the Schur and No Schur forms, we
begin with SE1; for the rest of the equation sets, we refer the reader to the appendices.
For SE1 we follow [26, 4, 37, 6, 36] and define the linear operator

(3.7) L(q) = −

⎛⎜⎜⎜⎜⎝
w dπ0

dz + (γ − 1)π0∇ · u

cpθ0∇π′ − g θ′
θ0
k

w dθ0
dz

⎞⎟⎟⎟⎟⎠ .

Note that in (3.7), we rely on the same reference state π0, θ0 introduced in section 2.
This is convenient since it avoids introducing additional reference profiles, but it is
not necessary, and in principle, any known profile could be used in (3.7). Substituting
(3.7) into (3.4) yields

πtt = α

(
π̂ − λwtt

dπ0

dz
− λ(γ − 1)π0∇ · utt

)
+ βπ̂b,(3.8)

utt = α

(
û− λcpθ0∇πtt + λg

θtt
θ0

k

)
+ βûb,(3.9)

θtt = α

(
θ̂ − λwtt

dθ0
dz

)
+ βθ̂b,(3.10)

where q̂b = qb −
∑K−1

k=0 αkq
n−k with qb being the reference values of the NRBCs.

Equations (3.8)–(3.10) represent the full system (i.e., the No Schur form) of SE1 of
dimension 4Np × 4Np. However, let us now construct the Schur form of this system.

We can now substitute (3.10) into (3.9) to get

(3.11) utt = C1

[
α

(
û− λcpθ0∇πtt + λ

g

θ0
θ̂k

)
+ βûb

]
,

where

(3.12) C1 =

(
1 0
0 1

c1

)
with

(3.13) c1 = 1 + (αλ)2
g

θ0

dθ0
dz

.
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Let us rewrite (3.11) as follows:

(3.14) utt = C1

[
α

(
û− λcpθ0∇πtt + λ

g

θ0
θ̂k

)
+ βûb

]
+ τnfn.

To satisfy the no-flux boundary conditions, we simply replace C1 with P1 such that
(3.14) with n and rearranging gives

(3.15) utt = P 1

[
α

(
û− λcpθ0∇πtt + λ

g

θ0
θ̂k

)
+ βûb

]
,

where P 1 = PC1 with P defined in (3.6). We can now substitute (3.15) into (3.8)
to get

πtt − (αλ)2
dπ0

dz
k · (P 1cpθ0∇πtt)− (αλ)2(γ − 1)π0∇ · (P 1cpθ0∇πtt) = απ̂ + βπ̂b

− αλ
dπ0

dz
k ·
[
P 1α

(
û+ λ

g

θ0
k
(
αθ̂ + βθ̂b

))
+ P 1βûb

]
− αλ(γ − 1)π0∇ ·

[
P 1α

(
û+ λ

g

θ0
k
(
αθ̂ + βθ̂b

))
+ P 1βûb

]
,(3.16)

which is the Schur form of SE1 and is of dimension Np × Np. Note that this is a
pseudo-Helmholtz equation for πtt and can be solved by any nonsymmetric iterative
solver. Note further that the solution of this linear problem satisfies both nonreflecting
and no-flux boundary conditions. Upon getting a solution for πtt from (3.16), we can
then solve for utt using (3.15). To solve for θtt, we next solve (3.10). Once qtt is
known, we then extract the solution qn+1 using (3.4).

4. Results. In this section we validate the five semi-implicit models on a test
case suite of three problems using, for the spatial discretization, the SE method. For
the definitions of the test cases, as well as for the details of the spatial discretization,
we refer the reader to [17].

For our comparisons, we identify the following three criteria: discrete conservation
properties, accuracy, and efficiency. Since each of these criteria can be expressed in
more than one metric, we need to clarify what we mean by each of them. With the
term discrete conservation properties, we mean the ability of the numerical method to
reproduce the integral balance equations of the continuous problem that, in the case
of an isolated system, reduce to conservation of flow integrals and, in the case of a
system with mass or energy exchange with the environment, take the form of a balance
between boundary fluxes and variation of the system mass or energy. In analyzing
our results, we have to distinguish two classes of numerical models: those for which
discrete conservation properties can be shown by construction, and those for which
this is not possible. In the first case, the experimental datum concerning conservation
serves as a confirmation that the expected balance is satisfied up to machine precision;
in the second case, it provides a fundamental error indicator because it is a quantitative
measure of the deviation of the numerical solution from the analytic one. In practice,
we will thus provide the mass and energy deviations as follows. We define change in
mass as

ΔMass =

∣∣∣∣M(t)−M(0)

M(0)

∣∣∣∣ , where M(t) =

∫
Ω
ρ(x, t)dΩ.
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Similarly, we define the change in energy as

ΔEnergy =

∣∣∣∣E(t)− E(0)
E(0)

∣∣∣∣ , where E(t) =
∫
Ω
E(x, t)dΩ

and E is the density total energy of the system.
Concerning accuracy, we should mention that a significant difficulty in testing

mesoscale models is the lack of nontrivial analytic solutions, so we assess the accuracy
of our results by comparing the results of various equation sets, both qualitatively
and quantitatively, against each other and with reference solutions published in the
literature (for case 1 the solution is Boussinesq, and for case 3 it is based on linear
theory and is valid only far away from the nonreflecting boundaries).

Providing a reliable assessment of the efficiency of our five implementations of the
Navier–Stokes equations is not obvious since it can be implementation and problem
dependent. To solve this difficulty we compare the effort required by the solution of
the semi-implicit system and the wallclock time of our experiments using comparable
stopping criteria for the iterative solvers for all our codes and by making sure that
the five Fortran 90 implementations are as similar as possible. We use wallclock time
in seconds, where all simulations are performed on an Apple Xserve (in serial mode)
with a clock speed of 2.8 GHz on Intel Xeon processors. In addition, we use the
Courant number as a measure of the size of the time-steps that can be achieved with
the semi-implicit method. We define the Courant number as

Csound,advect = max

(
Csound,advectΔt

Δs

)
,

where Csound and Cadvect are the Courant numbers with and without the sound waves
and the characteristic speeds are defined as Csound = U +

√
a and Cadvect = U , with

U = |n · u| being the velocity in the direction n (where n is measured along the
edges of the subcells formed by the high-order grid points), a is the sound speed, and
Δs =

√
Δx2 +Δz2 is the grid spacing.

A separate note is finally required for the last of our test cases, namely, the hy-
drostatic mountain flow. This case differs from the others because of the presence of
NRBCs, the availability of a semianalytic solution, and the use of additional diag-
nostics. The presence of NRBCs, in particular, poses some problems in determining
the conservation properties and accuracy of the numerical solution. Since the prob-
lem is posed on an open domain, we should expect conservation of mass and energy
in the form of an integral flux balance; the NRBCs, however, mathematically rep-
resent a source/sink term artificially introduced into the computational domain that
inevitably destroys the integral balance. The solution that we choose here is to restrict
the integral flux balance to the inner domain where the sponge term vanishes.

Clearly this notion of conservation can be satisfactory for processes that are en-
tirely contained in the inner domain, but it can be unsatisfactory for processes sig-
nificantly affected by flows through the boundaries of the domain. In particular, the
sponge layer makes it impossible to build a model that is conservative with respect to
fluxes prescribed on the boundary. To overcome this problem, we have begun work
on the construction of high-order NRBCs that can be used with high-order spatial
and temporal discretizations (see [8, 28]), but we are still far from implementing such
methods into Navier–Stokes models. Unfortunately, sponge-based NRBCs are those
typically used today in operational nonhydrostatic atmospheric models.

The fact that the analytic solution is known for the problem defined in an infinite
domain while the numerical method solves the problem in a limited domain with the
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addition of the sponge terms (or, in other words, the fact that the NRBCs are not
exact in modeling the infinite domain and not even high-order) prevents the model
from converging to the analytic solution with the theoretical order of accuracy. In
fact, as is shown in section 4.1.3, all our simulations converge to a solution that is
close but distinct from the analytic one which we can interpret as the solution of
the modified problem “Navier–Stokes equations with NRBCs” defined by (3.5). In
order to quantify this deviation and to compare with other results in the literature,
we define the root-mean-square error as

‖q‖RMS =

√√√√ Ns∑
i=1

(qnumerical − qanalytic)
2
/Ns,

where Ns = 40,000 are the number of sample points used to construct the RMS
errors. Finally, in addition to the diagnostics used for the other test cases, we will
also consider the momentum flux as [33]

m(z) =

∫ +∞

−∞
ρ0(z)u(x, z)w(x, z)dx,

where ρ0(z) is the reference density as a function of height. From linear theory, the
analytic hydrostatic momentum flux is given as [33]

mH(z) = −πc

4
ρsusNh2

c ,

where the superscript H signifies hydrostatic, ρs and us are the reference density
and horizontal velocity values at the surface, respectively, N is the Brunt–Väisälä fre-
quency, and hc is the height of the mountain. We shall use the normalized momentum
flux, m(z)/mH(z), as a metric to test for convergence to steady state.

4.1. Comparison of all five semi-implicit models. In this section we sum-
marize the results of the five semi-implicit models using the Schur form for each of
the three test cases. We begin with the inertia-gravity waves, followed by the density
current, and, finally, the linear hydrostatic mountain wave. Although each of the five
semi-implicit models is derived from different equations (using different prognostic
variables), it should be mentioned that the Schur forms of all five models are very
similar since they all reduce to a scalar second-order equation for the pressure. In fact,
the eigenvalue spectrum (spectral radius) and condition number (with respect to the
2-norm) of the linear matrix arising from the semi-implicit implementation are, for all
intents and purposes, identical for all five equation sets. We mention this here only to
emphasize that the difference in the number of GMRES iterations per time-step for
each of the models is not a function of the condition number nor the spectral radius
but of some other mechanism that we try to identify below.

We add one final note about the results below: while we show results for very
specific resolutions (in this case, the flow is well resolved), we have also analyzed
underresolved simulations, and the comparisons that we now report are representa-
tive of differences of the five models in both the well, and underresolved regimes;
here we refer mostly to the conservation measures which do not change with varying
resolutions.

4.1.1. Case 1: Inertia-gravity waves. Figure 4.1(a) shows the potential tem-
perature perturbation contours after 3000 seconds, and Figure 4.1(b) shows the one-
dimensional profile along z = 5,000 meters for all five models. Figure 4.1(b) shows
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Fig. 4.1. Case 1: Inertia-gravity waves. Potential temperature perturbation after 3000 seconds
for 250-meter resolution and tenth-order polynomials. Figure (a) shows the total domain using
contour values between −0.0015 and 0.003 with a contour interval of 0.0005 for SE2NC, and Figure
(b) shows the profiles along 5,000-meter height for all five models.

Table 1

Case 1: Inertia-gravity waves. Comparison of the five models studied for 125-meter resolution
and tenth-order polynomials after 2500 seconds using Δt = 0.5 seconds (Csound = 3.15 and Cadvect =
0.17).

SE1 SE2NC SE2C SE3 SE4

Δmass 3.23× 10−11 4.89× 10−13 4.39 × 10−13 3.36× 10−13 5.15× 10−13

Δenergy 1.48× 10−8 1.61× 10−13 9.86 × 10−14 1.10× 10−13 5.46× 10−7

GMRES Iterations 5 5 5 5 5
WallClock Time 2749 3051 3346 3238 2997

that all five models yield identical solutions; this is especially of interest since the
models use different equation sets. The second result worth noting is that the profiles
are perfectly symmetric about the position x = 160,000 meters. Note that there is
a mean horizontal flow in this problem, which tests the ability of the algorithm to
preserve the proper phase speeds.

Skamarock and Klemp [32] give an analytic solution for this test, but unfortu-
nately it is valid only for the Boussinesq linearized problem that, while useful for
qualitative comparisons, cannot be used to compute error norms since we use the
fully compressible nonlinear equations. We use the same contouring interval used
in [32], and our results match very well. Specifically their values are in the range
2.82× 10−3 ≤ θ′ ≤ −1.49× 10−3, whereas ours are 2.80× 10−3 ≤ θ′ ≤ −1.51× 10−3.
In addition, by comparing our semi-implicit results to the results in [17] for the ex-
plicit version of our models, we find that they match almost exactly, in spite of the
fact that here we now use much larger time-steps.

The main differences of interest among the five semi-implicit models are in the
mass and energy conservation measures and in the efficiency (i.e., wallclock time) of
the models (see Table 1). In terms of mass conservation, all models perform well ex-
cept for SE1; this equation set is not expected to formally conserve mass. In terms of
energy conservation, sets SE2NC, SE2C, and SE3 perform very well; sets SE1 and SE4
do not perform very well. It is not surprising that SE3 and SE2C achieve good energy
conservation measures since they are in complete conservation form; however, SE2NC
performs surprisingly well, given the fact that it is not in strict conservation form. On
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Fig. 4.2. Case 2: Density current. Potential temperature perturbations after 900 seconds with
20-meter resolution and tenth-order polynomials. Figure (a) shows the total domain using contour
values between −9 to 0 with a contour interval of 0.25 for SE2NC. Figure (b) shows the profiles
along z = 1200 meters for all five models.

Table 2

Case 2: Density current. Comparison of the five models studied for 20-meter resolution and
tenth-order polynomials after 900 seconds using Δt = 0.03125 seconds (Csound = 1.24 and Cadvect =
0.09).

SE1 SE2NC SE2C SE3 SE4

θ′max 2.11× 10−5 3.76 × 10−6 7.68× 10−6 3.30× 10−3 7.33× 10−3

θ′min −8.84 −8.70 −8.90 −9.09 −8.89
Δmass 2.33× 10−5 1.36× 10−12 1.78× 10−13 3.63× 10−12 3.39× 10−14

Δenergy 2.34× 10−4 1.05 × 10−6 1.92× 10−5 4.86× 10−12 7.65× 10−4

GMRES Iterations 2 2 2 2 2
WallClock Time 33673 37832 40244 38220 36885

the other hand, sets SE1 and SE4 are not expected to conserve energy at all, and they
exhibit this weakness quite strongly. In terms of efficiency from best to worst, the
order is SE1, SE4, SE2NC, SE3, and SE2C; the average number of GMRES iterations
per step is the same for all five models, and thus the efficiency differences are due to
differences in number of operations required by the equations themselves. SE1 and
SE4 do not have an equation of state and therefore require fewer operations per time-
step. The fully conservative models SE2C and SE3 have a larger operation count than
the other models. This is the case because, for the conservation forms, taking the di-
vergence of the flux tensor requires more operations than merely taking the derivatives
of the nonconservation form (e.g., for the conservation forms, the flux tensor contains
cubic terms instead of the quadratic terms found in the nonconseration form).

4.1.2. Case 2: Density current. In Figure 4.2(a) we plot the contours of
potential temperature perturbation and in Figure 4.2(b) the one-dimensional profile
of the potential temperature perturbation along z = 1200 meters for all five models.
The three negative wells in Figure 4.2(b) correspond to the three distinct Kelvin–
Helmholtz instability waves clearly visible in Figure 4.2(a). It is clear from Figure
4.2(b) that there are small differences among the five models. In order to discern the
differences among the five models, let us now review Table 2.

While Table 2 shows that there is close agreement among all five models, it does
show that the maximum and minimum values for potential temperature do vary. Re-
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Fig. 4.3. Case 3: Linear hydrostatic mountain. Vertical velocity after 30 hours with 1200-meter
(in x) and 240-meter (in z) resolution and tenth-order polynomials. Figure (a) shows contour values
between −0.005 to +0.005 for the numerical (solid black line) and analytic (dashed line) solutions for
SE2NC. Figure (b) shows the profiles along x = 120,000 meters for all five models and the analytic
solution.

call that this is the only case with viscosity and that only SE3 uses the true viscous
stresses, whereas the remaining four models use slightly modified diffusion operators
in order to agree with the formulations presented in the paper by Straka et al. [35]; in
other words, each equation set uses a slightly different viscous operator, and thereby
each simulation represents the solution of a different governing equation; therefore,
one should not expect to arrive at the same results for all of the models. We present
this test case because it exhibits a classical wave found in atmospheric modeling ap-
plications, namely, Kelvin–Helmholtz instabilities. Furthermore, diffusion operators
of the type that we use here are representative of the kinds of diffusion mechanisms
used today in operational atmospheric models (i.e., these operators are not consistent
with the true Navier–Stokes viscous stresses).

In terms of mass conservation, once again we see that SE1 is the worst, with the
other four models performing well and the two conservation forms (SE2C and SE3)
performing best. In terms of energy conservation, only SE3 performs superbly; since
SE3 uses the true Navier–Stokes equations with the corresponding proper viscous
stresses, this set is able to conserve both mass and energy even with the presence of
viscosity. This is one big advantage of this equation set. In terms of efficiency, we
see that once again the ordering from best to worst is SE1, SE4, SE2NC, SE3, and
SE2C. This ordering conforms to the number of operation counts because the number
of GMRES iterations is identical for all of the models.

4.1.3. Case 3: Linear hydrostatic mountain. This case is different from the
previous two in that (i) it has a steady-state analytic solution and (ii) it requires the
implementation of NRBCs. The previous two test cases used either no-flux (reflect-
ing) or periodic boundary conditions. Figure 4.3(a) shows that the numerical (black
solid) and analytic (dashed) values for the vertical velocity compare very well. Figure
4.3(b) shows that the analytic and numerical vertical velocity solutions for all five
models match identically; these values are sampled along the center of the mountain
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Table 3

Case 3: Linear hydrostatic mountain. Root-mean-square errors for the four variables for 1200-
meter (in x) and 240-meter (in z) resolution and tenth-order polynomials for all five models using
Δt = 1.5 seconds (Courant number = 1.25).

Time Variable SE1 SE2NC SE2C SE3 SE4

10 hours π′ 1.56× 10−7 1.56× 10−7 1.56× 10−7 1.56× 10−7 1.56× 10−7

u 2.99× 10−3 2.99× 10−3 2.99× 10−3 2.99× 10−3 3.00× 10−3

w 1.90× 10−4 1.90× 10−4 1.90× 10−4 1.90× 10−4 1.91× 10−4

θ′ 2.46× 10−3 2.46× 10−3 2.46× 10−3 2.46× 10−3 2.46× 10−3

20 hours π′ 8.87× 10−8 8.86× 10−8 8.84× 10−8 8.85× 10−8 8.90× 10−8

u 1.68× 10−3 1.68× 10−3 1.68× 10−3 1.68× 10−3 1.69× 10−3

w 1.88× 10−4 1.88× 10−4 1.88× 10−4 1.88× 10−4 1.89× 10−4

θ′ 1.32× 10−3 1.32× 10−3 1.32× 10−3 1.32× 10−3 1.32× 10−3

30 hours π′ 6.74× 10−8 6.74× 10−8 6.72× 10−8 6.73× 10−8 6.79× 10−8

u 1.27× 10−3 1.27× 10−3 1.27× 10−3 1.27× 10−3 1.28× 10−3

w 1.88× 10−4 1.88× 10−4 1.87× 10−4 1.87× 10−4 1.89× 10−4

θ′ 8.99× 10−4 8.99× 10−4 8.99× 10−4 8.99× 10−4 8.98× 10−4

Table 4

Case 3: Linear hydrostatic mountain. Comparison of the five models studied for 1200-meter
(in x) and 240-meter (in z) resolution and tenth-order polynomials after 30 hours using Δt = 1.5
seconds (Csound = 1.25 and Cadvect = 0.07).

SE1 SE2NC SE2C SE3 SE4

Δmass 1.23 × 10−8 1.98× 10−9 2.24× 10−7 1.21× 10−8 1.22× 10−8

Δenergy 3.29 × 10−8 3.47× 10−9 7.18× 10−8 9.05× 10−8 2.03× 10−7

GMRES Iterations 11 8 12 12 12
WallClock Time 5211 4731 6409 6121 6057

(x direction) for various values of z (vertical). Note that the actual computational
domain is much larger than that shown in Figure 4.3(a). In fact, the domain shown in
Figure 4.3(a) is the domain used to compute the root-mean-square errors; the portion
of the domain not shown is, in fact, where the sponge layer is nonzero (β > 0).

In Table 3 we show the maximum and minimum values for all four variables for
the five models for 10, 20, and 30 hours. The values for all five models are identical,
clearly illustrating that all five models have converged to the identical steady-state
solution. If we showed only the results after 30 hours, then one could argue that
the reason why all of the models agree so closely is because they all converge to the
same solution. However, the results in Table 3 show that there is more to it than
that. For instance, the fact that all the models agree at all three times reported
indicates that the models are being forced to yield this identical solution state. The
only difference between this test case and all the others is the use of NRBCs. This
result clearly indicates that it is the use of these NRBCs that is forcing the solution
state, regardless of the equation set being used.

Now turning to Table 4 and looking specifically at the mass and energy conser-
vation, it becomes immediately obvious that all five models are behaving identically,
even with respect to their conservation measures. Therefore, the NRBCs are not
only imposing the solution state but are also affecting the conservation measures of
the models and preventing the formally conservative SE3 from conserving to machine
precision. This test case emphasizes the need for better NRBCs that are high-order
accurate and conservative; unfortunately, NRBCs such as the ones we use here are
used in operational nonhydrostatic atmospheric models. To overcome the first prob-
lem (accuracy), we have begun work on the construction of high-order NRBCs that
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Fig. 4.4. Case 3: Linear hydrostatic mountain. Normalized momentum flux for 1200-meter
(in x) and 240-meter (in z) resolution and tenth-order polynomials for (a) SE2NC at times 10, 20,
and 30 hours and (b) for all five models at 30 hours.

can be used with high-order spatial and temporal discretizations (see [8, 28]), but we
are still far from implementing such methods into Navier–Stokes models. The second
problem is more complicated to overcome. While in the present work we describe
nonhydrostatic mesoscale (limited area) models, these models will eventually also be
used for global nonhydrostatic models (i.e., three-dimensional models on the sphere;
see [19, 14] for a hydrostatic version of such a model). In global mode, the NRBCs
along the lateral boundaries are eliminated by the periodicity of the sphere, and if
the top NRBCs are replaced by reflecting boundary conditions, then the conservation
properties of the model will be retained; conservation of both mass and energy are
vital for accurately modeling atmospheric processes at very long time-scales such as
those typically run for climate change predictions.

For this test, in terms of efficiency, the ordering from best to worst is SE2NC, SE1,
SE4, SE3, and SE2C. For an equal number of GMRES iterations, SE2NC requires
more floating point operations than both SE1 and SE4 due to the fact that an equation
of state has to be solved (and this equation is exponential). However, for this test
case, SE2NC needs an average of 8 GMRES iterations per time-step compared to 11
for SE1 and 12 for SE4 that then allows SE2NC to run faster; it is not obvious why
SE2NC requires fewer GMRES iterations than the other models for this test.

In Figure 4.4(a) we plot the normalized momentum flux at various times in the
integration, and in Figure 4.4(b) we show the normalized momentum flux for all five
models after 30 hours. Figure 4.4(a) shows that the simulations have reached steady
state after 30 hours since the normalized momentum flux achieves the theoretical
value of one throughout the vertical column. Figure 4.4(b) shows that the normalized
momentum flux values are essentially identical for all five models and are very good
(compared to the linear solution defined in [33]).

4.2. Efficiency of the semi-implicit time-integrator. In this section we
study the efficiency of the semi-implicit time-integrator compared to a fast explicit
time-integrator, namely, the RK35 method [34] that we used previously with our
explicit Navier–Stokes models [17]. In addition, we compare the semi-implicit method
both with and without the Schur complement to see how much of an efficiency gain
one gets. For this study we use only SE2NC since it represents the median of all of
the models in terms of efficiency and conservation measures.
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Fig. 4.5. The eigenspectra of SE2NC for (a) case 1 with Np = 297, (b) case 2 with Np = 297,
and (c) case 3 with Np = 325 for the Schur (black circles along horizontal) and No Schur (crosses
along vertical) forms of the semi-implicit method.

Before discussing the four test cases in detail, it is important to point out once
again the differences between the Schur and No Schur systems. For set SE2NC, the
No Schur form is the system defined by (A.1)–(A.4) which, assuming NP grid points,
represents a 16N2

p matrix problem. In contrast, the Schur form is defined by (A.10)
and represents an N2

p matrix problem. The differences between these two systems go
further: for the No Schur form, the differential operators are all first-order, whereas
for the Schur form, they are second-order; this means that the two systems will have
different eigenspectra. To get a sense of this difference, we show the eigenspectra for
the No Schur and Schur forms in Figure 4.5 for all three test cases. For case 3, the
condition number for the No Schur form is κ (ANS) = 2.6×106, whereas for the Schur
form, it is κ (AS) = 2.1 × 102. Note that the eigenvalues for the No Schur form are
all imaginary, whereas for the Schur form, they are all real; this is consistent with
the eigenvalues of first-order (imaginary) and second-order (real) discrete differential
operators. While we will not address this here, this information gives insight into how
to construct optimal preconditioners.

In Figures 4.6, 4.7, and 4.8, the left panel (a) shows the wallclock time as a
function of Courant number, and the right panel (b) shows the average number of
GMRES iterations required per time-step as a function of Courant number. Even

D
ow

nl
oa

de
d 

03
/2

7/
17

 to
 1

50
.2

14
.1

82
.1

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SEMI-IMPLICIT NONHYDROSTATIC ATMOSPHERIC MODELS 3413

0 1 2 3 4
0

500

1000

1500

2000

2500

Courant Number

W
al

lc
lo

ck
 T

im
e 

(s
ec

on
ds

)

 

 

RK35
Schur
No Schur

0 1 2 3 4
0

2

4

6

8

10

12

Courant Number

G
M

R
E

S
 It

er
at

io
ns

 

 

RK35
Schur
No Schur

(a) (b)

Fig. 4.6. Case 1: Inertia-gravity waves. The (a) wallclock time and (b) number of GMRES
iterations as functions of the Courant number for 250-meter resolution with tenth-order polynomials
after 3000 seconds. The explicit Runge–Kutta method (RK35) is compared with the semi-implicit
methods with and without the Schur complements (Schur and No Schur, respectively).
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Fig. 4.7. Case 2: Density current. The (a) wallclock time and (b) number of GMRES iterations
as functions of the Courant number for 20-meter resolution with tenth-order polynomials after 900
seconds. The explicit Runge–Kutta method (RK35) is compared with the semi-implicit methods with
and without the Schur complements (Schur and No Schur, respectively).

though we list RK35 in this figure as well, the number of GMRES iterations per
time-step is zero for this method since it is a fully explicit method. In all of these
efficiency tests, the maximum Courant number reported for RK35 is the maximum
Courant number allowed by this method.

4.2.1. Case 1: Inertia-gravity waves. Figure 4.6 shows that the efficiency
(left panel) is linear for RK35 since doubling the Courant number yields a simulation
that is twice as fast. In contrast, we see that the semi-implicit results are not linear
due to the iterative solvers that may require a nonlinear increase in GMRES iterations
with increased Courant number. In Figure 4.6(a) we see that the Schur form semi-
implicit method increases its efficiency with increasing Courant number. In contrast,
the No Schur form semi-implicit method does not. In fact, the No Schur form reaches
an optimal Courant number near 3 and increases in cost beyond this value. The
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Fig. 4.8. Case 3: Linear hydrostatic mountain. The (a) wallclock time and (b) number of
GMRES iterations as functions of the Courant number for 1200-meter (in x) and 240-meter (in z)
resolution with tenth-order polynomials after 30 hours. The explicit Runge–Kutta method (RK35)
is compared with the semi-implicit methods with and without the Schur complements Schur and No
Schur, respectively).

difference in efficiency between the Schur and No Schur forms is partly due to the
difference in the sizes of the matrix problem being solved (N2

p for Schur and 16N2
p for

No Schur) but also due to the difference in the average number of GMRES iterations
required per time-step. Figure 4.6(b) shows this difference, and it is striking. Without
a Schur complement (i.e., the No Schur form), the number of GMRES iterations
increases linearly with increasing Courant number (i.e., time-step size).

4.2.2. Case 2: Density current. In Figure 4.7(a) (left panel) we see that, for
Courant numbers less than one, the efficiency of the Schur form is competitive with
that of RK35 but that the No Schur form is not. For all the Courant numbers shown,
the efficiency of the No Schur form continues to increase with increasing Courant
number; this is true for the Schur form for all the cases we studied. (We do not include
a discussion on preconditioning, but this is important in maintaining the efficiency of
the semi-implicit method; otherwise, at some time-step value, the number of GMRES
iterations will become too large, and the method loses its efficiency gains.) In the
previous test, we saw that the No Schur form reached an optimal Courant number
value, whereas here it has not. So the question is: what accounts for this difference?
Recall that this is the only test with viscosity (i.e., diffusion). In the current semi-
implicit formulation, we do not include the viscous operators in the linear implicit
operators so that we must adhere to the explicit stability limit for diffusion. This is
the reason why the maximum Courant numbers are smaller for this test than for the
previous one. (The maximum Courant numbers are found empirically.) It should be
pointed out that including the diffusion operator into the semi-implicit method is not
at all problematic for the No Schur form, but it is for the Schur form. (For the Schur
form, one would have to invert a Helmholtz-type operator for both momentum and
energy in order to construct the Schur form in terms of pressure.) Thus, for the No
Schur form, we could include viscosity in the semi-implicit operators and perhaps see
an increase in efficiency beyond Courant numbers of 3.

Figure 4.7(b) (right panel) shows that the number of GMRES iterations increases
at an accelerated rate for the No Schur form but increases only linearly for the Schur
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form. The reason why both the Schur and No Schur forms yield comparable results
is due to the small number of GMRES iterations required—these values are less than
10 iterations per time-step.

4.2.3. Case 3: Linear hydrostatic mountain. In Figure 4.8(a) (left panel)
we see that, for Courant numbers less than one, the efficiency of the Schur form is
competitive with that of RK35 but that the No Schur form is not. In fact, the No
Schur form is not competitive at all (for any Courant number) with the explicit RK35.
On the other hand, the Schur form is more efficient than the RK35, and this efficiency
continues to increase as the Courant number is increased.

Figure 4.8(b) (right panel) tells us the reason for the No Schur form not being
competitive, namely, the excessively large number of GMRES iterations. For the No
Schur form, for Courant numbers beyond 1.5, the number of GMRES iterations has
already climbed to 20 and continues to increase up to 50 for a Courant number of 3.
Therefore, for the No Schur form, any efficiency gains offered by a larger time-step are
offset by a larger implicit solver iteration count. In contrast, the Schur form exhibits
efficiency gains for increasing Courant number, even though the number of GMRES
iterations per time-step is much larger than for the other tests when we take into
account the modest Courant numbers being used. The difference between this test
and the others is that NRBCs are employed. It should be noted that this test is
very typical of the class of problems that must be run efficiently in operational-type
nonhydrostatic mesoscale atmospheric modeling since almost all simulations require
the use of NRBCs; efforts are currently underway to develop preconditioners that
specifically target this class of boundary conditions.

4.3. Condition for extracting the Schur complement. Our aim in this
section is not to provide a classical stability analysis of the semi-implicit method
(e.g., see [2] for such an analysis) but rather to show that, although we use five
different variations of the governing equations, they all satisfy the identical condition
for extracting the Schur complement.

To show that the semi-implicit form of all five equation sets is stable requires
going back to the original time-integration statement of the problem, that is,

∂q

∂t
= {N(q)}+ [L(q)].

Recall that in an IMEX approach, we treat the nonlinear termsN(q) explicitly and the
linear terms L(q) implicitly. At this point we assume a system of ordinary differential
equations where the right-hand-side operators have already been discretized in space
in a method of lines approach. Recall that we chose the linear operator to contain
the fastest waves in the system, namely, the acoustic and gravity (i.e., buoyancy)
waves. Furthermore, recall that the nonlinear operator does not contain these waves
any more since they have been subtracted. Thereby the nonlinear operator contains
only the advective waves that are assumed to be slower than the acoustic and gravity
waves (since we are assuming that the flow remains subsonic).

Thus, in order to maintain stability, we require that the Courant number as-
sociated with the advective waves satisfies the CFL condition of standard explicit
time-integrators (in this case, we are using the explicit BDF2; see [23]). Since the
linear operator is implicit, then the Courant number with respect to the acoustic and
gravity waves is unlimited. In fact, we are using BDF2 for the implicit part that is
both A-stable (stable for all values of Z = λΔt in the left-hand plane, where λ is the
eigenvalue of the right-hand-side operator that includes every term in the equations
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except for the time-derivative and Δt is the time-step) and L-stable (the amplifica-
tion function goes to zero for Z → −∞). This means that as long as we adhere to
a modified explicit CFL condition for the advective waves, then we are guaranteed
stability; this is certainly true for the full system, i.e., the No Schur form (see, e.g.,
[11] where it is shown how the implicit linear part modifies the explicit stability region
of IMEX-BDF2). For the Schur form, we have to perform further analysis.

Assuming that we are adhering to the (modified) explicit CFL limit of the slow-
moving waves, the only possibility for instabilities to occur stems from the conversion
of the full system (i.e., No Schur) to the reduced or Schur form. For example, for SE1,
to extract the Schur complement requires the construction of the matrix C1 given in
(3.12). This is also true for SE2NC (see (A.7)), SE2C (see (B.9)), SE3 (see (C.9)),
and SE4 (see (D.6)). The only possibility for instabilities to occur is if these matrices
become singular at any point (z).

4.3.1. SE1. For SE1, we see that this can occur if and only if

c1 ≡ 1 + (αλ)2
g

θ0

dθ0
dz

= 0.

Using the definition of the Brunt–Väisälä frequency,

N 2 = g
d

dz
(ln θ0(z)),

the stability condition can be rewritten in the form

1 + (αλ)2N 2 = 0 ↔ N 2 = − 1

(αλ)2
.

With the assumption of a stable stratified reference atmosphere dθ0
dz > 0, this condition

always fails.

4.3.2. SE2NC. The analysis for SE2NC is identical since c2NC = c1.

4.3.3. SE2C. For SE2C, instabilities can occur if and only if

c2C ≡ 1 + (αλ)2
g

G0

dG0

dz
= 0.

Since G0 = Θ0

ρ0
= θ0, then we see that c2C can never be zero because it is the same

expression as for SE1 and SE2NC.

4.3.4. SE3. For SE3 we need to show that for instabilities to arise, the following
statement must be true:

c3 ≡ 1 + (αλ)2
g

h0 − φ

dh0

dz
= 0.

Since h0 = cpT0 + φ, then this expression becomes

c3 = 1 + (αλ)2
g

cpT0

(
cp

dT0

dz
+ g

)
.

Using the definition of potential temperature T0 = θ0π0 and using the definition of
hydrostatic balance dπ0

dz = − g
cpθ0

allows us to write the above expression as

c3 = 1 + (αλ)2
g

cpθ0

dθ0
dz

,

thereby proving that c3 is, in fact, equal to the terms for SE1, SE2NC, and SE2C.
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4.3.5. SE4. For SE4 it is not clear that the same analysis holds since the ex-
pression that we have to analyze is

(4.1) c4 ≡ 1 + (αλ)2
(

1

γP0

dP0

dz
− 1

ρ0

dρ0
dz

)
.

However, writing the pressure as

P0(z) = PA

(
ρ0(z)Rθ0(z)

PA

)γ

and differentiating and rearranging yields

1

γP0

dP0

dz
=

1

θ0

dθ0
dz

+
1

ρ0

dρ0
dz

that, when substituted into (4.1), yields

c4 = 1 + (αλ)2
g

θ0

dθ0
dz

,

which is identical to the expression for SE1, SE2NC, SE2C, and SE3; thus c4 can
never be zero. Therefore, as one would expect, the stability condition for all the
models is identical—one would expect this because, although the five equation sets
are written differently, they represent the same dynamical system and must have the
same stability condition.

This brief analysis proves stability of the semi-implicit method using the Schur
form, at least when a hydrostatically balanced reference state q0 is used in the semi-
implicit formulation. Other reference states can also be used as long as the matrix C
remains nonsingular, but the proof of stability is more complicated.

5. Conclusions. We have presented semi-implicit formulations of five different
forms of the compressible NSE used in nonhydrostatic atmospheric modeling. These
equations have typically been solved either explicitly or semi-implicitly along only
the vertical direction; the only exceptions are the three models mentioned in the
Introduction, where two are global models and the other is a spectral model. The
common reason given for not solving the equations semi-implicitly in all directions,
as we have done here, is that this approach is not competitive with explicit forms.
Our experiences have shown otherwise, and in this work we show that this is, in fact,
the case for all of the equations being used today, especially if the Schur complement
is extracted. If the full system (i.e., the No Schur form) is solved instead, then it
is still faster than fast explicit methods but only by a small margin; this, however,
we were able to show only in the special case when either reflecting (no-flux) or
periodic boundary conditions were used. The true advantage of the semi-implicit
formulation can be realized only if the Schur complement is used; this we were able to
show for all types of boundary conditions, including the more realistic (in mesoscale
nonhydrostatic atmospheric modeling) NRBCs. In addition, we show that choosing
one form of the NSE over another can be quite advantageous if the most efficient form
of the equations is sought. Specifically, we found that the equation sets in conservation
(flux) form are not as efficient as those that are in nonconservation form. While it is
important to conserve as many variables as possible, we have found that those sets
that use density as the mass variable conserve mass quite well; only set 3, which uses
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total energy, was able to conserve both mass and energy up to machine precision.
It should be mentioned that, for equations that are not strictly energy conserving,
slight modifications can be made to make them so (e.g., writing the advection terms
in rotation form). Furthermore, the currently used NRBCs adversely affect both
accuracy and conservation, which motivates the need for better NRBCs that are, at
the very least, high-order. Set 1, which does not use density as its mass variable, was
the worst in terms of mass conservation, regardless of the type of boundary conditions
used.

Comparing the Schur and No Schur semi-implicit forms, we see that the Schur
form is far more efficient than explicit methods and that this efficiency increases with
increasing Courant number (i.e., time-step). However, the No Schur form reaches
an optimal time-step (Courant number) with the cost then increasing with increasing
time-step. The reason that the Schur form beats the explicit method so easily, whereas
the No Schur form struggles, is partly due to the different dimension sizes of the
linear matrix problem that both methods solve. For the two-dimensional Navier–
Stokes equations, the No Schur form is 16 times larger than the Schur form; in three
dimensions, this increases to a factor of 25. The other reason is due to the difference
in the number of GMRES iterations required by the two semi-implicit forms; the
number of iterations varies from test case, but the general trend observed is that,
on average, the No Schur form requires almost twice as many GMRES iterations
per time-step as the Schur form. This result shows that one must always seek the
Schur complement form, and we are currently working on generalizing this study to
include IMEX Runge–Kutta methods and fully implicit methods into this framework.
Furthermore, in the future, we shall study the impact of various preconditioners to
see if we can decrease the number of GMRES iterations for both the Schur and No
Schur forms.

Appendix A. SE2NC. The linear operator for SE2NC is

L(q) = −

⎛⎜⎜⎜⎜⎝
w dρ0

dz + ρ0∇ · u

1
ρ0
∇P ′ + g ρ′

ρ0
k

w dθ0
dz

⎞⎟⎟⎟⎟⎠
with the pressure defined as

P ′ =
γP0

ρ0
ρ′ +

γP0

θ0
θ′.

Applying the semi-implicit method to SE2NC yields

ρtt = α

(
ρ̂− λwtt

dρ0
dz

− λρ0∇ · utt

)
+ βρ̂b,(A.1)

utt = α

(
û− λ

1

ρ0
∇Ptt − λg

ρtt
ρ0

k

)
+ βûb,(A.2)

θtt = α

(
θ̂ − λwtt

dθ0
dz

)
+ βθ̂b,(A.3)

Ptt = G0ρtt +H0θtt,(A.4)

where G0 = γP0

ρ0
and H0 = γP0

θ0
; the system represented by (A.1)–(A.4) is the No
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Schur form of SE2NC. Substituting (A.3) into (A.4) yields

(A.5) ρtt =
1

G0

[
Ptt −H0α

(
θ̂ − λwtt

dθ0
dz

)
−H0βθ̂b

]
.

We can now substitute (A.5) into (A.2) in order to express the momentum as a
function only of pressure. Upon applying this substitution, we get
(A.6)

utt = P 2NC

[
(αû+ βûb) + αλ

gH0

ρ0G0

(
αθ̂ + βθ̂b

)
k − αλ

1

ρ0
∇Ptt − αλ

g

ρ0G0
Pttk

]
,

where

(A.7) C2NC =

(
1 0
0 1

c2NC

)
with

(A.8) c2NC = 1 + (αλ)2
g

θ0

dθ0
dz

,

and P 2NC = PC2NC , where we have included the no-flux boundary conditions
through the projection matrix P .

Substituting (A.1) and (A.3) into (A.4) yields

(A.9) Ptt = G0 (αρ̂+ βρ̂b) +H0

(
αθ̂ + βθ̂b

)
− αλF0wtt − αλρ0G0∇ · utt

where F0 = G0
dρ0

dz +H0
dθ0
dz . The last step is to substitute (A.6) into (A.9) that yields

Ptt − (αλ)2F0k ·
[
P 2NC

(
1

ρ0
∇Ptt +

g

ρ0G0
Pttk

)]
− (αλ)2G0ρ0∇ ·

[
P 2NC

(
1

ρ0
∇Ptt +

g

ρ0G0
Pttk

)]
= G0 (αρ̂+ βρ̂b) +H0

(
αθ̂ + βθ̂b

)
−αλF0k ·

[
P 2NC

(
(αû + βûb) + αλ

gH0

ρ0G0

(
αθ̂ + βθ̂b

)
k

)]
−αλG0ρ0∇ ·

[
P 2NC

(
(αû + βûb) + αλ

gH0

ρ0G0

(
αθ̂ + βθ̂b

)
k

)]
(A.10)

which is a pseudo-Helmholtz equation for Ptt and is the Schur form of SE2NC.

Appendix B. SE2C. The linear operator for SE2C is

L(q) = −

⎛⎜⎜⎜⎜⎜⎝
∇ ·U

∇P ′ + gρ′k

∇ ·
(

Θ0

ρ0
U
)

⎞⎟⎟⎟⎟⎟⎠
with the pressure linearized as

P ′ =
γP0

Θ0
Θ′.
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Upon applying the semi-implicit method to SE2C and, letting F0 = γP0

Θ0
and G0 = Θ0

ρ0
,

we get

ρtt = α (ρ̂− λ∇ ·U tt) + βρ̂b,(B.1)

U tt = α
(
Û − λ∇Ptt − λgρttk

)
+ βÛ b,(B.2)

Θtt = α
(
Θ̂− λ∇ · (G0U tt)

)
+ βΘ̂b,(B.3)

Ptt = F0Θtt.(B.4)

Equations (B.1)–(B.4) represent the full system of SE2C (i.e., the No Schur form).
Let us now derive the Schur form.

Let us first substitute (B.3) into (B.4) to get

(B.5) Ptt = F0α
(
Θ̂− λ∇ · (G0U tt)

)
+ F0βΘ̂b.

Multiplying (B.1) by G0 and subtracting from (B.3) to eliminate the term G0∇ ·U tt

yields

(B.6) Θtt −G0ρtt =
(
αΘ̂ + βΘ̂b

)
−G0 (αρ̂+ βρ̂b)− αλWtt

dG0

dz
.

Substituting (B.4) into (B.6), to eliminate Θtt, gives

(B.7) ρtt =
1

F0G0
Ptt + αλWtt

1

G0

dG0

dz
− 1

G0

(
αΘ̂ + βΘ̂b

)
+ (αρ̂+ βρ̂b) .

Note that substituting (B.7) into (B.2) allows us to solve for U tt as a function of Ptt

such as

(B.8)

U tt = P 2C

[(
αÛ + βÛ b

)
− αλ∇Ptt − αλ

g

F0G0
Pttk

− αλgk

(
(αρ̂+ βρ̂b)−

1

G0

(
αΘ̂ + βΘ̂b

))]
,

where P 2C = PC2C with

(B.9) C2C =

(
1 0
0 1

c2C

)
,

and c2 = 1 + (αλ)2 g
G0

dG0

dz , where 1
G0

dG0

dz = ( 1
Θ0

dΘ0

dz − 1
ρ0

dρ0

dz ). Finally, substituting

(B.8) into (B.5) yields

Ptt − (αλ)2F0∇G0 ·
[
P 2C

(
∇Ptt +

g

F0G0
Pttk

)]
− (αλ)2F0G0∇ ·

[
P 2C

(
∇Ptt +

g

F0G0
Pttk

)]
= F0

(
αΘ̂ + βΘ̂b

)
−αλF0∇ ·

[
G0P 2C

((
αÛ + βÛ b

)
− αλgk (αρ̂+ βρ̂b) + αλ

g

G0
k
(
αΘ̂ + βΘ̂b

))]
,

which is a pseudo-Helmholtz equation for Ptt and is the Schur form of SE2C.
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Appendix C. SE3. The linear operator for SE3 is

L(q) = −

⎛⎜⎜⎜⎜⎝
∇ ·U

∇P ′ + ρ′gk

∇ · (h0U)

⎞⎟⎟⎟⎟⎠
with the pressure defined as

P ′ = (γ − 1) (E′ − ρ′φ) ,

and h0 = E0+P0

ρ0
is the reference enthalpy where E0, P0, and ρ0 are the hydrostatically

balanced reference total energy, pressure, and density, respectively. Upon applying
the semi-implicit method to SE3, we arrive at the following semi-discrete problem:

ρtt = α (ρ̂− λ∇ ·U tt) + βρ̂b,(C.1)

U tt = α
(
Û − λ∇Ptt − λρttgk

)
+ βÛ b,(C.2)

Ett = α
(
Ê − λ∇ · (h0U tt)

)
+ βÊb,(C.3)

Ptt = (γ − 1) (Ett − φρtt) .(C.4)

The system represented by (C.1)–(C.4) is the No Schur form of SE3. Let us now
derive the Schur form.

Substituting (C.1) and (C.3) into (C.4) yields

(C.5)
Ptt =(γ − 1)

[
(αÊ + βÊb)− αλh0∇ ·U tt − αλ∇h0 ·U tt

]
− φ(γ − 1) [(αρ̂+ βρ̂b)− αλ∇ ·U tt] .

Multiplying (C.1) by h0 and subtracting from (C.3) to eliminate the term h0∇ ·U tt

yields

(C.6) Ett − h0ρtt = (αÊ + βÊb)− h0(αρ̂+ βρ̂b)− αλWtt
dh0

dz
.

Next, substituting (C.6) into (C.4) to eliminate Ett and rearranging gives

(C.7) ρtt =
1

h0 − φ

[
1

(γ − 1)
Ptt + αλWtt

dh0

dz
− (αÊ + βÊb) + h0(αρ̂+ βρ̂b)

]
,

which can now be substituted into (C.2) and solved for U tt to yield

(C.8)

U tt = P 3

[
(αÛ + βÛ b)− αλ∇Ptt − αλ

g

(γ − 1)(h0 − φ)
Pttk

− αλ
g

h0 − φ

(
h0(αρ̂+ βρ̂b)− (αÊ + βÊb)

)
k

]
,

where

(C.9) C3 =

(
1 0
0 1

c3
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with

(C.10) c3 = 1+ (αλ)2
g

h0 − φ

dh0

dz
.

Finally, substituting (C.8) into (C.5) yields

Ptt − (αλ)2(γ − 1)(h0 − φ)∇ ·
[
P 3

(
∇Ptt +

g

(γ − 1)(h0 − φ)
Pttk

)]
− (αλ)2(γ − 1)∇h0 ·

[
P 3

(
∇Ptt +

g

(γ − 1)(h0 − φ)
Pttk

)]
= (γ − 1)

[
(αÊ + βÊb)− φ(αρ̂+ βρ̂b)

]
− αλ(γ − 1)(h0 − φ)∇ ·

[
P 3

(
(αÛ + βÛ b)− αλ

gh0

h0 − φ
(αρ̂+ βρ̂b)k

+ αλ
g

h0 − φ
(αÊ + βÊb)k

)]

− αλ(γ − 1)∇h0 ·
[
P 3

(
(αÛ + βÛ b)− αλ

gh0

h0 − φ
(αρ̂+ βρ̂b)k

+ αλ
g

h0 − φ
(αÊ + βÊb)k

)]
,

which is a pseudo-Helmholtz equation for Ptt and is the Schur form of SE3.

Appendix D. SE4. The linear operator for SE4 is

L(q) = −

⎛⎜⎜⎜⎜⎝
w dρ0

dz + ρ0∇ · u

1
ρ0
∇P ′ + g ρ′

ρ0
k

w dP0

dz + γP0∇ · u

⎞⎟⎟⎟⎟⎠ .

Upon applying the semi-implicit method to SE4, we arrive at the following semi-
discrete problem:

ρtt = α

(
ρ̂− λwtt

dρ0
dz

− λρ0∇ · utt

)
+ βρ̂b,(D.1)

utt = α

(
û− λ

1

ρ0
∇Ptt − λg

ρtt
ρ0

k

)
+ βûb,(D.2)

Ptt = α

(
P̂ − λwtt

dP0

dz
− λγP0∇ · utt

)
+ βP̂b.(D.3)

The system described by (D.1)–(D.3) is the No Schur form of SE4. Let us now derive
the Schur form.

Multiplying (D.1) by γP0, subtracting (D.3) multiplied by ρ0, and rearranging
yields
(D.4)

ρtt =
1

γP0

[
ρ0Ptt − ρ0

(
αP̂ + βP̂b

)
+ γP0 (αρ̂+ βρ̂b) + αλwtt

(
ρ0

dP0

dz
− γP0

dρ0
dz

)]
.
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Substituting (D.4) into (D.2) yields

(D.5)

utt = P 4

[
(αû+ βûb) + αλgk

(
1

γP0
(αP̂ + βP̂b)−

1

ρ0
(αρ̂+ βρ̂b)

)

− αλ
1

ρ0
∇Ptt − αλ

g

γP0
Pttk

]
,

where P 4 = PC4 and

(D.6) C4 =

(
1 0
0 1

c4

)
with

(D.7) c4 = 1 + (αλ)2g

(
1

γP0

dP0

dz
− 1

ρ0

dρ0
dz

)
.

Substituting (D.5) into (D.3) yields

Ptt − (αλ)2
dP0

dz
k ·
[
P 4

(
1

ρ0
∇Ptt +

g

γP0
Pttk

)]
− (αλ)2γP0∇

·
[
P 4

(
1

ρ0
∇Ptt +

g

γP0
Pttk

)]
= (αP̂ + βP̂b)− αλ

dP0

dz
k ·
[
P 4

(
(αû + βûb)

+αλgk

(
1

γP0
(αP̂ + βP̂b)−

1

ρ0
(αρ̂+ βρ̂b)

))]

−αλγP0∇ ·
[
P 4

(
(αû + βûb) + αλgk

(
1

γP0
(αP̂ + βP̂b)−

1

ρ0
(αρ̂+ βρ̂b)

))]
,

which is a pseudo-Helmholtz equation for Ptt and is the Schur form of SE4.
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