
AUTOMATIC DESIGN OF FUZZY CONTROL SYSTEMS FOR

AUTONOMOUS MOBILE ROBOTS

I. Baturone1, F. J. Moreno-Velo1, S. Sánchez-Solano1, R. Martín de Agar2, A. Ollero2

1 Instituto de Microelectrónica de Sevilla (IMSE). Avd. Reina Mercedes, s/n.
Edif. CICA, 41012, Sevilla, SPAIN

2 Dep. Ingeniería de Sistemas y Automática. E.S.Ingenieros. Camino
Descubrimientos s/n. 41092, Sevilla, SPAIN

xfuzzy-team@imse.cnm.es

Proc. 28th Annual Conference of the IEEE Industrial Electronics Society (IECON’2002),
pp. 2457-2462, Sevilla, November 5-8, 2002.

© 2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for adver-
tising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein
are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author’s copyright. In most cases, these works may not be reposted without the explicit per-
mission of the copyright holder.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/132461605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract - This paper describes the design and implemen-
tation of a fuzzy controller for autonomous mobile
robots. The tool Xfuzzy 3.0, developed at the IMSE
(Instituto de Microelectrónica de Sevilla) has been used
to design a controller for the Romeo 4R autonomous
vehicle designed and built at the “Escuela Superior de
Ingenieros”, University of Seville. The paper presents the
design of the controller and real experiments with Romeo
4R demonstrating the efficiency of the controller.

I. INTRODUCTION

Some of the maneuvers that should be performed by

an autonomous mobile robot, such as parking in a

given place, are easily performed by any human driver

with a bit of practice. The way in which human drivers

usually express their control actuation to perform a

maneuver (brake, steering wheel, etc.) is not quite pre-

cise but rather fuzzy. We neither need exact informa-

tion from the environment or from our vehicle to carry

out a successful maneuver. Most of the times, we apply

a heuristic knowledge which can be expressed linguis-

tically by more or less chained if-then rules. Fuzzy

logic provides a mathematical framework to translate

these linguistic and symbolic concepts into numerical

data which can be handled by electronic circuits. Many

works have been reported in the literature which show

the efficiency of fuzzy controllers implemented in soft-

ware (general-purpose processors) or hardware (appli-

cation specific processors) [1-2].

As happens to any design process, it is very interest-

ing to employ CAD tools when designing a fuzzy con-

troller. This is particularly true nowadays when

reducing the cost and the time-to-market of a product

are driving forces of the industry.

In the last few years several CAD tools tailored to

the fuzzy system design have been created [3-5]. The

CAD environment employed in this paper is Xfuzzy

3.0, which has been developed at the IMSE (Instituto

de Microelectrónica de Sevilla) with the objective of

being an open environment with the least possible lim-

itations [6]. With this general objective, Xfuzzy 3.0 is

based on an specification language (XFL3) that eases

the description and manipulation of complex fuzzy

systems thanks to the use of user-defined membership

functions, fuzzy operators (including linguistic

hedges), and rule bases (admitting hierarchical struc-

tures) [7]. This objective has also motivated the use of

Java as the programming language of Xfuzzy 3.0. This

means the use of an advantageous object-oriented

methodology and the flexibility of executing Xfuzzy

3.0 in any platform with JRE (Java Runtime Environ-

ment) installed.

This paper describes how Xfuzzy 3.0 can help the

user to friendly design a fuzzy system for controlling

the parking maneuvers of Romeo 4R, an autonomous

mobile robot developed at the Escuela Superior de In-
genieros (ESI) of the University of Seville [8]. Section

II shows the description process of the fuzzy system.

Section III explains how the behavior of the controller

can be verified by monitoring the inference process as

well as simulating the controller in a closed loop with a

model of the robot. Once the system has been designed

and validated, Xfuzzy 3.0 allows its synthesis into sev-

eral programming languages. Section IV shows how

the controller is synthesized as a C code and integrated

into the software executed by the computer that con-

trols Romeo 4R. Several experimental results of diago-

nal parking maneuvers are included to illustrate the

efficiency and robustness of the designed controller.

II. FIRST STEP: DESCRIPTION PROCESS OF THE

FUZZY CONTROLLER

Parking a vehicle at a given place has been a prob-

lem usually addressed in the literature to illustrate the

capabilities of neural and fuzzy controllers. A typical

goal is to back up a vehicle so as to arrive at a desired

loading dock at a right angle with the horizontal [9].

The input variables considered in these reported con-

trollers are the x position of the vehicle and the vehi-

cles´s orientation angle with the horizontal. The output

control variable is the required steering angle (see Fig-

Automatic Design of Fuzzy Control Systems for Autonomous Mobile Robots

I. Baturone1, F. J. Moreno-Velo1, S. Sánchez-Solano1, R. Martín de Agar2, A. Ollero2

1 Instituto de Microelectrónica de Sevilla (IMSE-CNM). Avd. Reina Mercedes, s/n. Edif. CICA, 41012, Sevilla, SPAIN
2 Dep. Ingeniería de Sistemas y Automática. E.S.Ingenieros. Camino Descubrimientos s/n. 41092, Sevilla, SPAIN

xfuzzy-team@imse.cnm.es

This work has been partially supported by the Spanish CICYT Projects TAP99-0926-C04-01 and TIC2001-1726.

ure 1). The speed magnitude as well as the backward

direction of driving are constant. These reported con-

trollers are efficient whenever the vehicle is rather far

from the loading dock but fail if it is near the dock and

with a bad orientation angle, like that in Figure 1.

The parking problem that we address in this paper is

more complex and realistic: our autonomous robot has

to park at a desired place, arriving backward and at a

right angle, but it could drive backward and forward to

achieve success from any starting position and orienta-

tion.

The approximation we have taken to design this

controller is to directly emulate what we would do as

drivers. In this sense, our first control action is to

decide the direction of driving (the sign of the speed):

backward or forward, and the magnitude of the speed.

This decision is dynamic because it takes into account

not only the current position and orientation of the

vehicle but also its previous speed. This knowledge is

included into a rule base that we call “direction”.

In addition, the constraints imposed by Romeo 4R

have to be considered when deciding the new speed.

For example, Romeo has not an electronically con-

trolled brake currently, and it is important to ensure

that the driving direction changes softly. This means

that the controller should never decide to go forward at

a rather high speed if previously, the vehicle was driv-

ing backward at a rather high speed. This kind of con-

straints are considered by a rule base that we call

“brake”. The input variables of this rule base are the

speed decided by the rule base “direction” and the pre-

vious speed. Its output is the new speed that will be

adopted by Romeo.

The second decision is to select the proper angle of

the wheels once we have decided to drive backward or

forward. The speed selected by the rule base “brake”

together with the x position and the orientation of the

vehicle are the input variables of another rule base that

we call “wheel”.

As a result of our knowledge emulation, the fuzzy

controller that we have obtained is a hierarchical sys-

tem with the structure shown in Figure 2. The global

input variables are the position (x, y), orientation

(angle), and previous speed (olddir) of the robot; and

the output variables are the steering wheel angle

(wheel) and the new speed (direction).

We have employed Xfuzzy 3.0 to describe this con-

troller. Xfuzzy 3.0 divides the description of a fuzzy

system into two parts. One part is the logical definition

of the system (its structure, the membership functions

that represent the fuzzy sets, and the rules of each rule

base). This part can be defined via graphical user inter-

faces by using the tool xfedit or by editing directly a

“.xfl” file. The other part is the mathematical definition

of the different functions that appear in the logical def-

inition (membership functions, connective operators,

defuzzification methods, linguistic hedges, etc.). This

part can be defined via graphical user interfaces by

using the tool xfpkg or by editing directly a “.pkg” file.

This twofold definition allows us to create and use

our own membership functions, defuzzification meth-

ods, etc. In our case, all the mathematical functions

employed are described in the xfl.pkg file provided

with Xfuzzy 3.0. For example, the defuzzification

method employed in the rule base “wheel” is the Fuzzy

Mean method, which calculates the weighted average

of the consequent singleton values. This provides a soft

interpolation among the 7 singleton values considered

to represent the wheel angle. On the other side, the

defuzzification method that we employ in the rule

bases “direction” and “brake” is a method that we call

“MaxLabel”. It selects the singleton consequent of the

rule whose activation degree is maximum, because the

decision made by these rule bases has to be crisp: for-

ward or backward but not an average of both. The

description of the MaxLabel method can be seen in

Figure 3. This figure illustrates the graphical interface

of the tool xfpkg wherein the Xfuzzy user can define

new fuzzy operators (logical connective, linguistic

hedges, membership functions, or defuzzification

methods).

wheel

(x,y)

Fig. 1: Example of the diagonal parking problem.

the objective

angle

vehicle
angle

Fig. 2: Structure of the designed controller.

x

angle

direction
y

olddir

brake

wheel

direction

wheel

We have used the tool xfedit to specify the logical

definition of our controller, as can be seen in Figure 4.

The membership functions employed are: 5 fuzzy sets

to cover the x position; 1 singleton value and 3 fuzzy

sets to cover the y position; 7 fuzzy sets to cover the

orientation; 5 singleton values to cover the speed (its

sign reflects the driving direction); and 7 singleton val-

ues to cover the steering wheel angle. The speed values

are rather slow as corresponds to parking maneuvers

(between -1m/s and 1m/s). The wheel angle values are

limited by the maximum curvature that Romeo can

apply. Figure 5 shows the window of xfedit wherein we

have defined the membership functions of the orienta-

tion variable.

The rule bases can employ different mathematical

functions to represent the fuzzy operators. For exam-

ple, the rule bases “direction” and “wheel” use differ-

ent defuzzification methods, as commented above.

Figure 6 illustrates the window of xfedit wherein we

have selected the mathematical functions of the fuzzy

operators in the rule base “direction”. An advantage of

Xfuzzy 3.0 is that the user can freely modify the math-

ematical functions that describe these linguistic opera-

tors (with the tool xfpkg mentioned above).

We have also used xfedit to define the rules of each

rule base. The XFL3 language employed by Xfuzzy

3.0 eases the translation of linguistically expressed

rules because admits linguistic hedges like “more or

less equal to”, “slightly equal to”, etc., and relations

like “greater than” or smaller than”. For instance, one

of the rules in the rule base “direction” is:

‘if (y is “equal to” near and x is “strongly equal to”

center and angle is “equal or greater than” left small
and angle is “equal or smaller than” right small) then

dir is backward’.

III. SECOND STEP: OFF-LINE VERIFICATION

PROCESS OF THE FUZZY CONTROLLER

Although the definition of the fuzzy controller

translates our expert knowledge, we might have forgot-

ten to consider some situations or not consider prop-

erly other ones. This is why performance of the

controller has to be verified prior to experiment with

Romeo 4R. For this purpose, we have employed three

verification tools of Xfuzzy 3.0: xf3dplot, xfmt and

xfsim.

The tool xf3dplot allows us to visualize the behavior

of one of the control variables versus two other ones.

Fig. 3: Graphical user interface of the tool xfpkg.

Fig. 4: Main window of xfedit.

Fig. 5: Membership functions for the vehicle orientation.

Fig. 6: Window of xfedit to select the fuzzy operators.

This is very useful to study, for instance, if our control-

ler is safe enough to avoid crashes with a possible

pavement at y=0. Figure 7 shows the surface corre-

sponding to the new speed decided by the controller

against the y position and the orientation of Romeo,

when the x-position coordinate is zero and the previous

speed was -1m/s. We can see that if the y position is

near zero and the angle is not quite zero, the controller

decides to stop to better straighten the car by driving

forward in subsequent steps.

The tool xfmt is very useful to monitor how is work-

ing the inference process. For instance, if we want to

know why the new speed is -1m/s when the x position

is zero, the previous speed was -1m/s, the y position is

2 m and the angle is 180º, we can use xfmt as shown in

Figure 8 to discover that the rule responsible of this

decision is the rule 30 of the rule base “direction”:

‘if (y is “equal to” near and x is “equal to” center
and (angle is “smaller than” left or “greater than”

right)) then dir is backward’.

Although with the previously mentioned tools we

can analyze the controller itself, a very important step

in any control design is to simulate the controller work-

ing in a closed loop with the plant. For this simulation,

we have employed the tool xfsim of Xfuzzy 3.0. The

behavior of our plant, Romeo 4R, has been described

by the bicycle kinematic model [10], considering a

first-order dynamic response in the settling of the

speed and the wheel angle imposed by the controller.

The outputs of the simulation performed by xfsim can

be saved to a log file for posterior graphical representa-

tion. As an example, Figure 9 illustrates the simulated

behavior of Romeo 4R when it starts (with speed 0) at

x=3.9m, and y=9m, with an angle of 90º. The arrows

indicate the driving direction and the shaded one marks

the starting point.

With this off-line simulation, we can analyze the

robustness of our controller against perturbations. For

instance, if the true speed taken by Romeo 4R is 40%

greater than that imposed by the controller and we

repeat the simulation of Figure 9, the results obtained

are shown in Figure 10.

IV. THIRD STEP: ON-LINE VERIFICATION PROCESS

OF THE FUZZY CONTROLLER

Once checked that our system is robust enough, we

have verified its control behavior with the true plant,

Romeo 4R. This robot is an electrical vehicle provided

with a set of sensors and actuators that make it capable

of autonomous navigation (Figure 11). The informa-

tion collected by the sensors and that required by the

actuators is centralized by a computer placed at the

back of the robot and which also implements the con-

trol algorithms. In our parking application, the com-

puter has to govern a motor control card which in turn

governs, independently, the steering and traction elec-

trical motors of Romeo. These electrical motors has to

receive, respectively, the wheel angle and new speed

commands from our controller. In addition, the motor

Fig. 7: Studying the behavior of the variable “direction”.

Fig. 8: Monitoring the inference process.

Fig. 9: Simulating the controller with a model of Romeo 4R.

0

2

4

6

8

10

12

-2 -1 0 1 2 3 4 5

✧

✧✧
✧✧✧✧✧
✧✧✧✧
✧✧✧✧
✧✧✧
✧✧✧
✧✧✧
✧✧✧
✧✧✧
✧✧✧
✧✧✧
✧✧✧
✧✧✧
✧✧✧
✧✧✧
✧✧✧

✧✧✧
✧✧✧

✧✧✧
✧✧✧

✧✧✧
✧✧✧

✧✧
✧✧✧
✧✧✧
✧✧✧
✧✧✧
✧✧✧✧
✧✧✧✧
✧✧✧✧✧
✧✧✧✧✧✧
✧✧✧✧✧✧✧✧
✧✧✧✧✧✧✧✧✧✧✧✧
✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧
✧✧

control card reads the direction and traction encoders

of the engines. These measures, together with the

information provided by a gyroscope have to be pro-

cessed by the computer to estimate the current posi-

tion, orientation and speed of the robot, which are the

input variables required by our controller.

The computer operates with Linux and all the driv-

ers to the sensors and actuators have been written in C

code. In addition, an interface has been developed that

include a wide set of functions (programmed in C++)

to work easily with sensors and actuators. Having this

interface, the inclusion of our controller is as simple as

generating its C code. For this task, we have employed

the synthesis tool xfc of Xfuzzy.

Despite executing the control code and all the other

required routines, the computer operates at real time

without problems because a control cycle period of

100 ms is enough for our application.

Figure 12 shows two examples of experimental tra-

jectories followed by Romeo when starting at different

positions (marked by the shaded arrows) and with dif-

ferent orientations. Comparing Figure 12a with Figure

9 we can see that experimental results do not differ

very much from simulated results.

Figure 13a illustrates the evolution in time of the

wheel angle reference given by the fuzzy controller (in

solid line) and the real angle taken by Romeo (in

dashed line), for the experiment in Figure 12a. We can

see how the angle reference changes softly (as a conse-

quence of the Fuzzy Mean defuzzification method

applied by the rule base “wheel”) and how it is fol-

lowed rapidly by the real angle.

Figure 13b compares the evolution in time of both

the speed reference (in solid line) and the real speed (in

dashed line) corresponding to the experiment in Figure

12a. In this case, the reference changes abruptly

(because of the MaxLabel defuzzification method

applied) and the dynamic of the real speed is slower

Fig. 10: Simulating the controller with perturbations.

0

2

4

6

8

10

12

-2 -1 0 1 2 3 4 5

✧✧✧
✧✧✧✧

✧✧✧✧
✧✧✧

✧✧✧
✧✧✧
✧✧
✧✧
✧✧
✧✧
✧✧
✧✧
✧✧
✧✧
✧✧
✧✧
✧✧

✧✧
✧✧

✧ ✧
✧ ✧

✧ ✧
✧ ✧

✧ ✧
✧ ✧

✧ ✧
✧ ✧

✧ ✧
✧ ✧

✧ ✧
✧✧

✧✧
✧✧✧

✧✧✧
✧✧✧
✧✧✧
✧✧✧✧
✧✧✧✧
✧✧✧✧✧
✧✧✧✧✧✧
✧✧✧✧✧✧✧✧
✧✧✧✧✧✧✧✧✧✧✧✧
✧✧✧

Fig. 11: Romeo 4R successfully parked.

Fig. 12: Experimental results.

0

2

4

6

8

10

12

-2 -1 0 1 2 3 4 5

✧✧✧ ✧✧ ✧✧ ✧✧ ✧✧✧✧✧ ✧✧ ✧✧✧✧✧ ✧✧ ✧✧✧✧✧✧✧✧ ✧✧✧✧✧✧ ✧✧✧✧ ✧✧
✧✧✧✧✧✧✧
✧✧✧✧✧✧✧
✧✧✧✧
✧✧✧✧✧
✧✧✧✧
✧✧✧✧✧
✧✧✧✧
✧✧✧
✧✧✧✧
✧✧✧✧
✧✧✧
✧✧✧
✧✧
✧✧
✧✧✧
✧✧✧✧
✧✧✧✧
✧✧
✧✧✧✧
✧✧
✧✧✧✧✧
✧✧✧
✧✧✧✧
✧✧✧✧
✧✧✧
✧✧✧✧
✧✧✧
✧✧✧✧
✧✧✧✧✧
✧✧✧✧
✧✧✧✧
✧✧✧✧
✧✧✧✧
✧✧✧✧
✧✧✧✧✧
✧✧✧✧✧✧
✧✧✧✧✧✧
✧✧✧✧✧✧✧✧✧✧✧✧
✧✧✧
✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧
✧✧✧✧✧✧✧✧✧✧✧✧✧✧
✧✧

✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧
✧✧✧

-2 0 2 4 6 8

0

2

4

6

8

10

12

14

✧✧ ✧✧ ✧✧✧✧ ✧✧ ✧✧✧ ✧ ✧✧
✧✧ ✧✧ ✧✧ ✧✧

✧✧ ✧✧ ✧✧ ✧✧
✧✧ ✧✧

✧✧ ✧
✧✧ ✧ ✧✧

✧✧ ✧
✧✧✧ ✧ ✧✧

✧✧ ✧ ✧✧
✧✧ ✧✧ ✧✧ ✧✧ ✧✧ ✧ ✧ ✧✧ ✧ ✧ ✧✧ ✧ ✧✧ ✧ ✧✧ ✧✧ ✧ ✧✧ ✧ ✧✧ ✧✧ ✧✧ ✧✧ ✧ ✧✧ ✧ ✧✧ ✧ ✧✧ ✧ ✧✧ ✧✧ ✧✧ ✧ ✧ ✧✧ ✧✧ ✧ ✧✧ ✧ ✧✧ ✧ ✧ ✧✧ ✧ ✧✧ ✧✧ ✧✧ ✧ ✧ ✧ ✧✧ ✧ ✧✧ ✧ ✧✧ ✧ ✧ ✧✧✧ ✧✧ ✧✧ ✧ ✧✧ ✧✧ ✧✧ ✧ ✧✧ ✧ ✧✧ ✧ ✧✧ ✧✧ ✧✧ ✧ ✧✧✧

✧✧✧✧✧✧✧✧✧✧
✧✧✧✧✧✧✧✧✧

✧✧✧✧✧✧✧
✧✧✧✧

✧✧✧✧✧✧✧
✧✧✧✧✧

✧✧✧✧
✧✧✧

✧✧✧
✧✧✧✧

✧✧✧✧✧✧
✧✧✧

✧✧✧
✧✧✧

✧✧✧
✧✧✧

✧✧✧✧✧
✧✧✧

✧✧✧✧✧
✧✧✧✧

✧✧✧✧
✧✧✧

✧✧✧✧
✧✧✧

✧✧✧
✧✧✧✧

✧✧
✧✧✧

✧✧
✧✧✧✧

✧✧✧
✧✧

✧✧✧✧
✧✧✧✧

✧✧✧✧✧✧✧✧✧
✧✧✧✧✧✧

✧✧✧✧✧✧✧✧
✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧ ✧✧✧✧✧ ✧✧✧ ✧✧ ✧✧ ✧✧ ✧✧ ✧✧ ✧✧ ✧ ✧ ✧ ✧✧ ✧✧ ✧ ✧✧ ✧✧ ✧✧ ✧✧ ✧✧ ✧✧ ✧✧ ✧✧ ✧✧ ✧ ✧ ✧ ✧✧ ✧ ✧✧ ✧ ✧✧ ✧ ✧✧ ✧✧ ✧✧ ✧✧ ✧✧ ✧✧ ✧✧ ✧✧ ✧✧

✧ ✧ ✧✧ ✧✧
✧ ✧✧ ✧✧ ✧✧

✧ ✧✧✧ ✧ ✧✧ ✧✧✧✧✧ ✧✧ ✧
✧ ✧✧ ✧✧ ✧✧ ✧✧ ✧

✧ ✧✧ ✧✧ ✧
✧✧✧ ✧✧ ✧✧ ✧✧✧ ✧✧ ✧✧✧ ✧✧✧✧ ✧✧ ✧✧ ✧

✧ ✧✧ ✧✧ ✧
✧

✧✧ ✧✧ ✧✧✧✧ ✧✧ ✧✧ ✧✧ ✧✧ ✧
✧ ✧✧✧ ✧✧ ✧✧ ✧✧✧ ✧

✧ ✧✧✧✧ ✧✧ ✧✧ ✧
✧✧ ✧✧ ✧✧✧✧✧

✧ ✧✧✧✧✧ ✧✧ ✧✧ ✧✧ ✧✧✧✧ ✧✧✧✧ ✧✧✧✧ ✧✧ ✧✧✧✧ ✧✧ ✧✧ ✧✧✧✧✧✧ ✧✧✧✧✧✧✧✧ ✧✧✧✧✧✧✧✧✧✧
✧✧✧

✧✧ ✧✧✧✧✧✧✧✧✧ ✧✧✧✧ ✧✧✧✧✧✧✧✧ ✧✧ ✧✧✧✧✧
✧✧✧✧✧ ✧

✧✧
✧✧✧

✧✧✧✧✧
✧✧✧

✧✧✧✧✧✧✧✧✧✧✧
✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧

✧✧

(a)

(b)

than that of the real angle. The worthwhile fact shown

by this figure is that the robot is controlled efficiently

to commute softly between driving backward and for-

ward, thus meeting the imposed requirements.

V. CONCLUSIONS

The automatic design and implementation of fuzzy

control systems involves a number of activities related

to the definition of the controller, including its logical

structure and the mathematical definition of functions,

the off-line verification of the controller by means of

simulation and the on-line verification and testing with

the real process.

This paper presents the application of the Xfuzzy

3.0 tool to the design of the fuzzy controller of autono-

mous vehicles. Particularly the design and implemen-

tation of a controller for the Romeo 4R is described.

The results obtained with the real vehicle are similar to

the simulation results and Romeo 4R is able to perform

successfully a parking maneuver even when the vehicle

is initially close to the parking position, with a bad ori-

entation, and having to maneuver autonomously for

parking.

Future work will include a comparison of the pre-

sented fuzzy logic method with other techniques based

on the consecutive execution of path planning, genera-

tion and control techniques in different practical cases.

VI REFERENCES

 [1] Munakata, T., Jani, Y., Fuzzy systems: an overview,
Communications of the ACM, Vol. 37, N. 3, 1994.

 [2] Sugeno, M., Ed., Industrial Application of Fuzzy
Control, North-Holland, pp. 19-40, 1985.

 [3] Home page of FuzzyTech: http://www.fuzz-
ytech.com

 [4] Home page of FIDE: http://www.aptronix.com/
fide/

 [5] Home page of TILShell: http://www.ortech
engr.com/fuzzy/TilShell.html

 [6] F. J. Moreno-Velo, I. Baturone, S. Sánchez-Solano,
A. Barriga, "Xfuzzy 3.0: A Development Environ-
ment for Fuzzy Systems", Proc. 2nd IEEE Int.
Conf. on Fuzzy Logic and Technology (EUS-
FLAT’2001), pp. 93-96, Leicester, 2001.

 [7] F. J. Moreno-Velo, S. Sánchez-Solano, A. Barriga,
I. Baturone, D. R. López, “An Specification Lan-
guage for Fuzzy Systems”, Mathware & Soft Com-
puting, Vol. 8, No. 3, pp. 239-253, 2001.

 [8] A. Ollero, B. C. Arrue, J. Ferruz, G. Heredia, F.
Cuesta, F. López-Pichaco and C. Nogales. “Control
and perception components for autonomous vehi-
cles guidance. Application to the Romeo Vehicles".
Control Engineering Practice, Vol. 7, No. 10, pp
1291-1299, October 1999.

 [9] S.-G. Kong, B. Kosko, “Comparison of Fuzzy and
Neural Truck Backer-Upper Control Systems”,
Chapter 9 in Neural Networks and Fuzzy Systems,
B. Kosko, Prentice Hall, 1992.

 [10] Y. Zhao, S. L. Bement, “Kinematics, Dynamics and
Control of Wheeled Mobile Robots”, Proc. IEEE
Int. Conf. on Robotics and Automation, pp. 91-96,
Nice, 1992.

Fig. 13: Evolution of: (a) wheel angle reference (solid line)
and real angle (dashed line), (b) speed reference (solid line)

and real speed (dashed line).

5 15 25 35 45
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

time (s)

curvature (m-1)

time (s)

speed (m/s)

5 15 25 35 45
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a)

(b)

