
Hardware authentication based on PUFs

 and SHA-3 2nd round candidates

Susana Eiroa, Iluminada Baturone
Depto. Electrónica y Electromagnetismo, Univ. de Sevilla, IMSE-CNM-CSIC, Seville, Spain

{eiroa, lumi }@imse-cnm.csic.es

Abstract— Security features are getting a growing interest in

microelectronics. Not only entities have to authenticate in the
context of a high secure communication but also the hardware
employed has to be trusted. Silicon Physical Unclonable
Functions (PUFs) or Physical Random Functions, which exploits
manufacturing process variations in integrated circuits, have
been used to authenticate the hardware in which they are
included and, based on them, several cryptographic protocols
have been reported. This paper describes the hardware
implementation of a symmetric-key authentication protocol in
which a PUF is one of the relevant blocks. The second relevant
block is a SHA-3 2nd round candidate, a Secure Hash Algorithm
(in particular Keccak), which has been proposed to replace the
SHA-2 functions that have been broken no long time ago.
Implementation details are discussed in the case of Xilinx FPGAs.

Index Terms— Hash function, lightweight protocol, physically

unclonable function, true random number generator.

I. INTRODUCTION

EVERAL protocols have been proposed based on
symmetric and asymmetric cryptography that use PUFs in
order to improve security features. Most of them are ad-

hoc structures that depend on the application, such as the
symmetric key protocol for IP protection proposed in [1], and
the structure for off-line RFID authentication described in [2],
which uses elliptic curve-based asymmetric cryptography.

Symmetric key constructions offer simpler structures than
asymmetric ones. This fact, together with using PUFs, which
provide tamper resistant authentication and protection against
reply attacks at low cost, allow the implementation of secure
symmetric key constructions with low hardware resources,
what is known as lightweight cryptography. This is the
approach followed by the HB-PUF protocol in [3] and the
proposal in [4].

Our proposal is to implement a challenge–response Diffie-
Helman authentication protocol [5] with the following building
blocks so as to obtain a lightweight and secure solution: (a)
ring oscillator-based PUFs (Physical Unclonable Functions) for

Manuscript received July 31, 2010. This work was partially supported by

Junta de Andalucía under the Project P08-TIC-03674, by the European
Community through the MOBY-DIC Project FP7-INFSO-ICT-248858
(www.mobydic-project.eu), and by Spanish Ministerio de Ciencia y
Tecnología under the Projects TEC2008-04920 and DPI2008-03847.

S. Eiroa, and I. Baturone are with the University of Seville and
Microelectronics Institute of Seville (CNM-CSIC), SPAIN (phone: +34-954-
466-666; fax: +34-954-466-600; e-mail: {eiroa, lumi}@imse-cnm.csic.es).

dynamic key generation, (b) ring oscillators working as TRNG
(true random number generators) to generate the protocol
nonces, and (c) SHA3 2nd round candidates of the NIST
(concretely Keccak) for hash function. Security relies in the
secrecy of the key (which is generated on the fly), randomness
of the nonces, and use of hash functions.

The paper is structured as follows. Section II gives an
overview of the protocol characteristics. Section III reviews,
firstly, basic principles of PUFs and focuses, secondly, on
structures for secret key generation using fuzzy extractor and
ring oscillator PUFs. Section IV describes ring oscillator
configurations to construct TRNGs while Section V describes
the features of the hash function used. All implementation
results are summarized in Section VI. Finally, conclusions are
given in Section VII.

II. AUTHENTICATION PROTOCOL

Figure 1 shows the generic scheme of our proposal based
on Diffie-Helman protocol. To ensure privacy and integrity,
the protocol uses a symmetric key scheme and hashes the
responses of each side before being sent. The working
principle is as follows:

 Each extreme generates a token (nonce) that must be
sent to the extreme under authentication. Nonces will
be generated by TRNGs to avoid replay and
dictionary attacks.

 The receiver extreme generates a response that
depends on both nonces and the common secret key.
In order to avoid side channel attacks, key is
dynamically generated by a PUF.

 Responses are hashed before being sent to ensure
secrecy of the key. The response received by each

S

Figure 1. Authentication protocol

PUF

NonceA

NonceB NonceA KAB

Hash

¿=?

ResponseB

ResponseB NonceB

B is B

NonceA NonceB KAB

Hash
ResponseA

NonceB NonceA KAB

Hash

¿=? A is A

NonceA NonceB KAB

NonceA
NonceB

HashResponseA

ResponseB

ResponseA

TRNG

PUF

TRNG

CORE Metadata, citation and similar papers at core.ac.uk

Provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/132461378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

extreme is compared with the value calculated so as
to decide authentication.

III. PUFS FOR SECRET KEY GENERATION

PUFs, which were introduced by Pappu in [6], are random
functions driven by parametric properties of physical
components that map a set of challenges to a set of responses.
The mapping function can only be evaluated with the physical
system. Pappu defined a PUF as a physical object with special
properties of unclonability (both physically and
mathematically) and unpredictability [6]. Ideally, difference
between two responses of different PUFs to the same
challenge show Hamming variation of µ=50% with σ=0%
(PUF uniqueness property), and difference between two
responses of the same PUF to the same challenge, shows
ideally Hamming variation of µ=0% with σ=0% (PUF
reliability property).

PUFs can be divided into two groups: those that require
special fabrication steps (such as Active Coating [7] and
Optical structures [8]) and those denominated Silicon PUFs
[9], which can be implemented in standard FPGAs and ASICs.
The latter are cheaper and easier to implement while keeping
good values of uniqueness and reliability. They exploit small
variations in the integrated circuit manufacturing process,
which translate into different start-up values for cross-coupled
structures, and different leakage currents or delays for different
realizations of the same circuit [10]. Delay PUFs are the most
common due to its simplicity and flexibility. Existing delay
PUFs are: arbiter [11], tristate buffer [12], and ring oscillator
(RO) PUFs [11]. Among them, ring oscillator PUFs are the
best option concerning uniqueness and reliability [10]. Each bit
response is generated by the comparison of two ring oscillator
frequencies, where the chosen ring oscillator pair is determined
by the challenge.

PUFs are a good option for dynamically generating secret
keys. However, due to noise, when a PUF is driven by the
same challenge, a noisy version of the recorded response is
obtained. To cope with this problem, helper data or fuzzy
extractor algorithms are the most used schemes [13]-[14]. The
basic scheme of fuzzy extractor algorithms consists of the
following two phases:

Enrollment: The helper data, W (public), is generated
from the PUF response added to one codeword c (private),
which has been chosen randomly from a code C.

Key reconstruction: This phase consists of two steps
named ‘information reconciliation’ and ‘privacy
amplification’. In the first step, the PUF is challenged as in the
enrollment, now obtaining a probably noisy response, R’. This

output is subtracted to the helper data (usually XOR(W,R’) is
used) and the result goes through an error correcting code
(ECC) decoding to recover the codeword c. From c, the
original PUF response, R, can be reconstructed (R =
XOR(W,c)). In the ‘privacy amplification’ step, a hash
function is used to generate the key so as to provide well
randomness.

Figure 2 shows a scheme of key generation using PUFs
and fuzzy extractor.

As mentioned above, noise should be removed from PUFs
to make key repeatable. For this purpose, Guajardo et al. in [1]
proposed the use of binary BCH codes for SRAM PUFs.
However, BCH requirements in these applications become
complex, heavy and time cost. Bösch et al. in [13] introduced
the idea of using combined codes (for example BCH and
repetition codes) obtaining reductions of even 70% of
necessary source bits. Another approach, like the one in [15],
faces the problem from the perspective of using soft decision.
These approaches reduce hardware requirements but at the cost
of increasing the complexity of the system.

Instead of adding postprocessing, Maiti et al. in [16]
proposed to address the problem of noise when designing the
PUF. The idea is to compare the “right”couples of oscillators,
that is, choosing those rings whose difference in frequency is
reliable (the challenge is the variable that selects the couple).
Using this approach, results in [16] show no variation of the
PUF response with temperature, and a constant value of 4
unstable bits due to voltage variations (independently of the
ring oscillators employed). This means that it is possible for
ring oscillator PUFs to generate keys without using error
correcting codes. Using this scheme, N ring oscillators are
required to generate N-1 independent bits.

The PUF selected in this work is the structure proposed in
[16]. The number of ring oscillators used is 33 to generate a 32
bit response. To ensure correcting any possibly small error in
the PUF response, a repetition code R(3,1) has been selected.

IV. TRNG IMPLEMENTATION

Since nonces must be as random and not repeatable as
possible, TRNGs should be employed. Our election is the use
of ring oscillators-based TRNGs due to its simplicity (digital
approach and simple harvesting mechanism) and the
advantage of using the same basic elements employed by the
key generating structure, which allows obtaining a compact

Figure 2. Cryptographic key generation with PUFs

Figure 3. TRNG using ring oscillators

and efficient design because ring oscillators can be shared by
both structures.

TRNGs that use ring oscillators are based on sampling
phase jitter in the output of oscillator rings. They were first
introduced by Sunar et al. in [17]. That proposal contained
114 ring oscillator (each of them with 13 inverters) and
processed the output with a resilient function (implemented as
a BCH code) to increase the entropy and remove bias from the
random signal. Schellekens et al. in [18] employ the same
construction as in [17], but using 210 ring oscillators with 3
inverters. Alioto et al. in [19] and Wold et al. in [20]
suggested an enhancement by adding an extra D flip-flop after
each ring instead of using the BCH post-processing stage
(Figure 3). Alioto et al. confirmed with experimental results of
implementations in different FPGAs and within the same
FPGA that degree of randomness is essentially unaffected by
process variations. Wold et al. [20] reduced the number of
inverters per ring to 3 (Figure 3) because their experimental
results showed dispersion decreases with ring length. They
studied that structures with 25 and 50 rings passed NIST and
DIEHARD tests. These results were confirmed (and extended
to consider restart test) by Maiti et al. for structures from 32 to
128 rings [21]. Alioto described the probability of truly
randomness, Prand, of the sampled value for a group of n ring
oscillators as [19]:

 Prand=
,

, n (1)

Where the ratio ,
 (between the standard deviation of

the cycle-to-cycle jitter and the oscillator period) is
independent of the number of inverters and has a typical value
around 2% [19]. Hence, randomness increases by increasing
the oscillator frequency, Fosc (that is, by reducing the number of
inverters), by increasing the number of rings oscillators, and by
reducing the sampling frequency of D flip-flops, Fs. The latter
determines the throughput of the TRNG, so that its selection
becomes a trade-off between randomness and bit rate.

The TRNG selected in this work is the scheme proposed in
[20] and tested in [21], which uses three inverters per ring.
Minimal number of oscillators needed is 25 but as increase of
ring oscillators increase randomness and the selected PUF
construction require 33, we would reuse these 33 ring
oscillators to build the TRNG.

V. HASH SELECTION

Along last decades, several attacks have broken the hash
functions available. The early DES function was replaced by
SHA-1 in 1995, while SHA-1 was replaced by the SHA-2
hash family in 2002. However, SHA-2 has also been broken
no long time ago. This is why the NIST (National Institute of
Standards) opened a public competition to develop a new
cryptographic hash algorithm still competitive in area and
performance. The resulting algorithm will be called “SHA-3”.
The competition is in its second round stage. Comparison
between all second round SHA-3 candidates in terms of area
and throughput [22] points at Keccak as the possessor of a
good trade-off between throughput and area while keeping
good security features.

Keccak is a cryptographic hash family based on sponge
functions [23]. Any instance of the Keccak function makes use
of one of the seven Keccak-f permutations, denoted Keccak-
f[b], where b is the width of the permutation. These
permutations are iterated constructions consisting of a
sequence of rounds, where each round implements five
invertible steps. Keccak function is defined by a set of
parameters that are related among them:

 b: width permutation (equal to 25, 50, 100, 200,
400, 800, or 1600)

 n: length of the output message
 c: capacity, limited by c < b. Choosing a c value

higher than 2n avoids generic attacks with
complexity below 2n.

 r: rate, should be a power of 2 and fulfill: r=b-c
 nr: number of rounds in Keccak-f. nr = 12 + 2*l, with

w=2l = b/25.
 Our selection for the hash function has been
Keccak[b=400] as it is the minimum permutation size that
allows an output message (n) of 128 bits with enough security.
In this case, the selected values for the basic parameters are:
n=128, b=400, c=272, r=128 and nr =20. This construction is
employed in the fuzzy extractor scheme for generating the
secret key, and in the protocol to generate the response of each
side under authentication.

VI. RESULTS

The described scheme has been analyzed considering an
FPGA Xilinx Spartan XC3S500E as the target device.

Based on the work in [21], PUF and TRNG circuits have
been merged using 33 (fixed by PUF requirements) ring
oscillator blocks. They are shared avoiding unnecessary
hardware duplication and power dissipation. The number of
inverters per ring depends on the operation mode, being three
in the case of nonce generation, and five [16] in the case of
PUF operation. Ring oscillator blocks and the complete PUF-
TRNG module are shown in Figure 4.

Nonce size chosen is 48 bits. The TRNG structure takes
around 2 cycles of the sampling frequency (fs) plus another
clock system cycle to generate one bit. This results in a total of
96 sampling frequency cycles plus 48 clock system cycles to
generate a nonce. Since maximum Fs is 50MHz in the target
device, required time for nonce generation becomes 2.88s.

Key size selected is 128 bits. It results from hashing with
Keccak[400] a 32 bit stream provided by the ring oscillator
PUF. The PUF-TRNG module takes around 3 clock system
cycles per bit, what makes a total of around 96 clock cycles to
provide 32 bits. Using a repetition code R(3,1) to improve
reliability means that 3 bits are generated for each required
key bit. Hence, time is triplicated, resulting in 288 system
clock cycles that, at 50MHz, becomes 5.76 s.

The high-speed core approach of Keccak has been
implemented [24]. Assuming that the input buffer of Keccak
[400] is full, 20 clock cycles are required to obtain an output
of 128 bits. Presuming 5 clock cycles to fill the buffer, then
latency is less than 25 clock cycles, which results in a total of
500ns for a 50MHz system clock.

Complete procedure of key generation requires hashing of
PUF response, so that it takes around 6.26 s (5.76 s plus
500ns of hashing).

Challenges of the PUF consist of five bits for each ring
oscillator, which requires a RAM of 33 words of 5 bits.

Responses are formed by hashing the concatenation of two
nonces and the secret key obtained from the PUF response.
Using Keccak [400] to generate a final response of 128 bits
takes around 500ns.

Under these conditions, the resources employed by the
different modules in a Xilinx Spartan XC3S500E are shown in
Table I.

VII. CONCLUSIONS

Proposed authentication system offers good cryptographic
features since their components avoid side channel attacks and
tampering in key generation, in one side, and reply, dictionary
and man in the middle attacks in the authentication procedure,
in the other side. At the same time, the resources employed by
the system are less than 10% of a Spartan XC3S500E, which
makes this approach a good candidate for constrained
resources platforms. The time spent by each extreme is:

2.88s for nonce generation, 6.26 s to generate the key, 0.5
s to construct the response, 6.26 s to generate again the key,
and 0.5 s to calculate the response of the other extreme. This
makes a total of 16.40 s at each authentication extreme.

REFERENCES
[1] J. Guajardo, S. S. Kumar , G.-J. Schrijen , P. Tuyls, “FPGA intrinsic

PUFs and their use for IP protection”, in Proc. CHES 2007.

[2] P. Tuyls, J. Guajardo, L. Batina, and T. Kerins, "Anti-Counterfeiting," In
Security with noisy data, T. Kevenaar, P. Tuyls, and B. Škorić (eds.),
Springer, pp. 293-312, 2007.

[3] G. Hammouri, B. Sunar, "PUF-HB: A Tamper-Resilient HB Based
AuthenticationProtocol" , in ACNS 2008.

[4] L. S. Kulseng, “Lightweight mutual authentication, owner transfer, and
secure protocols for RFID Systems”, PhD thesis, Iowa State Univ. 2009.

[5] W. Diffie, M. E. Hellman, "New directions in cryptography", IEEE
Transactions on Information Theory , vol. 22 (1976), pp. 644-654.

[6] R. Pappu, “Physical One-Way Functions”, PhD thesis, MIT, 2001.

[7] P. Tuyls, G.-J. Schrijen, B. Skoric, J. van Geloven, N. Verhaegh, R.
Wolters: "Read-proof hardware from protective coatings", in Proc.
CHES 2006, pp. 369-383.

[8] K. Kursawe, A. Sadeghi, D. Schellekens, P. Tuyls, B. Škorić,
"Reconfigurable physical unclonable functions enabling technology for
tamper-resistant storage”, in Proc. HOST 2009, pp. 22-29.

[9] B. Gassend, D. E. Clarke, M. van Dijk, and S. Devadas, “Silicon
physical unknown functions”, ACM Conf. on Computer and
Communications Security -CCS 2002, pp. 148-160.

[10] S. Eiroa, I. Baturone, A. J. Acosta, J. Dávila, “Using physical unclonable
functions for hardware authentication: A survey”, in Proc. DCIS 2010,
in press.

[11] G.E. Suh, S. Devadas,”Physical unclonable functions for device
authentication and secret key generation", in Proc. Design Automation
Conference, 2007.

[12] E. Ozturk, G. Hammouri, B. Sunar, “Physical unclonable function with
tristate buffers”, in Proc. ISCAS 2008, Seattle, USA.

[13] C. Bösch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi, P. Tuyls,
“Efficient helper data key extractor on FPGAs”, in Proc. CHES 2008,
pp. 181-197.

[14] Y. Dodis, M.Reyxin, A. Smith, “Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data“, in Proc. of Eurcrypt
2004.

[15] M.-D. Yu, S. Devadas: “Secure and robust error correction for physical
unclonable functions.” IEEE Design & Test of Computers, Jan. 2010.

[16] A. Maiti, P. Schaumont, "Improving the quality of a physical unclonable
function using configurable ring oscillators," in Proc. FPL 2009.

[17] B. Sunar, W. J. Martin, D. R. Stinson, “A provably secure truerandom
number generator with built-in tolerance to active attacks,” IEEE Trans.
Comput., vol. 56, no. 1, pp. 109–119, 2007.

[18] D. Schellekens, B. Preneel, I. Verbauwhede, “FPGA vendor agnostic
true random number generator”, in Proc. FPL 2006.

[19] M. Alioto, L. Fondelli, S. Rocchi, "Analysis and performance evaluation
of area-efficient true random bit generators on FPGAs", in Proc. of
ISCAS 2008, pp. 1572-1575, Seattle (USA), May 2008.

[20] K. Wold, C. H. Tan, “Analysis and enhancement of random number
generator in FPGA based on oscillator rings”, in Proc. Int. Conference
on Reconfigurable Computing and FPGAs, 2008.

[21] A. Maiti, R. Nagesh, A. Reddy, P. Schaumont, "Physical unclonable
function and true random number generator: a compact and scalable
implementation," in Proc. GLSVLSI 2009.

[22] N. J. Hopper, M. Blum,, “Secure human identification protocols" , in
Advances in Cryptology - ASIACRYPT 2001.

[23] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, “Sponge functions”,
in Proc. Ecrypt Hash Workshop 2007, May 2007.

[24] http://ehash.iaik.tugraz.at/wiki/SHA-3_Hardware_Implementations.

TABLE I. Occupation of authentication system in a Spartan XC3S500E

 Slice Flip Flops LUTs Occupation

Keccak [400] 699 498 1,315 5%

PUF-TRNG 51 57 97 <1%

RAM 14 5 28 <1%

 (a)

(b)

Figure 4. (a) Ring oscillator block. (b) PUF-TRNG module

