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Abstract

In this paper we consider a logistic equation with nonlinear diffusion arising in population
dynamics. In this model, there exists a refuge where the species grows following a Malthu-
sian law and, in addition, there exists also a non-linear diffusion representing a repulsive
dispersion of the species. We prove existence and uniqueness of positive solution and study
the behavior of this solution with respect to the parameter λ, the growth rate of the species.
Mainly, we use bifurcation techniques, the sub-supersolution method and a construction of
appropriate large solutions.
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1. Introduction

Reaction-diffusion models have been used to study the behavior of a population living
in a habitat. Denoting by Ω ⊂ RN , N ≥ 1, a bounded and regular domain, the habitat
and by u(x) the density of the individuals of the species at the location x ∈ Ω, the classical
model can be written as follows{

−∆(ϕ(x, u)) = f(x, u) in Ω,
u = 0 on ∂Ω,

(1)

where ϕ and f are regular functions in Ω × R. The term on the left side of (1) represents
the diffusion of the species, that is, its spatial movement. In the model described by (1),
the diffusion depends on the position x ∈ Ω and the population density u. The nonlinear
diffusion function ϕ can have several different shapes, depending on the nature of behavioral
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interactions between organisms (see [1] and [2]). For instance, according to [2], if individuals
move completely independently of each other, ϕ is characterized by a linear function of
density u, that is, it increases with u at a constant rate. This case is called simple or linear
diffusion. If interactions between moving individuals are repulsive, then the movement rate
will increase with the population density, since at high densities organisms continuously
come into contact and induce each other to disperse. In this case the diffusion rate ϕu
will increase with the density. Similarly, if the movement is aggregative, the diffusivity will
initially decline as u increases.

On the other hand, f(x, u) is the reaction term and it represents the local rate of repro-
duction per individual, in other words, per capita population growth rate.

Specifically, in this paper we analyze the following elliptic equation{
−∆(u+ a(x)ur) = λu− b(x)up in Ω,
u = 0 on ∂Ω,

(2)

where p, r > 1, b ∈ C(Ω,R+) and a ∈ C2(Ω,R+) are regular functions that can vanish on
some subsets of Ω. In this specific case, f(x, u) = λu− b(x)up, it is the well-known logistic
reaction term and, in the context of population dynamics, λ is the intrinsic rate of natural
increase of the species and

C(x) ≡ λ

b(x)

denotes the maximum density supported locally by available resources, that is, the carrying
capacity. Thus, the region where b(x) = 0 can be understood as a refuge area for the species,
i.e., the carrying capacity is infinite. For more details about problems with refuge areas see
the pioneering papers [3] and [4], where the problem of the refuge was addressed by the first
time, see also [1], [5], [6] and the recent book [7].

In the nonlinear diffusion term ϕ(x, u) = u + a(x)ur, the function a denotes the type
of diffusion movement of the species: linear when a = 0 and repulsive when a > 0. Thus,
the set {x ∈ Ω; a(x) > 0} is a region where the species must avoid agglomeration. In our
discussion, we will consider different configurations for the refuge area and the zone with
repulsive movement to analyze how these sets affect the persistence of the species.

Let us recall the main known results about (2). For this, given a regular subdomain
D ⊂ Ω, we denote by λ1[−∆;D] the principal eigenvalue of the Laplacian in D under
homogeneous Dirichlet boundary conditions, λ1[−∆;D] =∞ whenD = ∅ and, by simplicity,
λ1 = λ1[−∆; Ω].

When a ≡ 0 in Ω, denoting Ωb+ := {x ∈ Ω; b(x) > 0} and Ωb0 := Ω \ Ωb+, (2) becomes
the classical logistic equation with linear diffusion and refuge. For instance, suppose that
Ωb0 is connected and regular, it is well-known that there exists a unique positive solution uλ
if, and only if, λ ∈ (λ1, λ1[−∆; Ωb0]). Moreover, there exists a detailed study of the profile
of this solution when λ→ λ1[−∆; Ωb0], see [8] , [9] and [7]. In short, we have

lim
λ↑λ1[−∆;Ωb0]

uλ(x)

{
= +∞ if x ∈ Ωb0,
< +∞ if x 6∈ Ωb0.
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Figure 1: An admissible configuration for Ωa0 and Ωb0 with m = 4 and m1 = 1. The dark region represents
the set Ωa0.

Actually, in our knowledge, [10] is the most pioneering paper analyzing the logistic equation
with component refuge areas, as well as the construction of large solution in this case. We
also refer to [7] which presents a most complete collection of the available results of (2) with
a ≡ 0, including a detailed analysis of the global dynamics of the parabolic counterpart of
the model.

When a 6≡ 0 only some partial results are available. The case a = constant > 0, b ≡ 0 (or
b ≡ 1) and p = r = 2 was studied in [11] and if a(x), b(x) > 0 in Ω with p ≥ r is included in
the hypothesis of Theorem 2.1 of [12]. Both papers show that there exists a unique positive
solution of (2) if, and only if, λ > λ1. In [13], the authors analyze an equation related to
(2), including a combination of linear and non-linear diffusion.

Now, we state the main assumptions on the functions a and b:

(H) The open sets
Ωb+ := {x ∈ Ω; b(x) > 0}, Ωb0 := Ω \ Ωb+

are of class C2 and Ωb0 consists of finitely many connected components Bi, 1 ≤ i ≤ m
such that

Bi ⊂ Ω, 1 ≤ i ≤ m, Bj ∩Bi = ∅ if j 6= i.

Similarly, we write

Ωa+ := {x ∈ Ω; a(x) > 0}, and Ωa0 := Ω \ Ωa+.

For each i = 1, ...,m, if
Ω0,i := Ωa0 ∩Bi 6= ∅,
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we denote by λ0,i the principal eigenvalue of the following problem{
−∆u = λXΩ0,i

u in Bi,
u = 0 on ∂Bi.

We also adopt λ0,i =∞ if Ωa0 ∩Bi = ∅.
Without loss of generality, we will assume that the labeling of these components has

been already carried out so that either

λ0,1 = ... = λ0,m1 < λ0,m1+1 ≤ ... ≤ λ0,m (3)

for some m1 ∈ {1, ...,m− 1} or
λ0,1 = ... = λ0,m.

See Figure 1 for a possible disposition of these sets.
In the same way, we denote by λa0 the principal eigenvalue of the following problem{

−∆u = λXΩa0u in Ω,
u = 0 on ∂Ω.

Our first result deals with the case b ≡ 0 in Ω.

Theorem 1.1. Suppose b ≡ 0 in Ω. Then, (2) possesses a positive solution if, and only if,
λ ∈ (λ1, λa0). Moreover, it is unique if it exists, and it will be denoted by uλ. In addition,
the map

λ ∈ (λ1, λa0) 7→ uλ ∈ C2
0(Ω)

is increasing and of class C1. Furthermore,

lim
λ↓λ1
‖uλ‖0 = 0 (4)

and
lim
λ↑λa0

uλ(x) =∞ for each x ∈ Ω. (5)

In the context of population dynamics, this result shows that the presence of such non-
linear diffusion produces the following effect: when Ωa0 6= ∅ then the species persists if the
growth of the species increases, λ, satisfies λ > λ1. On the other hand, when there exists an
area whose movement is linear (i.e., Ωa0 6= ∅) the species persists only for rates λ ∈ (λ1, λa0).
Moreover, in this model, the solution blows-up in the whole Ω when λ→ λa0.

Now, we consider the general case. We have

Theorem 1.2. Suppose b 6≡ 0 in Ω.
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Figure 2: Possible bifurcation diagrams. On the left hand side, we represent the cases b ≡ 0 and Ωa0 = ∅ or
b 6≡ 0 and Ωa0 ∩ Ωb0 = ∅. On the right hand side, we draw the cases b ≡ 0 and Ωa0 6= ∅ where λ = λa0, or
b 6≡ 0 and Ωa0 ∩ Ωb0 6= ∅ where λ = λ0,1.

a) If Ωa0 ∩ Ωb0 = ∅ then (2) possesses a positive solution if, and only if, λ > λ1. Moreover,
for p ≥ r, it is unique if it exists, and it will be denoted by uλ. In addition, the map

λ ∈ (λ1,∞) 7→ uλ ∈ C2
0(Ω)

is increasing and of class C1. Furthermore

lim
λ↓λ1
‖uλ‖0 = 0 (6)

and

lim
λ↑∞

uλ =∞ uniformly in Ωb0. (7)

b) If Ω0 := Ωa0 ∩ Ωb0 6= ∅ and p > r, then (2) possesses a positive solution if, and only if,
λ ∈ (λ1, λ0,1). Moreover, it is unique if it exists, and it will be denoted by uλ. In addition,
the map

λ ∈ (λ1, λ0,1) 7→ uλ ∈ C2
0(Ω)

is increasing and of class C1. Furthermore,

lim
λ↓λ1
‖uλ‖0 = 0, (8)

and

lim
λ↑λ0,1

uλ(x)


=∞ if x ∈

m1⋃
i=1

Bi,

<∞ if x ∈ Ω \
m1⋃
i=1

Bi.

(9)
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The bifurcation diagrams associated to these cases are represented in Figure 1.
In order to clarify the biological interpretation of the main result of the paper, let us

consider the case where the refuge Ωb0 consists of two components B1 and B2 (i.e., Ωb0 =
B1 ∪B2). Then:
a) If the zone where the species avoids agglomeration (Ωa+) contains the refuge (Ωb0), that

is Ωb0 ⊂ Ωa+, then the species remains controlled for all λ > λ1.
b) Assuming that a portion of the refuge, say Ω0, the species diffuses linearly, that is,

Ωb0 ∩ Ωa0 6= ∅, then the species blows up for values of λ ≥ min{λ0,1, λ0,2}. Moreover,
(i) If λ0,1 < λ0,2 (resp. λ0,1 > λ0,2), then the species blows-up not only in Ω0∩B1 (resp.

Ω0 ∩ B2), but in all B1 (resp. B2) and remains bounded in Ω \ B1 (resp. Ω \ B2),
including the other part of the refuge B1 (resp. B2).

(ii) If λ0,1 = λ0,2, then species blows up in the whole refuge Ωb0, not only in Ω0.

It is worth mentioning that in both cases λ1 is the critical size of the rate of natural
increase such that the habitat Ω can maintain the species with this dispersion movement.
Thus, in all the cases above, u is driven to extinction if λ ≤ λ1

The outline of this paper is as follows: first, in Section 2 we introduce an appropriate
change of variables and we collect some results which will be useful throughout the paper.
In Section 3 we prove Theorems 1.1 and 1.2 a) and b) partially. Section 4 is devoted to
obtain some results about large solutions and in the last section we apply these results to
complete the proof of Theorem 1.2, showing (9) when x ∈ Ω \ ∪m1

i=1Bi.

2. Preliminary Results

In this section we present some preliminary results that will be used throughout the rest
of the paper.

A function u ∈ C2(Ω) ∩ C(Ω) is said to be a (classical) solution of (2) if it satisfies (2)
point-wise in Ω.

To study (2), we will introduce the following change of variable:

w = I(x, u) = u+ a(x)ur ⇔ q(x,w) = u. (10)

Then, (2) is equivalent to{
−∆w = λq(x,w)− b(x)q(x,w)p in Ω,
w = 0 on ∂Ω.

(11)

Hence, u ∈ C2(Ω) ∩ C(Ω) is a solution of (2) if, and only if, w is a solution of (11).
Since we are interested in positive solutions of (2), we can define

q(x, s) = 0, ∀x ∈ Ω, s ≤ 0.

As a consequence, any solution of (11) is non-negative. In fact, by the Strong Maximum
Principle any non-trivial solution w of (11) is strictly positive, that is, w(x) > 0 for all
x ∈ Ω. Also note that, by the Strong Maximum Principle, λ > 0 is a necessary condition
for the existence of positive solutions.

The first result of this section shows some useful properties of q(x,w).
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Lemma 2.1. a) For each x ∈ Ω, the map

s 7→ q(x, s)

s
s ≥ 0

is non-increasing and satisfies

lim
s→0

q(x, s)

s
= 1 uniformly in Ω, (12)

lim
s→∞

q(x, s)

s
= XΩa0(x) =

{
0 if a(x) > 0,
1 if a(x) = 0,

(13)

and

XΩa0(x)s ≤ q(x, s) ≤ s ∀x ∈ Ω, s ≥ 0. (14)

b) For each x ∈ Ω, the map

s 7→ q(x, s)p

s
s ≥ 0

satisfies

lim
s→0

q(x, s)p

s
= 0, (15)

lim
s→+∞

q(x, s)p

s
=


∞ if r < p or a(x) = 0,

1
a(x)

if r = p and a(x) > 0,

0 if r > p and a(x) > 0,

(16)

and it is an increasing map if p ≥ r.

Proof. a) Since q(x, ·) is the inverse function of I(x, ·), we get that it is increasing and it
verifies

s = q(x, s) + a(x)q(x, s)r ∀x ∈ Ω. (17)

Thus,
q(x, s)

s
=

1

1 + a(x)q(x, s)r−1
≤ 1 ∀x ∈ Ω.

Therefore, s 7→ q(x, s)/s is decreasing if a(x) > 0 and q(x, s)/s = 1 if a(x) = 0. Further-
more, since q(x, 0) = 0 and lims→∞ q(x, s) =∞, it follows that

lim
s→0

q(x, s)

s
= lim

s→0

1

1 + a(x)q(x, s)r−1
= 1,

lim
s→∞

q(x, s)

s
= lim

s→∞

1

1 + a(x)q(x, s)r−1
= XΩa0(x).

7



b) Using (12), we have that

lim
s→0

q(x, s)p

s
= lim

s→0

q(x, s)

s
q(x, s)p−1 = 0.

In view of (13) and (17), we obtain

lim
s→∞

q(x, s)p

s
= lim

s→∞

1

q(x, s)1−p + a(x)q(x, s)r−p
=


∞, if r < p or a(x) = 0,

1
a(x)

, if r = p and a(x) > 0,

0, if r > p and a(x) > 0,

and q(x, s)p/s is increasing if p ≥ r.

Throughout this paper, for any V ∈ L∞(Ω) called potential, we shall denote by λ1[−∆ +
V ; Ω] the principal eigenvalue of −∆ + V in Ω under homogeneous Dirichlet boundary
conditions. By simplicity, we also use the convention λ1 := λ1[−∆; Ω].

Given D an open set and O a regular domain such that D ⊂ O ⊂ Ω, the following
function will play a crucial role in our exposition

µ(λ) = µD,O(λ) := λ1[−∆− λXD;O], λ ∈ R. (18)

Its useful properties for this work are summarized in the following result, whose proof is
by-product of the general theory of Chapter 9 in [14].

Lemma 2.2. The function µ defined in (18) possesses a unique zero, say λD,O. Moreover,
µ(λ) > 0 if, and only if, λ < λD,O. Furthermore, it satisfies

λ1 < λ1[−∆;O] < λD,O, (19)

and λD,O is the principal eigenvalue of the following problem{
−∆u = λXDu in O,
u = 0 on ∂O. (20)

Specifically, we are interested in two particular eigenvalues: when D = Ωa0 and O = Ω,
in this case we denote by λa0 := λΩa0,Ω; and when D = Ωa0 ∩ Bi and O = Bi, where we
denote by λ0,i := λΩ0,i,Bi , for each i ∈ {1, ...,m}. We emphasize that

λ1 < λa0 and λ1 < λ0,i, i = 1, ...,m. (21)

With these considerations, we can show the following non-existence result of (11).

Lemma 2.3. a) Suppose b ≡ 0 in Ω. If there exists a positive solution of (11), then λ ∈
(λ1, λa0).

b) Suppose b 6≡ 0. If there exists a positive solution of (11), then λ ∈ (λ1, λ0,1).

Proof. We will prove b), the proof of a) is analogous.
8
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b) Suppose that w > 0 is a positive solution of (11). By the properties of the map
s 7→ q(x, s) (see Lemma 2.1), we deduce that

−λ < −λq(x,w)

w
+ b(x)

q(x,w)p

w
.

Thus, by the monotonicity of the principal eigenvalue with respect to the potential,
we have

0 = λ1

[
−∆− λq(x,w)

w
+ b(x)

q(x,w)p

w
; Ω

]
> λ1[−∆− λ; Ω] = λ1 − λ.

On the other hand, using the monotonicity of the principal eigenvalue with respect to
the domain, we get

0 = λ1

[
−∆− λq(x,w)

w
+ b(x)

q(x,w)p

w
; Ω

]
< λ1

[
−∆− λq(x,w)

w
;B1

]
< λ1[−∆− λXΩ0,1 , B1] = µΩ0,1,B1(λ),

where (14) was used to obtain the last inequality. By the properties of the map µΩ0,1,B1

we know that
0 < µΩ0,1,B1(λ)

if, and only if,
λ < λ0,1.

This completes the proof.

Now, we will show that λ1 is the only bifurcation point of positive solutions of (11) from
the trivial solution. For this, let e1 denote the unique (positive) solution of{

−∆e1 = 1 in Ω,
e1 = 0 on ∂Ω,

and let E be the Banach space consisting of all u ∈ C(Ω) for which there exists γ = γ(u) > 0
such that

−γe1 < u < γe1

endowed with the norm

‖u‖E := inf{γ > 0; − γe1 < u < γe1}

and the natural point-wise order. Then E is an ordered Banach space whose positive cone,
say P , is normal and has nonempty interior. Thus, consider the map F : R × E −→ E
defined by

F(λ,w) = w − (−∆)−1(λq(x,w)− b(x)q(x,w)p),

where (−∆)−1 is the inverse of Laplacian operator under homogeneous Dirichlet boundary
conditions. The operator F is of class C1 and (11) can be written in the form

F(λ,w) = 0. (22)

Moreover, by the Strong Maximum Principle any positive solution of (22) is strongly positive.
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Proposition 2.1. λ1 is a bifurcation point of (11) from the trivial solution to a continuum
of positive solutions of (11). Moreover, it is the unique bifurcation point to positive solutions
from (λ, 0). Let Σ0 ⊂ S denote the component of positive solutions of (11) emanating from
(λ, 0). Then, Σ0 is unbounded in R× E.

Proof. Observe that (22) can be written as

L(λ)w +N (λ,w) = 0

where L(λ) = IE − λ(−∆)−1 and N (λ,w) = −(−∆)−1(λ(q(x,w) − w) − b(x)q(x,w)p).
Moreover, thanks to (12) and (15), we have

lim
s→0

λ(q(x, s)− s)− b(x)q(x, s)p

s
= 0,

and then N (λ,w) = o(‖w‖E) as ‖w‖E → 0.
Therefore, we can apply the unilateral bifurcation theorem for positive operators of [15]

(see Theorem 6.5.5) to conclude the result.

The next result will be used extensively throughout this work.

Lemma 2.4. Consider the problem{
−∆u = f(λ, x, u) in Ω,
u = u0 on ∂Ω,

(23)

where u0 ≥ 0 is a function in C(∂Ω). Assume that f : R× Ω× [0,∞)→ R is a C1 function
such that

s 7→ f(λ, x, s)

s
is non-increasing for all x ∈ Ω and there exists x1 ∈ Ω such that f(λ, x1, s)/s is decreasing.
Then:
a) There exists at most a positive solution of (23).
b) Let u, u ∈ C2(Ω) ∩ C1(Ω) with u ≥ 0 and u > 0 a sub and supersolution of (23), respec-

tively. If there exists ε > 0 such that εu ≤ u, then

u ≤ u.

Proof. a) Since f(λ, x, s)/s is non-increasing in s for all x ∈ Ω, then if w 6= v are two
positive solutions of (23), then w = cv for a some positive constant c (see Remark 1 in
[16]). Hence, in x1 we have(

f(λ, x1, v)

v
− f(λ, x1, cv)

cv

)
v = 0. (24)

Since s 7→ f(λ, x1, s)/s is decreasing, if c > 1 we would have(
f(λ, x1, v)

v
− f(λ, x1, cv)

cv

)
v < 0,

a contradiction with (24). Analogously, c < 1 cannot occur and, hence, c = 1 and w = v.
10
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b) Let
Λ = {t ∈ [0, 1]; tu ≤ u}.

By hypothesis, ε ∈ Λ. We will prove that 1 ∈ Λ. Indeed, otherwise we would have

0 < t0 := sup Λ < 1.

Choosing K > 0 large enough such that f(λ, x, s) + Ks is increasing on [0,maxu], we
obtain for u 6= 0

−∆(u− t0u) +K(u− t0u) ≥ f(λ, x, u)− t0f(λ, x, u) +K(u− t0u)

≥ f(λ, x, u) +Ku− t0f(λ, x, u)−Kt0u
≥ f(λ, x, t0u) +Kt0u− t0f(λ, x, u)−Kt0u

≥ t0u

[
f(λ, x, t0u)

t0u
− f(λ, x, u)

u

]
> 0,

where in the last inequality we have used that s 7→ f(λ, x, s)/s is non-increasing and
t0 < 1. In the same way, if u = 0 we have −∆(u − t0u) + K(u − t0u) ≥ 0. Thus,
w := u− t0u verifies {

−∆w +Kw > 0 in Ω,
w ≥ 0 on ∂Ω.

Therefore, by the Strong Maximum Principle, we obtain for δ > 0 sufficiently small that
t0 + δ ∈ Λ, which is a contradiction.

As a consequence, we obtain the following result.

Proposition 2.2. If either b ≡ 0, or b 6≡ 0 and p ≥ r, then (11) admits at most a positive
solution.

Proof. If b ≡ 0 in Ω, then s 7→ λq(x, s)/s is non-increasing and decreasing for x ∈ Ωa+. If
b 6≡ 0 and p ≥ r, then s 7→ (λq(x, s) − b(x)q(x, s)p)/s is non-increasing and decreasing for
x ∈ Ω \ Ω0,i. In both cases, by Lemma 2.4 a), we obtain the result.

3. Existence of Positive Solutions

The goal of this section is to prove Theorem 1.1 and paragraphs a) and b) of Theorem
1.2. Some arguments used in these proofs are inspired in Theorem 4.1 of [8], see also [9] and
[7].

Proof of Theorem 1.1. By Proposition 2.1, λ1 is a bifurcation point of (11) from the
trivial solution and it is the only one for positive solutions. Moreover, there exists an
unbounded continuum Σ0 of positive solutions emanating from (λ1, 0). In order to prove the
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existence of a positive solution for every λ ∈ (λ1, λa0), we consider two cases: Ωa0 = ∅ and
Ωa0 6= ∅.

a) Case Ωa0 = ∅
It suffices to show that, for every λ∗ > λ1, there exists a constant C = C(λ∗) > 0 such

that
‖w‖0 ≤ C ∀(λ,w) ∈ Σ0, λ ≤ λ∗. (25)

Indeed, by the global nature of Σ0, this estimate implies that ProjRΣ0 = (λ1,∞), where
ProjRΣ0 is the projection of Σ0 into R. To prove (25), we will build a family W (λ) of
supersolutions of (11) and apply Theorem 2.2 of [17]. Thus, we consider the continuous map
W : [λ1, λ∗] → C2

0(Ω) defined by W (λ) = K(λ)e, where K(λ) is a positive constant to be
chosen later and e is the unique (positive) solution of{

−∆e = 1 in Ω̂,

e = 0 on ∂Ω̂,
(26)

for some regular domain Ω ⊂⊂ Ω̂. Then, W (λ) = K(λ)e is a supersolution of (11) if

1 ≥ λ
q(x,Ke)

Ke
e in Ω.

Since Ωa0 = ∅, a(x) > 0 a.e. in Ω, (13) gives

lim
s→∞

q(x, s)

s
= 0 a.e. in Ω.

Consequently, for K = K(λ) > 0 sufficiently large, W (λ) = K(λ)e is a supersolution (but
not a solution) of (11), for every λ ∈ [λ1, λ∗] and W (λ1) = K(λ1)e > 0 in Ω. Thus, by
Theorem 2.2 of [17], it follows (25).

The convergence (4) is an immediate consequence of Proposition 2.1.
To prove the monotonicity of map λ 7→ uλ we argue as follows. Given λ, µ > λ1 with

λ < µ, we have
−∆wµ = µq(x,wµ) > λq(x,wµ),

implying
wλ < wµ ⇔ uλ < uµ in Ω.

Finally, in order to prove (5) let us show that ε(λ)ϕ1 is a subsolution of (11), for ε(λ) > 0
to be determined and ϕ1 is the positive eigenfunction associated to λ1 such that ‖ϕ1‖0 = 1.
Indeed, it suffices to verify that

1 + a(x)q(x, ε(λ)ϕ1)r−1 =
ε(λ)ϕ1

q(x, ε(λ)ϕ1)
≤ λ

λ1

x ∈ Ω. (27)

Choosing

ε(λ) :=

(
λ− λ1

λ1 maxΩ a(x)

)1/(r−1)

,
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it is easy to see that (27) is satisfied, once that q(x, s) ≤ s, for all x ∈ Ω. Moreover,

ε(λ)→∞ as λ→∞. (28)

On the other hand, we have already shown that K(λ)e is a supersolution of (11), where e
stands for the unique (positive) solution of (26) and K(λ) > 0 is a constant large. Hence,
for K(λ) > 0 such that

ε(λ)ϕ1 ≤ K(λ)e,

by the sub-supersolution method and the uniqueness of positive solution of (11), we infer

ε(λ)ϕ1 ≤ wλ.

Using (28), we conclude that

lim
λ↑∞

wλ(x) =∞ for each x ∈ Ω.

Therefore, once that wλ = uλ + a(x)urλ, we obtain (5).
b) Case Ωa0 6= ∅. Observe that in this case (22) can be written as L(λ)w +N (λ,w) = 0

where

L(λ)w = w − λ(−∆)−1(XΩa0(x)w) and N (λ,w) = −(−∆)−1(λ(q(x,w)−XΩa0(x)w)).

In view of (13), we can prove that

lim
s→∞

q(x, s)−XΩa0(x)s

s
= 0,

and then, N (λ,w) = o(‖w‖E) as ‖w‖E →∞.
By the classical change of variable, see page 465 in [18], we can apply again Theorem

6.5.5 of [15] to conclude that λa0 is a bifurcation point from infinity of positive solutions,
and it is the unique for positive solutions. Moreover, there exists an unbounded continuum
Σ∞ of positive solutions emanating from infinity at λa0. Since these bifurcation points are
unique, we get

Σ∞ = Σ0.

As a consequence, by the global nature of these continuum, we obtain that there exists a
positive solution for all λ ∈ (λ1, λa0).

In order to prove (5) we follow the arguments of [8]. Note that the map λ ∈ (λ1, λa0) 7→
wλ, where wλ is the unique solution of (2), is differentiable. Indeed, define H : R×C2

0(Ω) −→
C0(Ω) given by

H(λ,w) = −∆w − λq(x,w).

For each (λ,w) ∈ Σ0 we have H(λ,w) = 0, and

Hw(λ,w)ξ = [−∆− λqw(x,w)] ξ.
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Since s 7→ q(x, s)/s is non-increasing and decreasing in a subdomain, we deduce that

q(x,w)

w
> qw(x,w) in Ω.

Thus, combining the above inequality, that (λ,w) is a solution of (11) and the monotonicity
of principal eigenvalue with respect to the potential, we infer that

0 = λ1

[
−∆− λq(x,w)

w
; Ω

]
< λ1[−∆− λqw(x,w); Ω]. (29)

Subsequently, Hw(λ,w) is no singular for all (λ,w) ∈ Σ0. Hence, by the Implicit Function
Theorem, we conclude the differentiability of the map λ 7→ wλ.

Therefore, we can differentiate (11) with respect to λ and get

(−∆− λqw(x,w))w′λ = q(x,w) > 0 in Ω, (30)

where w′λ = dwλ/dλ. In view of (29), the operator −∆ − λqw(x,w) satisfies the Strong
Maximum Principle and we deduce from (30) that w′λ > 0 in Ω.

On the other hand, since qw(x,w) = (1 + a(x)rq(x,w)r−1)−1 > XΩa0 in Ω, (30) gives

(−∆− λXΩa0)w
′
λ > q(x,w) in Ω. (31)

Now, we fix λ ∈ (λ1, λa0) and let ϕ1 be the positive eigenfunction associated to λa0 with
‖ϕ1‖0 = 1. For sufficiently small c > 0 we have

q(x,wλ) > cXΩa0ϕ1 in Ω.

Since λ 7→ wλ is increasing, we get that

q(x,wλ) > cXΩa0ϕ1 in Ω, ∀λ ∈ [λ, λa0).

Let vλ be the unique solution of the linear problem{
(−∆− λXΩa0)u = cXΩa0ϕ1 in Ω,
u = 0 on ∂Ω,

which exists because λ < λa0. In view of (31), the Maximum Principle implies that

w′λ > vλ in Ω.

However
vλ =

cϕ1

λa0 − λ
,

and then
lim
λ↑λa0

w′λ(x) > lim
λ↑λa0

vλ(x) =∞

for each x ∈ Ω. Consequently

lim
λ↑λa0

wλ(x) =∞ ∀x ∈ Ω.
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Proof of Theorem 1.2. By Proposition 2.1, λ1 is a bifurcation point of (11) from the
trivial solution and it is the only one for positive solutions. Moreover, there exists an
unbounded continuum Σ0 of positive solutions emanating from (λ1, 0). Again we will dis-
tinguish two cases:

a) Case Ωa0 ∩ Ωb0 = ∅.
To prove the existence of a positive solution for all λ > λ1 we have to show (25). In order
to prove this, let us consider the family W : [λ1, λ∗]→ C2

0(Ω) defined by W (λ) = K(λ)e,
where K = K(λ) is a positive constant to be chosen and e is the unique positive solution
of (26). Then K(λ)e is a supersolution of (11) provided that

1 ≥ λ
q(x,Ke)

Ke
e− b(x)

q(x,Ke)p

Ke
e in Ω.

Since Ωa0 ∩ Ωb0 = ∅, by (13)–(16), we have

λ
q(x, s)

s
e− b(x)

q(x, s)p

s
e < 1 ∀s > s0, x ∈ Ω

for a sufficiently large constant s0 > 0. Hence, there existsK > 0 such thatW (λ) = Ke is
a supersolution (but not a solution) of (11), for every λ ∈ [λ1, λ∗] andW (λ1) = K(λ1)e >
0 in Ω. Thus, the result follows.
Now, in order to prove (7), let ϕBi1 > 0 be the eigenfunction associated to λ1[−∆, Bi]
such that ‖ϕBi1 ‖0 = 1 and consider

Ψi =

{
ϕBi1 in Bi,
0 in Ω \Bi.

It is clear that Ψi ∈ H1
0 (Ω). We will show that for λ > λ1[−∆;Bi], ε(λ)Ψi is a subsolution

of (11) (in the sense of [19]) for a constant ε(λ) > 0 to be chosen. Indeed, since b ≡ 0 in
Bi, i ∈ {1, ...,m} and Ψi = 0 in Ω \Bi, it suffices to verify that

1 + a(x)q(x, ε(λ)ϕBi1 )r−1 =
ε(λ)ϕBi1

q(x, ε(λ)ϕBi1 )
≤ λ

λ1[−∆;Bi]
x ∈ Bi. (32)

Choosing

ε(λ) :=

(
λ− λ1[−∆;Bi]

λ1[−∆;Bi] maxBi a(x)

)1/(r−1)

, λ > [−∆;Bi],

it is easy to see that (32) is satisfied, once that q(x, s) ≤ s, for all x ∈ Ω. Moreover,

ε(λ)→∞ as λ→∞. (33)

On the other hand, we have already shown that K(λ)e is a supersolution of (11), where
e is the unique positive solution of (26) and K(λ) > 0 is a sufficiently large constant.
Hence, there exists K(λ) > 0 such that

ε(λ)Ψi ≤ K(λ)e in Ω,
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by the sub-supersolution method and the uniqueness of positive solution of (11), we infer

ε(λ)ϕBi1 ≤ wλ in Bi.

Using (33), we conclude that

lim
λ↑∞

wλ(x) =∞ uniformly in Bi.

Therefore, once that wλ = uλ + a(x)urλ, we obtain (7).
b) Case Ωa0 ∩ Ωb0 6= ∅.

Thanks to Lemma 2.3, (11) does not possess positive solutions for λ 6∈ (λ1, λ0,1) and, as
a consequence, by the global nature of Σ0, there exists a sequence of positive solutions of
(11), (λn, wn), such that ‖wn‖0 →∞ and λn → λ∗ ≤ λ0,1. We will prove that λ∗ = λ0,1.
To this aim, we follow the arguments of Lemma 2.4 of [20]. First note that |wn|2 →∞,
where | · |2 stands for the L2(Ω) norm. Otherwise, multiplying (11) by wn, integrating by
parts and using (14) we have

‖wn‖2
H1

0
= λn

∫
Ω

q(x,wn)wn −
∫

Ω

b(x)q(x,wn)p ≤ λ0,1|wn|22

and, hence, ‖wn‖H1
0
is bounded. By elliptic regularity, ‖wn‖W 2,m is also bounded for all

m > 1. Thus, the Morrey’s embedding gives

‖wn‖0 ≤ C‖wn‖W 2,m ≤ C

which is a contradiction.
Define zn = wn|wn|−1

2 , n ≥ 1. Multiplying (11) by zn|wn|−1
2 , using integration by parts

and (14), we infer

‖zn‖2
H1

0
= λn

∫
Ω

q(x,wn)

|wn|2
zn −

∫
Ω

b(x)
q(x,wn)p

|wn|2
zn ≤ λn|zn|22 ≤ λ0,1.

This shows that zn is bounded in H1
0 (Ω). Thus, up to subsequence if necessary, zn → z

in L2(Ω) with |z|2 = 1 and z > 0.
Let us prove that z = 0 in Ω\Ωb0. Indeed, if z(x) > 0 in a subset of Ω\Ωb0 with Lebesgue
measure non-zero, we take D an arbitrary regular domain such that D ⊂ Ω \ Ωb0 and
z(x) > 0 a.e. in D. Then, for any φ ∈ C∞0 (D), multiplying (11) by φ|wn|−1

2 , integrating
in D and applying the formula of integration by parts, it yields

−
∫
D

zn∆φ = λn

∫
D

q(x,wn)

|wn|2
φ−

∫
D

b(x)
q(x,wn)p

|wn|2
φ

= λn

∫
D

q(x, zn|wn|2)

zn|wn|2
znφ−

∫
D

b(x)
q(x,wn|wn|2)p

zn|wn|2
znφ. (34)

Since z(x) > 0 a.e. x ∈ D, then wn(x) = zn(x)|wn|2 → ∞ a.e. x ∈ D. Once that p > r
and b > 0 in D, passing to the limit as n→∞ in (34) we obtain

−
∫
D

z∆φ− λ∗
∫
D

XΩa0zφ = −∞
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which is a contradiction. This shows that z = 0 a.e. in Ω \ Ωb0, hence, z ∈ H1
0 (Ωb0).

Thus, for any ϕ ∈ C∞0 (Ωb0), since that b ≡ 0 in Ωb0, multiplying (11) by ϕ|wn|−1
2 ,

integrating in Ωb0 and applying the formula of integration by parts, it follows that

−
∫

Ωb0

zn∆ϕ = λn

∫
Ωb0

q(x,wn)

|wn|2
φ = λn

∫
Ωb0

q(x, zn|wn|2)

zn|wn|2
znφ.

Letting n→∞ in above equality yields

−
∫

Ωb0

z∆ϕ = λ∗
∫

Ωb0

XΩa0zϕ ∀ϕ ∈ C∞0 (Ωb0).

Since z ∈ H1
0 (Ωb0), z > 0 in Ωb0 with |z|2 = 1 and λ∗ ≤ λ0,1, it follows that λ∗ = λ0,1.

The uniqueness is given by Proposition 2.2.
In both cases, (6) – (8) and the monotonicity of the map λ 7→ uλ is a consequence of
Proposition 2.1 and Lemma 2.4 b), respectively.

To prove (9), we need show that the map λ ∈ (λ1, λ0,1) 7→ wλ is of class C1. Indeed,
consider H : R× C2

0(Ω) −→ C0(Ω) given by

H(λ,w) = −∆w − λq(x,w) + b(x)q(x,w)p.

For each (λ,w) pair of solutions of (11) we have H(λ,w) = 0 and

Hw(λ,w)ξ = −∆ξ − λqw(x,w)ξ + b(x)pq(x,w)p−1qw(x,w)ξ. (35)

Since s 7→ q(x, s)/s is non-increasing and s 7→ q(x, s)p/s is non-decreasing, we deduce that

q(x,w)

pw
< qw(x,w) ≤ q(x,w)

w
,

implying that

−λq(x,w)

w
+ b(x)

q(x,w)p

w
< −λqw(x,w) + b(x)pq(x,w)p−1qw(x,w).

Since (λ,w) is a positive solution of (11), the above inequality gives

0 = λ1

[
−∆− λq(x,w)

w
+ b(x)

q(x,w)p

w
; Ω

]
< λ1[−∆− λqw(x,w) + b(x)pq(x,w)p−1qw(x,w); Ω]. (36)

Therefore, (35) and (36) imply that Hu(λ,w) is no singular for all (λ,w) pair of solutions
of (11). Hence, by the Implicit Function Theorem, λ 7→ wλ is of class C1 and we can
differentiate (11) with respect to λ and get

(−∆− λqw(x,wλ) + b(x)pq(x,wλ)
p−1qw(x,wλ))w

′
λ = q(x,wλ) > 0 in Ω (37)
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where w′λ = dwλ/dλ. In view of (36), the operator

−∆− λqw(x,wλ) + b(x)pq(x,wλ)
p−1qw(x,wλ)

satisfies the Strong Maximum Principle and we deduce from (37) that w′λ > 0 in Ω.
On the other hand, in Bi, 1 ≤ i ≤ m1 we have b(x) = 0 and (37) gives us

−∆w′λ = q(x,w) + λqw(x,w)w′λ in Bi.

Since qw(x,w) > XΩa0∩Bi in Bi, the above equality implies

(−∆− λXΩa0∩Bi)w
′
λ > q(x,w) in Bi. (38)

Now, we fix λ ∈ (λ1, λ0,1) and let ϕi1 be the positive eigenfunction associated to λ0,i with
‖ϕi1‖0 = 1. For a constant c > 0 sufficiently small, we have

q(x,wλ) > cXΩ0,i
ϕi1 in Bi.

Once that λ 7→ wλ is increasing,

q(x,wλ) > cXΩ0,i
ϕi1 in Bi, ∀λ ∈ [λ, λ0,1).

Let viλ be the unique solution of the linear problem{
(−∆− λXΩ0,i

)u = cXΩ0,i
ϕi1 in Bi,

u = 0 on ∂Bi,

which exists because λ < λ0,i. In view of (38), the Maximum Principle implies that

w′λ > viλ in Bi.

However
viλ =

cϕi1
λ0,i − λ

and once that λ0,i = λ0,1 for each i ∈ {1, ...,m1}, we deduce

lim
λ↑λ0,1

w′λ(x) > lim
λ↑λ0,1

viλ(x) =∞

for each x ∈ Bi. Consequently

lim
λ↑λ0,1

wλ(x) =∞ ∀x ∈ Bi, 1 ≤ i ≤ m1,

which ends the proof of the theorem.
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4. Large Solutions

To complete the proof of Theorem 1.2, we only have to prove that limλ↑λ0,1 uλ(x) <∞ for
x ∈ Ω \ (∪m1

i=1Bi). Following the general framework of [10] (see also [7]), the idea is to show
that there exists a function U defined in Ω\ (∪m1

i=1Bi) such that uλ ≤ U , for all λ ∈ (λ1, λ0,1).
Thus, the main purpose of this section is to build such a function. For this, we recall that
a solution of the problem {

−∆u = f(x, u) in Ω,
u =∞ on ∂Ω,

is usually known as a large solution of

−∆u = f(x, u) in Ω, (39)

that means a classical solution u ∈ C2(Ω) of (39) such that

lim
dist(x,∂Ω)↓0

u(x) =∞.

There are many results about large solutions, see for example [10], [21], [7], [22] and their
references. The following lemma is a consequence of these works.

Lemma 4.1. Consider the problem{
−∆w = λw − b(x)qd(w)p in Ω,
w =∞ on ∂Ω,

(40)

where d ≥ 0, λ > 0 and qd is the inverse function of s 7→ s + dsr. Assume b(x) ≥ b0 > 0 in
Ω and p > r. Then (40) possesses a non-negative solution.

Proof. We are going to apply Theorem 1.1 of [21]. Therefore, it is sufficient to verify the
following hypotheses:

(A1) qpd ∈ C1([0,+∞)) with qpd ≥ 0 and qd(s)p

s
is increasing in (0,+∞),

and the Keller-Osserman condition

(A2)

∫ ∞
1

dt√
F (t)

<∞, where F (t) =

∫ t

0

qd(s)
pds.

Firstly, we note that if d = 0 we have qd(s) = s and it is easy to see that (A1)–(A2) are
satisfied.

Suppose d > 0. Since s = qd(s) + dqs(s)
r, we can write

qd(s)
p

s
=

1

qd(s)1−p + dqd(s)r−p
.

Once that p > r, s 7→ qd(s)p

s
is increasing in (0,+∞) and (A1) follows.

To verify (A2), first we will show that, for p > r, there exists a constant C > 0 such that

Csk ≤ qd(s)
p ∀s ≥ 1, k ∈ (1, p/r).
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Indeed, define

h(s) :=
sk

qd(s)p
=
[
qd(s)

1− p
k + dqd(s)

r− p
k

]k
s ≥ 1.

Since k ∈ (1, p/r), h is decreasing and therefore

sk

qd(s)p
≤ 1

qd(1)p
=

1

C
s ≥ 1.

Thus, defining

g(s) =

{
Csk 1 ≤ s,
0 0 ≤ s ≤ 1,

we have that g(s) ≤ qpd(s) in (0,∞). Then∫ ∞
1

(∫ s

0

qd(t)
pdt

)− 1
2

dtds ≤
∫ ∞

1

(∫ s

0

g(t)dt

)− 1
2

dtds = C0

∫ ∞
1

1

s(k+1)/2
ds <∞,

which ends the proof.

Now, we will analyze another problem of large solutions, which is the principal result of
this section. Specifically, denoting by

Ω1 := Ω \
m1⋃
i=1

Bi,

we will establish the existence of positive solution for the singular value problem
−∆w = λq(x,w)− b(x)q(x,w)p in Ω1,
w = 0 on ∂Ω1 ∩ ∂Ω,
w =∞ on ∂Ω1 \ ∂Ω.

(41)

To prove it, we will follow Section 3 of [23]. Thus, we consider the inhomogeneous
problem associated to (41)

−∆w = λq(x,w)− b(x)q(x,w)p in Ω1,
w = 0 on ∂Ω1 ∩ ∂Ω,
w = M on ∂Ω1 \ ∂Ω,

(42)

for eachM > 0. Denoting λ0,m+1 =∞, the next result characterizes the existence of positive
solutions of (42).

Lemma 4.2. If p > r, then (42) possesses a positive solution if, and only if, λ < λ0,m1+1.
Moreover, it is unique if exists, and we denote it by w[λ,M ]. Furthermore, the maps λ 7→
w[λ,M ] and M 7→ w[λ,M ] are non-decreasing.
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Proof. If w > 0 is a solution of (42), then it is a strict supersolution of the associated
homogeneous problem. Therefore, in the case λ0,m1+1 <∞ we have

0 < λ1

[
−∆− λq(x,w)

w
+ b(x)

q(x,w)p

w
; Ω1

]
<

λ1[−∆− λXΩ0,m1+1 ;Bm1+1] = µΩ0,m1+1,Bm1+1(λ).

By Lemma 2.2, the above inequality implies that λ < λ0,m1+1 is a necessary condition
for the existence of positive solutions of (42).

Assuming λ < λ0,m1+1 and since w ≡ 0 is a subsolution (but not a solution) of (42), to
prove the existence of positive solution it suffices to construct a positive supersolution of
(42). To this aim we argue as follows.

The construction in the cases m1 < m and m1 = m are similar, then we will deal
only with the case m1 < m. Fix λ < λ0,m1+1. Note that ∂Ω1 \ ∂Ω consists of the (finite)
components of ∂Bi, i ∈ {1, ...,m1}. Thus, for δ > 0 small, let

U δi := {x ∈ Ω; dist(x, ∂Bi) < δ}

be a regular subdomain and ϕδi > 0 the principal eigenfunction of −∆ in U δi under homo-
geneous Dirichlet boundary conditions with ‖ϕδi‖0 = 1. Denoting by λδi = λ1[−∆;U δi ] the
corresponding principal eigenvalue and once that

|U δi | → 0 as δ → 0,

where | · | denotes the Lebesgue measure, the monotonicity of the principal eigenvalue with
respect the domain implies that we can choose δ sufficiently small such that

λδi > λ, (43)

for all (finite) components of ∂Bi, i = 1, ...,m.
On the other hand, consider

Bδ
i := {x ∈ Ω1; dist(x,Bi) < δ} ⊂⊂ Ω1, (44)

for each i ∈ {m1 + 1, ...,m}, i.e., the Bi’s which are contained in Ω1. The Figure 3 sketches
the construction of U δi and Bδ

i for a particular case. Denote by λδ0,i the principal eigenvalue
of {

−∆w = λXΩa0∩Bδiw in Bδ
i ,

w = 0 on ∂Bδ
i .

(45)

Observe that λδ0,i is the zero of the map λ 7→ ρ(λ, δ) where

ρ(λ, δ) := λ1[−∆− λXΩa0∩Bδi ;B
δ
i ].
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Figure 3: A typical configuration of the sets Uδi and Bδi where Ω1 = Ω \ B1. The dashed lines around of
∂B1 delimit the two components of set Uδ1 and the dashed line around of B2 delimits the set Bδ2 .

On the one hand, following the proof of Theorem 9.1 of [14], it can be derived that the map
λ 7→ ρ(λ, δ) is analytic and its zero is simple. On the other hand, from Section 8.5 of [14],
it follows that the map δ 7→ ρ(λ, δ) varies continuously. Hence, we can deduce that

λδ0,i → λ0,i as δ → 0.

Thus, since λ0,i > λ0,1 > λ, i ∈ {m1 + 1, ...m}, for δ sufficiently small, we have

λδ0,i > λ (46)

and, hence, Theorem 1.1 provides us with a (unique) positive solution, say wδi , of{
−∆w = λiq(x,w) in Bδ

i ,
w = 0 on ∂Bδ

i ,
(47)

for some λi ∈ (λ, λδ0,i). Therefore, for δ > 0 satisfying (43) and (46), consider a positive
function

φ : Ω1 \

([
m1⋃
i=1

(U δ/2i ∩ Ω1)

]
∪

[
m⋃

i=m1+1

B
δ/2

i

])
→ R

such that

Φ(x) =


wδi (x) if x ∈ Bδ/2

i , i = {m1 + 1, ...,m},
ϕδi if x ∈ U δ/2i ∩ Ω1, i = {1, ...,m1},
φ(x) otherwise,

(48)

is a C2(Ω1) function. We claim that KΦ is a supersolution of (42) for a sufficiently large
positive constant K. Indeed, it is easy to see that KΦ = Kφ > 0 in ∂Ω1 ∩ ∂Ω and for K
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large, KΦ = Kϕ
δ/2
i > M in each component of ∂Ω1 \ ∂Ω. Then, KΦ is a supersolution of

(42) provided that

−∆(KΦ) ≥ λq(x,KΦ)− b(x)q(x,KΦ)p in Ω1. (49)

In Ω1 \
([⋃m1

i=1(U δ/2i ∩ Ω1)
]
∪
[⋃m

i=m1+1 B
δ/2

i

])
, (49) is equivalent to

−∆φ ≥ λ
q(x,Kφ)

Kφ
φ− b(x)

q(x,Kφ)p

Kφ
φ.

Since b(x) > b0 > 0 in Ω1 \
([⋃m1

i=1(U δi ∩ Ω1)
]
∪
[⋃m

i=m1+1B
δ

i

])
and in view of (13) – (16)

we have
lim
s→∞

[
λ
q(x, s)

s
− b(x)

q(x, s)p

s

]
= −∞,

uniformly in Ω1 \
([⋃m1

i=1(U δ/2i ∩ Ω1)
]
∪
[⋃m

i=m1+1 B
δ/2

i

])
. Thus, for sufficiently large K

enough, (49) is satisfied.
Now, in each U δ/2i ∩ Ω1, i ∈ {1, ...,m1}, (49) is equivalent to

λδi ≥ λ
q(x,Kϕδi )

Kϕδi
− b(x)

q(x,Kϕδi )
p

Kϕδi
.

By the properties of q(w, ·) and in view of (43), the above inequality follows for any K > 0.
Finally, in Bδ/2

i , i ∈ {m1 + 1, ...,m}, since λi > λ, (49) holds if

λ

(
q(x,wδi )

wδi
− q(x,Kwδi )

Kwδi

)
wδi ≥ −b(x)

q(x,Kwδi )
p

K
. (50)

Once that the map s 7→ q(x, s)/s is non-increasing, (50) is satisfied for K > 1 and, hence,
KΦ is a supersolution of (11). This proves the existence of a positive solution of (11).

The uniqueness follows by a similar argument of Proposition 2.2. The monotonicity of
maps λ 7→ w[λ,M ] and M 7→ w[λ,M ] is a consequence of that w[λ,M ] is a subsolution of (42)
with λ̂ ≥ λ and M̂ ≥M .

Note that in the previous proof the domain Ω1 does not play a crucial rule. It is only
important that Bi ⊂⊂ Ω1, i ∈ {m1 + 1, ...,m}. Then, as a consequence of this proof, we
obtain

Corollary 4.1. Consider δ > 0 small such that, denoting by

Dδ := {x ∈ Ω1; dist(x, ∂Ω1 \ ∂Ω) ≤ δ} and Ωδ
1 = Ω1 \Dδ,

we have
m⋃

i=m1+1

Bi ⊂ Ωδ
1.
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Then, for p > r and M > 0, the problem
−∆w = λq(x,w)− b(x)q(x,w)p in Ωδ

1,
w = 0 on ∂Ωδ

1 ∩ ∂Ω,
w = M on ∂Ωδ

1 \ ∂Ω,

has a positive solution if, and only if, λ < λ0,m1+1. Moreover, it is unique if exists.

Proof. Just note that the same arguments of the previous Lemma can be applied, including
the construction of the supersolution.

A crucial step in order to prove existence of large solution is to obtain suitable a priori
estimates. The following result establishes this bound.

Lemma 4.3. For each compact subset K ⊂ {x ∈ Ω1; b(x) > 0}, there exists a constant
C := C(K) > 0 such that

‖w[λ,M ]‖0 ≤ C ∀λ < λ0,m1+1, M > 0.

Proof. Let K ⊂ {x ∈ Ω1; b(x) > 0} be compact and δ > 0 sufficiently small such that

Kδ := {x ∈ Ω1; dist(x,K) < δ} ⊂ {x ∈ Ω1; b(x) > 0}.

Thus, we have b(x) ≥ minKδ b(x) > 0 and, by Lemma 4.1, there exists a large solution, say
Wd, of

−∆w = λw − b(x)qd(w)p in Kδ,

where d = maxKδ a(x) ≥ 0. For all M > 0, Wd is a supersolution of{
−∆w = λq(x,w)− b(x)q(x,w)p in Kδ/2,
w = w[λ,M ] on ∂Kδ/2.

(51)

Indeed, on one hand

λs ≥ λq(x, s) and q(x, s) ≥ qd(s) ∀s ≥ 0,

which implies

−∆Wd = λWd − b(x)qd(Wd)
p ≥ λq(x,Wd)− b(x)q(x,Wd)

p in Kδ/2.

Moreover, Wd ≥ w[λ,M ] on ∂Kδ/2 because Wd = ∞ in ∂Kδ. Therefore, w[λ,M ]|Kδ/2 is a
solution of (42). Since

f(λ, x, s)

s
:= λ

q(x, s)

s
− b(x)

q(x, s)p

s
is decreasing in {x ∈ Ω1; b(x) > 0}, by Lemma 2.4 b) we obtain

w[λ,M ] ≤ Wd in Kδ/, ∀M > 0.

Consequently,
‖w[λ,M ]‖C(K) ≤ max

Kδ/2

Wd,

which ends the proof.
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The main result of this section can be stated as follows.

Proposition 4.1. If λ < λ0,m1+1, then (41) possesses a positive solution. Moreover, in such
case, the point-wise limit

W[λ,∞] := lim
M↑∞

w[λ,M ],

provides us with the minimal positive large solution of (41), that is, any positive large solution
Θ of (41) satisfies

W[λ,∞] ≤ Θ.

Proof. We fix λ < λ0,m1+1. By Lemma 4.2, the map M 7→ w[λ,M ] is non-decreasing, hence
the point-wise limit is well defined. To show that it solves (41), we proceed as follows. First
we prove that it is finite. In the set {x ∈ Ω1; b(x) > 0} is finite by Lemma 4.3. If m1 = m
then Ω1 = {x ∈ Ω1; b(x) > 0} and the result is complete.

On the other hand, if m1 < m, for each Bi ⊂ Ω1, i ∈ {m1 + 1, ...,m}, we can choose
δ > 0 small such that

Dδ := {x ∈ Ω1; dist(x, ∂Ω1 \ ∂Ω) ≤ δ} ⊂ Ω1 \
m⋃

i=m1+1

Bi and Ωδ
1 = Ω1 \Dδ. (52)

For each of these δ’s, there exists an open set Oδ satisfying

∂Ωδ
1 ⊂ Oδ ⊂⊂ Ω1 \ ∪mi=m1+1Bi.

Fix one of those δ’s. Then, thanks to Lemma 4.3, there exists a constant C > 0 such that

‖w[λ,M ]‖C(∂Ωδ1) ≤ ‖w[λ,M ]‖C(Oδ) ≤ C ∀M > 0. (53)

Hence, w[λ,M ]|Ωδ1 is a subsolution of
−∆w = λq(x,w)− b(x)q(x,w)p in Ωδ

1,
w = 0 on ∂Ωδ

1 ∩ ∂Ω,
w = C on ∂Ωδ

1 \ ∂Ω,
(54)

and, as a consequence

w[λ,M ] ≤ w[λ,C,δ] in Ωδ
1 ∀M > 0, (55)

where w[λ,C,δ] stands for the unique solution of (54), whose existence is guaranteed by Corol-
lary 4.1. This shows that the point-wise limit W[λ,∞] is finite in Ω1.

Now, we take two open sets O,O1 and a sufficiently small δ such that

O ⊂⊂ O1 ⊂⊂ Ωδ
1 ⊂⊂ Ω1.

By the elliptic Lp-estimates and Morrey’s Theorem, there exists a constant C > 0 such that,
for each M > 0,

‖w[λ,M ]‖C1(O1) ≤ C.
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Therefore, by the compact embedding C1(O1) into C0,α(O1) and the uniqueness of the point-
wise limit, W[λ,∞] is Hölder continuous. Consequently, by elliptic regularity, we obtain that
it solves (41).

It remains to prove that W[λ,∞] is a minimal positive solution of (41). Indeed, let Θ be
any positive solution of (41) and C > 0 be the constant that satisfies (53). Since Θ =∞ on
∂Ω1 \ ∂Ω, we have for δ > 0 small that

C ≤ Θ on ∂Ωδ
1 \ ∂Ω.

Therefore, Θ|Ωδ1 is supersolution of (54) and consequently

w[λ,C,δ] ≤ Θ in Ωδ
1. (56)

Combining (55) and (56), we obtain

w[λ,M ] ≤ Θ in Ω1.

Thus, letting M ↑ ∞ yields
W[λ,∞] ≤ Θ,

which establishes the minimality of W[λ,∞].

5. Profile of Positive Solution

If Ωa0 ∩ Ωb0 6= ∅, we already know that

lim
λ↑λ0,1

wλ =∞ uniformly in
m1⋃
i=1

Bi.

To complete the study of the behavior of the solution wλ as λ ↑ λ0,1, it remains to show
what happens with the points x ∈ Ω1 := Ω \ ∪m1

i=1Bi.

Completing the proof of Theorem 1.2 b). Let W := W[λ0,1,∞] be a positive solution
of (41), given by Proposition 4.1. Considering Ωδ

1 as in (52) with δ > 0 sufficiently small, it
satisfies

−∆W = λ0,1q(x,W )− b(x)q(x,W )p ≥ λq(x,W )− b(x)q(x,W )p in Ωδ
1,

for all λ ∈ (λ1, λ0,1). Thus, W is a supersolution of{
−∆w = λq(x,w)− b(x)q(x,w)p in Ωδ

1,
w = wλ|∂Ωδ1

on ∂Ωδ
1,

whose (unique) solution is wλ|Ωδ1 . By Lemma 2.4 b), we obtain

wλ ≤ W in Ωδ
1,

since δ is arbitrarily small,
wλ ≤ W in Ω1.

Thus, letting λ ↑ λ0,1 yields

lim
λ↑λ0,1

wλ(x) <∞ ∀x ∈ Ω1,

which completes the proof of theorem.
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