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ABSTRACT: This paper presents Xfsl, a tool for the automatic tuning of fuzzy systems using supervised learning algo-
rithms. The tool provides a wide set of learning algorithms, which can be used to tune complex systems. An important
issue is that Xfsl is integrated into the fuzzy system development environment Xfuzzy 3.0, and hence, it can be easily
employed within the design flow of a fuzzy system.
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1.-  INTRODUCTION

One of the research areas of our group is the development of CAD tools for fuzzy system design. In particular, we are
working on developing Xfuzzy 3.0, an environment which includes different tools for describing, tuning, simulating and
synthesizing fuzzy systems. All these tools share the formal language XFL3 which allows defining complex systems by
using hierarchical rule bases and user-defined membership functions, fuzzy connectives, and linguistic hedges [15].

The tuning stage is usually one of the most complex task when designing fuzzy systems. The system behavior
depends on the logic structure of its rule base and the membership functions of its linguistic variables. The tuning process
is very often focused on adjusting the different membership function parameters that appear in the system definition.
Since the number of parameters to simultaneously modify is high, a manual tuning is clearly cumbersome and automatic
techniques are required. The two learning mechanisms most widely used are supervised and reinforcement learning. In
supervised learning techniques the desired system behavior is given by a set of training (and test) input/output data while
in reinforcement learning what is known is not the exact output data but the effect that the system has to produce on its
environment, thus making necessary the monitoring of its on-line behavior.

The aim of this paper is to describe the supervised learning tool, named Xfsl, integrated into Xfuzzy 3.0. This tool
eases the tuning stage within the design flow of a fuzzy system. Xfsl is the evolution of the tool Xfbpa [14], which was
developed for the previous version of Xfuzzy (Xfuzzy 2.0). The main advantages of Xfsl compared with its predecessor
are the following: (a) it includes a wider set of learning algorithms, (b) it has the capability of implementing clustering
and pruning processes of the membership functions defined in the system, and (c) it is able to apply the learning algo-
rithms even to systems that employ user-defined fuzzy functions (membership or connective functions, linguistic hedges
or particular defuzzification methods).

2.-  SUPERVISED LEARNING ALGORITHMS

Since the objective of supervised learning algorithms is to minimize an error function that summarizes the deviation
between the actual and the desired system behavior, they can be considered as algorithms for function optimization. The
main supervised learning algorithms reported in the literature are briefly described in the following.

2.1.-  GRADIENT DESCENT ALGORITHMS

The equivalence between fuzzy systems and neural networks [9] led to apply the neural learning processes to fuzzy
inference systems. In this sense, a well-known algorithm employed in fuzzy systems is the BackPropagation algorithm
[18], which modifies the parameter values proportionally to the gradient of the error function in order to reach a local
minimum. Since the convergence speed of this algorithm is slow, several modifications were proposed like using a differ-
This work has been partially supported by the Spanish CICYT Project TIC98-0869 and the FEDER  Project 1FD97-0956-C3-02.



ent learning rate for each parameter or adapting heuristically the control variables of the algorithm [8]. An interesting
modification that improves greatly the convergence speed is to take into account the gradient value of two successive iter-
ations because this provides an approximated information about the curvature of the error function. This idea is followed
by the algorithms QuickProp [4] and RProp [17].

2.2.-  CONJUGATE GRADIENT ALGORITHMS

The gradient-descent algorithms generate a change step in the parameter values which is a function of the gradient
value at each iteration (and possibly at previous iterations). Since the gradient indicates the direction of maximum func-
tion variation, it may be convenient to generate not only one step but several steps which minimize the function error in
that direction. This idea, which is the basis of the steepest-descent algorithm, has the drawback of producing a zig-zag
advancing because the optimization in one direction may deteriorate previous optimizations. The solution is to advance
by conjugate directions that do not interfere each other. The several conjugate gradient algorithms reported in the litera-
ture differ in the equations used to generate the conjugate directions [19].

The main drawback of the conjugate gradient algorithms is the implementation of a lineal search in each direction,
which may be costly in terms of function evaluations. The line search can be avoided by using second-order information,
that is, by approximating the second derivative with two close first derivatives. The scaled conjugate gradient algorithm
is based on this idea [12].

2.3.-  SECOND-ORDER ALGORITHMS

A forward step towards speeding up the convergence of learning algorithms is to make use of second-order informa-
tion of the error function, that is, of its second derivatives or, in matricial form, of its Hessian. Since the calculus of the
second derivatives is complex, one solution is to approximate the Hessian by means of the gradient values of successive
iterations. This is the idea of the algorithms of Broyden-Fletcher-Goldarfb-Shanno and Davidon-Fletcher-Powell [5].

An special case is when the function to minimize is a quadratic error because, in this case, the Hessian can be approx-
imated with only the first derivatives of the error function, as done by the Gauss-Newton algorithm. Since this algorithm
can lead to unstability when the approximated Hessian is not positive defined, the Marquardt-Levenberg algorithm solves
this problem by introducing an adaptive term [1].

2.4.-  ALGORITHMS WITHOUT DERIVATIVES

The gradient of the error function can not be always calculated because it can be too costly or not defined. In these
cases, optimization algorithms without derivatives can be employed. An example is the Downhill Simplex algorithm [16],
which considers a set of function evaluations to decide a parameter change. Another example is Powell’s method [2],
which implements linear searches by a set of directions that evolve to be conjugate. This kind of algorithms are too much
slower than the previous ones. A best solution can be to estimate the derivatives from the secants or to employ not the
derivative value but its sign (as RProp does), which can be estimated from small perturbations of the parameters.

2.5.- STATISTICAL ALGORITHMS

All the above commented algorithms do not reach the global but a local minimum of the error function. The statistical
algorithms can discover the global minimum because they generate different system configurations that spread the search
space. One way of broadening the space explored is to generate random configurations and choose the best of them. This
is done by the blind search algorithm whose convergence speed is extremely slow. Another way is to perform small per-
turbations in the parameters to find a better configuration as done by the algorithm of iterative improvements. A better
solution is to employ simulated annealing algorithms [10]. They are based on an analogy between the learning process,
which is intended to minimize the error function, and the evolution of a physical system, which tends to lower its energy
as its temperature decreases [6][11][20]. An alternative is the use of genetic algorithms [3][7], originated in an analogy
between the evolution of species and the evolution of a population of system configurations. They broaden even more the
explored area because they keep several system configurations, allowing both light perturbations on a given configuration
and heavy perturbations on some other configurations.

Simulated annealing and genetic algorithms provides good results when the number of parameters to adjust is low.
When it is high, the convergence speed is so extremely slow than it is usually preferred to generate random configura-
tions, apply gradient descent algorithms to them and finally select the best solution.



3.-  THE XFSL TOOL

Xfsl is a tool that allows the user to apply supervised learning algorithms to fuzzy systems specified with the XFL3
language, the formal language of Xfuzzy 3.0. XFL3 permits the description of complex fuzzy systems with hierarchical
rule bases. Besides, there is no limitation in the number of rules within a rule base, linguistic variables, or linguistic
labels covering the variables. The rules support complex logic relations in the premise part (with conjuntions, disjun-
tions, and linguistic hedges), and these operators as well as the implication operators, membership functions, or defuzzi-
fication methods can be defined freely by the user. The language XFL3 is the nexus between the different tools included
into Xfuzzy 3.0.

Figure 1 shows the main window of Xfuzzy 3.0. From
this window, the user may execute the tools dedicated to
description, learning, verification, or synthesis of fuzzy
systems. In particular, the user may execute the learning/
tuning tool Xfsl. Xfuzzy 3.0 has been programmed in
Java so that it can be executed in any platform containing
the JRE (Java Runtime Environment).

Figure 2a illustrates the main window of Xfsl. This
window is divided into four parts. The left upper corner
is the area to configure the learning process. The process
state is shown at the right upper part. The central area
illustrates the evolution of the learning, and the bottom
part contains several control buttons to run or stop the
process, to save the results, and to exit.

In order to configure the learning process, the first step is to select a training file that contains the input/output data of
the desired behavior. A test file, whose data are used to check the generalization of the learning, can be also selected. The
log file allows to save the learning evolution in an external file. An end condition has to be also specified to finish the
learning process. This condition is a limit imposed over the number of iterations, the maximum error goal, or the maxi-
mum absolute or relative deviation (considering both the training or the test error). A complete learning configuration can
be saved in an external file that will be available for subsequent processes.

Xfsl admits most of the algorithms commented in Section 2. Regarding gradient descent algorithms, it admits Steep-
est Descent, Backpropagation, Backpropagation with Momentum, Adaptive Learning Rate, Adaptive Step Size, Manhat-
tan, QuickProp and RProp. Among conjugate gradient algorithms, the following are included: Polak-Ribiere, Fletcher-
Reeves, Hestenes-Stiefel, One-step Secant and Scaled Conjugate Gradient. The second-order algorithms included are:
Broyden-Fletcher-Goldarfb-Shanno, Davidon-Fletcher-Powell, Gauss-Newton and Mardquardt-Levenberg. Regarding
algorithms without derivatives, the Downhill Simplex and Powell’s method can be applied. Finally, the statistical algo-
rithms included are Blind Search and Simulated Annealing (with lineal, exponential, classic, fast, and adaptive annealing
schemes).

Xfsl can be applied to any fuzzy system described by the XFL3 language, even to systems that employ particular
functions defined by the user. What must be considered is that the features of the system may impose limitations over the
learning algorithms to apply (for instance, a non derivative system does not be tuned by a gradient-descent algorithm).

 Figure 1: Xfuzzy 3.0 main window.

 Figure 2: (a) Xfsl main window. (b) Selecting parameters to tune.

(a) (b)



An interesting feature of Xfsl is that several error functions can be minimized: mean square error (the default func-
tion), mean absolute error, classification error (for classification problems), and advanced classification error (to consider
not only the number of classification fails but also the distances from right classifications). If the system has several out-
put variables, they can be weighted by different values so that the designer can select their relative influence on the global
error. Another useful feature of Xfsl is that the user can select the system parameters to tune by a graphical interface, as
shown in Figure 2b.

In addition, Xfsl contains two processing algorithms to simplify the designed fuzzy system. The first algorithm prunes
the rules and reduces the membership functions that do not reach a significant activation or membership degree. The sec-
ond algorithm clusters the membership functions of the output variables. This is very useful for system identification
problems.

4.-  APPLICATION EXAMPLES

Figure 3 shows three examples of the application of Xfsl to function approximations. The mathematical expression
and the graphical representation of the three functions to fit are shown in Figures 3a and 3b, respectively. We intend to
approximate these functions by means of a fuzzy system composed by 49 rules, two input variables (defined by 7 gauss-
ian membership functions) and one output variable (defined by 49 gaussian membership functions). Initially, input mem-
bership functions are homogeneously distributed in their universe of discourse, while output membership functions are
equal and centered in their universe. All the parameters of these membership functions are going to be tuned to fit the
fuzzy system behavior to the target functions. This implies a total number of 126 parameters to tune.

Figures 3c, 3d and 3e show the evolution of the system behavior while being tuned by the different learning algo-
rithms provided by Xfsl. The gradient descent algorithms are shown in Figure 3c. It can be seen that modifications to the
Back Propagation algorithm notoriously increases the convergence speed. Figure 3d is dedicated to the conjugate gradi-
ent and second order algorithms. As it is shown on this figure, these algorithms are significantly faster than the Steepest
Descent algorithm, especially BFGS and Mardquardt-Levenberg algorithms. Algorithms without derivatives and statisti-
cal algorithms are shown in Figure 3e. These algorithms are several orders of magnitude slower than the previous ones,
so their use is only recommended when those are discarded (in non-derivable systems, for instance). It can be seen that
Powell’s algorithm is much faster than Downhill Simplex algorithm. Concerning the statistical algorithms, Simulated
Annealing increases the convergence speed with respect to Blind Search or Iterative Improvement algorithms.

In these examples, the fuzzy system behavior depends linearly on the membership function parameters of the output
variable, and non-linearly with respect to the membership function parameters of the input variables. This dependence
leads the system’s Root Mean Square Error (RMSE) to a fast decrease in the first steps of most learning algorithms
(mainly due to the tuning of the output variable parameters), following with a slower reduction, when all the parameters,
either lineal or non-linear, are being simultaneously modified.

The existence of non-linear parameters generates the presence of several local minima in the tuning process. This
make the learning results for an specific algorithm to depend not only on the convergence speed of that algorithm towards
a local minimum, but also on the quality of that minimum. Therefore, it is not possible to assert what is the best algo-
rithm, since a very fast algorithm may be sometimes driven to a local minimum far away form the optimum behavior. A
solution to this problem is to make several tuning processes with different random initial configurations, selecting the
best of the learning results.

Within the learning process, the membership functions of the input variables are not significantly modified. On the
other hand, the membership functions of the output variable result clearly moved and deformed, and tend to group
around some common forms (Figure 3f). The tool offers a postprocessing algorithm to make a clustering over these func-
tions, obtaining a reduced set of membership functions for the output variable (Figure 3g). This reduction leads to the
simplification of the rule base of the fuzzy system (Figure 3h). Using the capabilities of the XFL3 language to describe
complex antecedents in fuzzy rules, the rule base can be reduced from 49 rules to 9 rules (examples 1 and 2) or 10 rules
(example 3).

5.-  CONCLUSIONS

The tool Xfsl presented herein represents an important effort towards the automatization of the learning process in the
design of fuzzy systems. The wide set of algorithms included, the incorporated methods of clustering and pruning, and
the capability of tuning complex systems make Xfsl a flexible and powerful tool. A relevant issue is that the tool is inte-
grated into a fuzzy system development environment, which makes it possible to combine Xfsl with other tools for
graphical representation, simulation or synthesis. As a future work, we are also interested in developing a similar tool
focused on applying reinforcement learning.



(a)

(b)

(f)

(g)

y1 y2 y3 y4 y5 y6 y7

x1 z4 z6 z6 z6 z6 z6 z6
x2 z1 z3 z5 z6 z6 z6 z6
x3 z1 z2 z3 z5 z6 z6 z6
x4 z1 z1 z2 z3 z5 z6 z6
x5 z1 z1 z1 z2 z3 z5 z6
x6 z1 z1 z1 z1 z2 z3 z6
x7 z1 z1 z1 z1 z1 z1 z4

(h)

Example 1 Example 2 Example 3

y1 y2 y3 y4 y5 y6 y7

x1 z3 z4 z6 z7 z6 z4 z3
x2 z9 z8 z2 z1 z2 z8 z9
x3 z9 z8 z2 z1 z2 z8 z9
x4 z5 z5 z5 z5 z5 z5 z5
x5 z1 z2 z8 z9 z8 z2 z1
x6 z1 z2 z8 z9 z8 z2 z1
x7 z7 z6 z4 z3 z4 z6 z7

y1 y2 y3 y4 y5 y6 y7

x1 z3 z2 z4 z7 z4 z2 z3
x2 z2 z5 z1 z0 z1 z5 z2
x3 z4 z1 z6 z8 z6 z1 z4
x4 z7 z0 z8 z9 z8 z0 z7
x5 z4 z1 z6 z8 z6 z1 z4
x6 z2 z5 z1 z0 z1 z5 z2
x7 z3 z2 z4 z7 z4 z2 z3

 Figure 3: Application examples of function approximations.
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