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β-decay rates of 121–131Cs in the microscopic interacting boson-fermion model
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β-decay rates of 121–131Cs have been calculated in the framework of the neutron-proton interacting boson-
fermion model (IBFM-2). For odd-A nuclei, the decay operator can be written in a relatively simple form in terms
of the one-nucleon transfer operator. Previous studies of β decay in IBFM-2 were based on a transfer operator
obtained by using the number operator approximation (NOA). In this work a new form of the one-nucleon transfer
operator, derived microscopically without the NOA approximation, is used. The results from both approaches are
compared and show that the deviation from experimental data is reduced without using the NOA approximation.
Indications about the renormalization of the Fermi and Gamow-Teller matrix elements are discussed. This is
a further step toward a more complete description of low-lying states in medium and heavy nuclei which is
necessary to compute reliable matrix elements in studies of current active interest such as double-β decay or
neutrino absorption experiments.
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I. INTRODUCTION

Weak interaction is present in many particle physics
processes, some of them with a high impact in nuclear
astrophysics. Even when the Standard Model describes this
fundamental interaction reasonably well, there are still some
unanswered questions related to it as, for instance, the nature
of the neutrino and its mass. Weak interaction affects all
leptons and quarks, in contrast to the strong interaction, which
only affects quarks, or the electromagnetic interaction which
only affects charged particles. Thus, the universal character of
this interaction makes relevant its study. In nuclear physics,
β decay is the most common manifestation of the weak
interaction and is extremely significant because it is one of the
main mechanisms that atomic nuclei have to reach stability.
Alternatively there are two processes related to β decay which
still require further investigation. The first one is related to the
gallium neutrino source experiments, where the ratio between
the measured and calculated 71Ga cross sections for absorbing
51Cr neutrinos is smaller than unity, more widely known as the
gallium anomaly. The second one is the double-β decay. Here
both the neutrinoless and two-neutrino modes are currently
of great interest for particle and nuclear physics. Lately an
active discussion arose on a long-standing problem in nuclear
physics, which is the effective value of the axial coupling
constant gA. It is important then to rely on a nuclear structure
model that is able to provide a unified framework to compute
the necessary matrix elements involved in all these processes.

The interacting boson model (IBM) [1] has demonstrated
thoroughly its capacity to describe spectra, electromagnetic
transitions and moments and other properties of the low-lying
collective states in even-even medium and heavy nuclei. By
coupling a fermion to the system of bosons, which describes
the states of even-even nuclei, the low-lying states of adjacent
odd-A nuclei can be obtained. This extension of the model is
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called the interacting boson-fermion model (IBFM) [2]. The
IBM can be formulated without distinguishing neutron and
proton bosons (IBM-1) [3] or introducing the neutron-proton
degree of freedom (IBM-2) [4]. Accordingly the IBFM-1 [5]
does not distinguish between neutrons and protons, while
IBFM-2 [6] does, which makes it suitable to compute β-decay
rates between odd-even nuclei. This decay is modeled in the
IBM framework as the combination of a neutron (proton)
stripping and proton (neutron) pickup reactions for the β−
(β+, electron capture) decay. Then, the explicit form of the
one-nucleon transfer operator [7] is needed. Such an operator
was originally derived within the generalized seniority (GS)
scheme [8] using the number operator approximation (NOA)
[9] by obtaining the image of the shell-model one nucleon
(proton or neutron) creation operator in the IBFM-2 space,
following the Otsuka, Arima & Iachello (OAI) method [10].
The first proposal to study β-decay rates in this scheme was
done by Dellagiacoma and Iachello [11]. Later on similar
studies were presented by Zuffi et al.[12] using the same
formalism and transfer operator. In these last studies, the
parameters in the boson-fermion Hamiltonian (single-particle
energies for the odd fermion and boson-fermion interaction
parameters) were fitted for each nucleus independently so as
to reproduce its spectroscopic properties and β-decay rates.

Very recently the IBM one-nucleon transfer operator has
been microscopically rederived by suppressing the use of the
NOA approximation [13]. The new operator was originally
checked by calculating one-nucleon transfer intensities. A
more demanding test to the new operator is to use it for
calculating β-decay transition rates. In this work such a study
is presented. In contrast to the work of Zuffi and collaborators,
our aim is not to give the best individual description of each
nucleus but to show whether the effects of removing the NOA
approximation in the calculation of β-decay rates improves the
results. Thus, the study is performed without any parameter
fitting, all parameters for even-even core nuclei, single-particle
energies for fermions, and boson-fermion interaction were
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taken from a previous systematic work [14]. In this spirit, a
calculation of β-decay rates of 121–131Cs is presented here using
the new transfer operator. The results are compared against
those obtained using the NOA approximation (under the same
conditions) and the experimental values. Finally estimations
of the renormalizations of the matrix elements with respect to
those calculated using the free-nucleon single-particle matrix
elements are performed.

The article is structured as follows. In Sec. II, the formalism
for β decay in IBM is briefly reviewed. In Sec. III, the cal-
culated log f t values are presented and compared with those
obtained using the NOA approximation and the experimental
ones. Finally, in Sec. IV, the conclusions of this work are
briefly discussed.

II. FORMALISM

We will not enter into details of the IBFM-2 model which
can be found elsewhere [2,6,14]. Instead we concentrate on
the description of the β-decay operator and on how the f t
values are calculated. For this purpose we follow the formalism
developed in Ref. [11].

We use the following expression to obtain the f t values (in
seconds):

f t = 6163

M2
F + (

gA

gV

)2
M2

GT

s, (1)

where the ratio gA/gV = −1.2756(30) [15] is adopted and MF

and MGT are the matrix elements of the Fermi and Gamow-
Teller operators, TF and TGT, respectively, between the states of
the parent and daughter nuclei. These operators can be written
for the β− decay in terms of the transfer operators c

†
ρ,i ,c̃ρ,i

(ρ = ν for neutrons and ρ = π for protons) as

TF = −
∑

i

ĵi[Aπ,ic
†
π,i × Aν,i c̃ν,i]

(0), (2)

TGT,μ =
∑
i,i ′

σii ′[Aπ,ic
†
π,i × Aν,i ′ c̃ν,i ′ ]

(1)
μ , (3)

where the index i denotes a particular shell, specified by the
standard single-particle level quantum numbers ni , li , 1

2 , ji , and
mi , and ĵi = √

2ji + 1. The β+ and electron-capture decay
operators can be obtained by exchanging π and ν. The above
sums run over the single-particle orbits included in the model
space and σii ′ is given by

σii ′ = − 1√
3

〈
li

1

2
; ji‖�σ‖li ′ 1

2
; ji ′

〉
δli li′
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√

2

{ 1
2

1
2 1

ji ′ ji l

}
δli li′ , (4)

where �s = �σ/2 is the spin operator. The transfer operators c
†
ρ,i

read

c
†
ρ,i = ηρ,2Nρ,1,ji

ηρ,2N,0,0
a
†
ρ,i + √

Nραρ,i
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(ji )
mi

+
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√
5βρ,i ′i
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(ji )
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−
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√
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mi

, (5)

where the ηρ,nρ,ν̃,J , αρ,i , and βρ,i ′i quantities are defined in
[13] and Nρ is the number of bosons of type ρ. We give for
completeness the expression of the transfer operator obtained
under the NOA approximation

c
†
ρ,i =

√
1 − α2

ρ,i

Nρ


ρ,e

a
†
ρ,i + αρ,i√


ρ,e
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(ji )
mi

+
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ρ,i
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√
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−
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, (6)

where 
ρ,e = ∑
i α

2
ρ,i ĵi

2
/2 and Kβ,ρ =

√∑
ii ′ β

2
ρ,i ′i .

The coefficients Aρ,i in Eqs. (2) and (3) allow us to fix a
specific normalization for the transfer operators. In this work
they were fixed by imposing the Macfarlane sum rule [16]∑

αoJo

〈αoJo‖Aρ,ic
†
ρ,i‖αeJe〉2 = (2ji + 1)u2

ρ,i , (7)

when the even-even nucleus is the core of the odd-even nu-
cleus, whose states are denoted by αeJe and αoJo respectively.
Otherwise the following Macfarlane sum rule is used:∑

αoJo

〈αeJe‖Aρ,ic
†
ρ,i‖αoJo〉2 = (2ji + 1)v2

ρ,i , (8)

where ui and vi are the occupation probabilities obtained from
a BCS calculation. These quantities were used also to fix the
values of αρ,i and βρ,i ′i as

αρ,i = vρ,i

√

ρ,e

Nρ

, (9)

βρ,ii ′ = (uρ,ivρ,i ′ + uρ,i ′vρ,i)Qii ′ , (10)

where Qii ′ are the single-particle matrix elements of the
quadrupole operator.

To evaluate the matrix elements MF and MGT we devel-
oped FORTRAN codes which make use of standard reduction
formulas derived for tensor operators [17]

MF = 〈D; JD‖TF‖P ; JP 〉/
√

2JP + 1

= 1

2JP + 1

∑
i,I

(−1)JP +ji+JI δJP JD

×〈D; JD‖Aπ,ic
†
π,i‖I ; JI 〉〈I ; JI‖Aν,i c̃ν,i‖P ; JP 〉,

(11)
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FIG. 1. Excitation spectra of Cs and Xe isotopes for positive parity. The energy of the first 7
2

+
state was taken as the zero of the energy.

Lines correspond to calculated energies, and experimental data (symbols) were extracted from [18].

MGT = 〈D; JD‖TGT‖P ; JP 〉/
√

2JP + 1

=
∑
ii ′I

(−1)JP +JD+li+ji+3/2
√

6
ĵi ĵi ′

ĴP

×
{

1
2

1
2 1

ji ′ ji l

}{
ji ji ′ 1
JP JD JI

}
δli li′

× 〈D; JD‖Aπ,ic
†
π,i‖I ; JI 〉〈I ; JI‖Aν,i ′ c̃ν,i ′ ‖P ; JP 〉,

(12)

where P , D, and I stand for parent, daughter, and interme-
diate nuclei. The intermediate nucleus is the even-even one
adjacent to the odd-even nuclei involved. It is understood
that parity is conserved, since we are working on allowed
transitions.

III. RESULTS AND DISCUSSION

We have applied the above formalism to the isotopic chain
121–131Cs. This chain was studied in [14], the excitation spectra
and some electromagnetic properties experimentally measured
at that time were successfully reproduced. We have taken
from [14] the parameters for the even-even core nuclei, the
single-particle energies, and the boson-fermion interaction pa-
rameters. It is worth noting that in those calculations there was
a truncation in the number of core states, retaining only those
below 3 MeV. In the present study we have followed the same
prescription to keep the same values for the boson-fermion
interaction parameters. In Fig. 1 the calculated excitation
energies are shown along with the updated experimental values
for the Cs and Xe isotopes studied. We can see that the present
experimental picture that includes new data is well reproduced
by the old systematic calculation confirming the predictive
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TABLE I. Log f t values of the β decay of 121–131Cs for the
“Truncated” calculations.

β+ transition Jg.s. → Jf log f t

With Without Expt.
NOA NOA

3/21 → 5/21 6.152 6.124 5.5 (3)
121Cs →121Xe 3/21 → 1/21 6.654 6.608 6.1 (3)

3/21 → 3/21 5.646 4.570 6.2 (3)
123Cs →123Xe 1/21 → 1/21 5.894 4.673 5.62 (13)

1/21 → 3/21 6.059 5.979 5.65 (6)
125Cs →125Xe 1/21 → 1/21 6.506 5.116 ≈5.6

1/21 → 3/21 6.355 6.216 ≈6.76
1/21 → 1/21 5.004 5.524 6.53 (6)
1/21 → 1/22 5.741 4.867 5.558 (11)

127Cs →127Xe 1/21 → 3/21 8.526 7.961 6.791 (24)
1/21 → 3/22 7.156 7.472 7.574 (20)
1/21 → 3/23 7.459 8.017 8.83 (10)
1/21 → 3/24 7.276 7.280 6.306 (12)
1/21 → 1/21 4.900 5.056 6.24 (6)
1/21 → 1/22 5.937 5.314 5.6 (4)

129Cs →129Xe 1/21 → 3/21 8.989 8.313 7.28 (20)
1/21 → 3/22 5.885 5.837 7.1 (3)
1/21 → 3/23 6.263 6.184 6.4 (5)

131Cs →131Xe 5/21 → 3/21 5.676 5.815 5.548(20)
rms 0.945 0.843

power of the model. This ensures that the boson-fermion
parameters obtained in [14] are robust.

With the obtained wave functions, we have calculated the
log f t values using the IBM one-nucleon transfer operator
with and without the NOA approximation as shown in Table I.
Our goal was to confirm if, under the same conditions, the
new operator without NOA works better than the one that uses
NOA. In addition, for each case we made two calculations.
In one of them the states considered in the odd nucleus to
impose the Macfarlane sum rules for the transfer operator
were below 3 MeV consistently with the even-even core
calculation. The other one considers all the resulting states
in the odd nucleus (no cutoff in energy). The Macfarlane sum
rules, whose imposition fixes different normalization to the
involved transfer operators, provides different values for the
log f t , even when the nuclear states are exactly the same in
both types of calculations. To study the global goodness of
each calculation, we computed the rms deviation from the
experimental values presented in Table I. The “Truncated”
calculation produces an rms value equal to 0.843 for the
calculation without the NOA approximation, while the “Full”
calculation (not shown in the table) brings the value 1.427.
In the case of the “Truncated” calculation using the NOA ap-
proximation the rms value is slightly higher and equal to 0.945.
The conclusion was that a consistent calculation with the same
cutoff energy in the even-even and odd-even systems is better
than including as many states in the odd system as resulting
from the coupling. We found that 3 MeV is a reasonable choice
to fix the cutoff in the odd-even system, just as it was done
for the core states, because the single-particle states included
in the calculation are in this range. The bottom line is that the
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FIG. 2. Log f t values from 1/2+
1 states in Cs isotopes to (a) 1/2+

1

and (b) 3/2+
1 states in Xe isotopes.

truncation scheme without the NOA approximation improves
the overall agreement. All the results discussed below were
obtained with the energy cutoff at 3 MeV.

In Table I we can observe that the values obtained with and
without the NOA approximation are close in general. From
the global fit, however, it is clear by looking at the rms that the
calculations performed without NOA give better results than
the old one obtained within the NOA approximation. When we
compare the calculated log f t values with the experimental
values, the major discrepancy can be found in the decay
3/2+

1 → 3/2+
1 in 121Cs →121Xe for the calculation without

the NOA approximation. When the NOA approximation is
used, the main differences are found in the decays 1/2+

1 →
3/2+

1 in 127Cs →127Xe and 129Cs →129Xe. The origin of these
differences can be the absence of higher-lying single-particle
orbitals for neutrons in the calculations. For instance the
inclusion of the 1h9/2 orbital would improve the quality of the
calculated values, as was mentioned in [14] in the discussion
about the B(M1) and magnetic moments.

In Fig. 2 we have plotted the calculated and experimental
log f t values for the decay from the 1/2+

1 states of Cs isotopes
to the 1/2+

1 and 3/2+
1 states of Xe isotopes quoted in Table I

with and without the NOA approximation. The structure of
both the Cs and the Xe isotopes in the region studied in this
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work is rather complicated as shown in Fig. 1. Despite this
complication, we can observe that the calculated values for
the transitions 1/2+

1 → 1/2+
1 without the NOA approximation

follow nicely the experimental trend. In contrast the values
obtained with the NOA approximation show a rather erratic
behavior when compared with the experimental points. The
origin of this behavior is unclear and difficult to single out
in such a complex and realistic calculation like this one, but
the results support the removal of unnecessary approximations
like NOA. In the case of the transitions 1/2+

1 → 3/2+
1 , both

calculations follow the experimental trend, but again the
calculation without NOA gets closer values to the experimental
ones. These facts confirm the goodness of the calculations
without NOA, what encourages us to obtain the complete
boson-fermion interaction without this approximation.

In addition, some effects coming from higher-order cor-
rections to the β-decay operator may also be relevant, as
discussed in [19–21] in the context of the shell model. Effective
one-body operators for the GT transition have been proposed
there to account phenomenologically for core polarization,
isobar and meson exchange currents, and relativistic effects,
all of them theoretically evaluated by Towner and Khanna for
several isotopes [22]. In these cases a single-particle model is
assumed and transitions where two orbital angular momentum
units are changed, known as �-forbidden transitions [23–25],
are described by the introduction of a new term of the form
[Y (2) × �σ ]

(1)
. In our case, IBFM-2 also considers a single nu-

cleon coupled to a core described with interacting bosons and
eventually similar higher-order corrections can be introduced,
since here we are faced with transitions 3s1/2 → 2d3/2 in the
decay of 1/2+

1 states in ACs to 3/2+
1 states in AXe which

cannot be accounted for properly. Instead we have estimated
renormalization factors for the calculated matrix elements of
the allowed transitions to obtain reasonable calculated values
compared with the experimental ones. We have obtained that a
renormalization factor of 1/3 for the Fermi and Gamow-Teller
matrix elements in the transitions 1/2+

1 → 1/2+
1 produces

close results to the data. The dominant single-particle tran-
sition here is 3s1/2 → 3s1/2 which is �-allowed. In contrast,
for the transitions 1/2+

1 → 3/2+
1 a renormalization factor of

2 for the Gamow-Teller matrix elements is suitable to match
the experimental data. The dominant single-particle transition
in this case is 3s1/2 → 2d3/2 which is �-forbidden. In Fig. 2
we show the log f t values affected by these renormalizations
factors. It seems that for �-allowed transitions a quenching in
the nuclear matrix elements, both Fermi and Gamow-Teller,
is needed, while for �-forbidden transitions the Gamow-Teller
nuclear matrix elements are calculated too small and need
an enhancement. This could be partially due to the lack of
higher-order terms in the Gamow-Teller operator, as discussed
above, but probably mainly due to the limited model space. In
Ref. [24] within the shell model it is shown that increasing the
model space entails a reduction in the �-allowed transitions
and an increase in the �-forbidden transition strengths. In any

case, the number of decays studied here is small to get a strong
conclusion, but we have now a tool to study thoroughly the
problem of these state-dependent renormalizations, and even-
tually the renormalization of the axial coupling constant gA.

IV. SUMMARY

We have performed a free parameter calculation of the
β-decay rates of 121–131Cs. To this end we have followed two
approaches using the IBFM-2 model. In the first approach we
employ the usual NOA approximation used in the microscopic
boson-fermion interaction of the model and in the β-decay
operators. In the second approach we do not use this ap-
proximation in the β-decay operators. When the calculated β-
decay rates are compared with the corresponding experimental
values, the second approach provides better global results than
the first one. We have also checked that a consistent truncation
in the number of states of the final Xe nuclei improves
considerably the quality of the results both with and without
the NOA approximation. The best results are those of the new
operator obtained without using the NOA approximation and
with a consistent energy cutoff between the odd-even nucleus
and its even-even core. The calculated log f t values describe
reasonably well the experimental systematics, although we
point out that higher-order corrections to the β-decay operator
may be necessary to improve them quantitatively.

In conclusion, now we have at our disposal a reliable tool
to not only study single-β decay systematically, but also to
address fundamental questions related to the effective value of
gA, double-β decay, the gallium anomaly, and/or dark matter
scattering in heavy nuclei (in the last two cases the relevant
nuclear matrix elements are the same as in β decay).

Finally, it is worth noting that the IBFA-2 boson-fermion
interaction currently used is based on the transfer operator
obtained using NOA. Thus, a completely consistent calculation
without the NOA approximation would require the recalcula-
tion of this boson-fermion interaction without using NOA.
This is the final step in our program of giving a consistent
and microscopically derived framework to study odd-A nuclei
in the context of the interacting boson-fermion model. Work
along this direction is in progress and will be presented in a
forthcoming publication.
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