
An approach for Model-Driven test generation 

J.J. Gutierrez, M.J. Escalona, M. Mejías, I. Ramos, J. Torres 

Department of Computer Languages and System 

University of Seville 

Seville, Spain 

{ mjescalona, javierj, risoto, isabel.ramos, jtorres}@us.es 

Abstract—The test phase is one of the most important phases in 

software development. However, in practice, little research has 

been carried out in this field. Model-Driven Engineering is a new 

paradigm that can help to minimize test cases generation costs 

and can ensure quality of results. This paper presents the 

application of the MDE paradigm in the systematic, even 

automatic, generation of System Test Software. 

Keywords-component; Model-Driven Engineering, Test 

generation 

I. INTRODUCTION

The Software development process is composed of a set of 

phases and tasks that the development team must carry out 

according to specific scheduling and requirements.  

Two of the most costly phases in the life cycle of a 

software system are the test phase and the maintenance phase. 

In both phases, it must be verified that the developed system 

covers the user’s requirements [21]. 

However, development delays or cost problems 

frequently provokes that the test phase is insufficient or even 

not executed, and that the tests are considered unsuitable in the 

maintenance phase. 

One possible solution to this common problem is to 

make the test execution easier for the development team. The 

definition of test cases and the assurance that they cover user’s 

requirements could help towards test phase generation to this 

end. 

A tendency has asserted in the research community 

around the definition of systematic approaches for the 

generation of test cases from functional requirements. 

These solutions ensure that the tests cover user’s 

requirements and offer easier ways to generate test cases. 

In this environment, the use of the Model-Driven 

paradigm not only offers suitable results but test cases can also 

be generated from functional requirements. 

This paper presents an approach based on Model-

Driven Engineering (MDE)[11] for the systematic generation 

of system test cases from functional requirements. 

The paper is divided in five sections. In Section II, a 

short survey about the current situation of systematic test 

generation from functional requirements is presented, together 

with a short introduction of the MDE paradigm. 

In Section III, a global vision is given of the MDE 

test generation approach. A brief overview of its metamodels, 

transformations, specific syntax and associated tools are 

presented. 

In Section IV the approach is illustrated with a simple 

example. Starting with the use cases, a complete application of 

the approach is presented. 

In the conclusions, this paper introduces references to 

real practical applications and future research lines using this 

approach. 

II. CURRENT SITUATION

A. Systematic Test Generation

The test phase is one of the most important phases in the 

software development process. However, delays in 

development may be caused by incorrect execution. For this 

reason, several research teams are working on test cases 

generated directly from requirements. These groups work on 

offering effective processes for the systematic generation of 

test products in order to consume the shortest time possible 

and to cover a high number of tests. 

Although an extensive list of references may be 

found in [5] and [12], the following paragraphs describe some 

of the most relevant approaches along these lines. 

Binder [3] describes the Extended Use Case Test 

pattern, based on the Category-Partition method. This pattern 

is focused on the identification of operational variables and 

builds up a decision table with all the combinations between 

values and the expected results for each set of values. The 

main ideas of Section 3 have been extracted from this pattern; 

however, it is less formal than our approach and does not 

support any automation nor generate test scripts. 

The TDE/UML approach, [23], expresses a use case 

as a Unified Modelling Language (UML) activity diagram and 

uses the Category-Partition method [20] to generate test cases. 

The diagram is annotated with variables, categories, partitions 

and conditions. A proprietary test tool calculates all the 

possible combinations between the paths and categories that 

fit all the conditions. However, the approach does not indicate 

if the activity diagram may be generated automatically from 

the use cases, nor the format in which the use cases must be 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/132461309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


defined. The TDE/UML approach might generate executable 

test scripts, but no expected results and validation actions are 

generated.  

TOTEM [15], Requirement-based Contract [16] and 

the CowSuite [1] approaches express a use case as a UML 

sequence diagram. The sequences of messages are expressed 

as regular expressions and are combined to generate test cases. 

We found some problems using sequence diagrams: It is very 

difficult to express alternative or erroneous sequences in the 

same diagram. Information about architecture and internal 

implementation, such as classes and messages are also needed, 

so sequence diagrams cannot be applied in early development 

phases.  

The RETNA approach [4] uses a paragraph of non-

format text to define the use case and it applies language 

processing techniques to extract information, build state 

machines and generate test cases. This approach introduces 

strong restrictions in use cases, and needs a wide range of 

tools and techniques, mainly of language processing, which 

makes it difficult to apply. 

Other approaches work directly with natural 

language, such as those in [14] and [16]. They all propose a 

simple combinational explosion among all scenarios in a use 

case. These approaches are quite simple and omit many 

important aspects, such as coverage, test values, expected 

results and test implementation. 

B. Model-Driven Engineering and Model-Driven

Architecture

MDE is a new paradigm for software generation where
concepts have the greatest importance, independent of their 
representation. MDE proposes representing concepts using 
metamodels. The development process is supported by a set of 
transformations and relations between concepts that leads to 
agile developments and ensures consistence between models. 
Metamodels offer an abstract artifact representation for any 
environment. Thus, MDE presents any abstract concept and 
enables different representations for each concept that can be 
selected by the development team. 

On the other hand, MDA (Model-Driven 

Architecture) is the standard Model-Driven Architecture 

defined by OMG[18]. It is oriented towards the definition of a 

common structure and a common language to define MDE 

approaches. MDA proposes four levels: 

� CIM (Computer Independent Model): In this level, 

concepts that capture the logic of the company are 

defined. For instance, the business or the 

requirements models are included in this level. 

� PIM (Platform Independent Model): This level 

involves the concepts that define the software system 

if any refer to the specific development platform. For 

instance, analysis artifacts are included in this level. 

� PSM (Platform Specific Model): Here, models that 

depend on the specific development platform are 

defined, for instance, specific models for Java or 

.Net. 

� Code: This is the highest level and includes the 

implementation of the system. 

In MDA between these levels some transformations 

can be defined: CIM-to-PIM, PIM-to-PSM or PSM-to-code 

transformations can be defined. However, transformations in 

the same level, for instance PIM-to-PIM, can be also defined 

in MDA. 

MDE offers a new way of building software. Since 

results and models are obtained from previous models using 

transformations, MDE ensures the traceability of products. 

Thus, by using CIM-to-PIM transformations for instance, an 

analysis model could be obtained from the requirements 

model of a system. 

Furthermore, MDE frequently reduces the 

development time. Transformations offer a systematical way 

to derive products. However, if a suitable tool is used, these 

transformations can be automatically executed and the 

development team can be reduced as presented in [7]. 

Nowadays, MDE is being used in different contexts: 

Web Engineering, Aspect Software Programming, Service 

Oriented Development, etc. This paper is focused on 

analyzing how MDE can improve the generation of test 

systems directly from requirements.  

III. AN APPROACH FOR TEST GENERATION

In this Section, an approach based on MDE for test system 

generation is introduced. 

This approach starts with the definition of functional 

requirements and proposes a systematic process, based on 

QVT transformations, to derive system tests. Figure 1 

introduces the context of the approach presented in the MDA 

environment. Although in Figure 1 the whole process is 

presented, our approach is only focused on the CIM and PIM 

levels only. In fact, the MDE test generation approach starts 

with functional requirements defined in the CIM level. With a 

set of transformation CIM-to-PIM a set of models in the PIM 

level are obtained. 

Specifically, a set of Test Scenarios are obtained 

using QVT transformations. A test scenario is a concrete 

execution path in the system that it is derived from functional 

requirements.  

Therefore, with CIM-to-PIM transformations a set of 

operational variables are also derived. An operational variable 

is any element which value may change among different 

executions of a functional requirement. 

With both sets of artefacts (execution paths and 

operational variables), which are related in the approach, and 

using some PIM-to-PIM transformations, the systematic 

derivation of system test cases is enabled. 

In general, this is the approach. Starting from the 

functional requirements definition, a set of system test cases 

can be derived. However, several aspects have to be concreted 

in this general introduction. In next sections, metamodels, 

transformations, tools and the concrete syntax used in this 

approach are defined. 

The process must continue with the PSM generation. 

From the test cases definition, some executable test cases must 

be design. Thus, with a set of PIM-to-PSM transformations, 



test cases definition must be adapted to a concrete platform 

like .NET, J2EE, etc. From these PSM definitions, the code 

with the executable test generation may be obtained. 

A. Metamodels

In order to offer suitable environments for the definition of 

models presented in Figure 1, a set of metamodels must be 

included. 

UML class diagram is one of the most used notations 

for the definition of metamodels. In our approach, two 

metamodels has been defined: 

1- The metamodel for functional requirements

2- The metamodel for functional test

In the first metamodel, artifacts related with 

functional requirements are presented. It is very important to 

stick out that any representation reference is included in this 

metamodel.  

The metamodel, which is presented in Figure 2 and is 

studied completely in [13], only included the concepts. Thus, 

for each functional requirement (represented by the 

FunctionalRequirement metaclass) is composed of a set of 

Main Steps (the MainStep metaclass). Some of these main 

steps can produce some exceptional ways in the execution (the 

ExceptionalStep metaclass), for instance, error paths or 

alternative routes.  

Besides, the metamodel defines that every main step 

must be executed by an Actor (represented by the FRActor 

metaclass). 

The metamodel for functional testing is a metamodel 

that grouped every artefact in the PIM level. Thus, this 

metamodel is composed by a set of metaclasses that grouped 

the abstract definition of test scenarios, operational variables 

and system test cases. 

This metamodel could be defined as a set of three 

metamodels that were grouped in the PIM level. 

Figure 1.  MDE Test Generation Approach 



class Functional Requirement Metamodel

FRActor

- name:  String

FunctionalRequirement

- name:  String

- precondition:  Constraint [0..*]

- postcondition:  Constraint [0..*]

- description:  String [0..1]

MainStep

- action:  String

ExceptionalStep

- action:  String [0..1]

- exceptionCondition:  Constraint [1..*]

- result:  ResultType

- nextStep:  MainStep [0..1]

«enumeration»

ResultType

«enum»

continue

repeat / goto

end

+functionalRequirement

+mainSequence
1..*

{ordered}

+performedBy

0..1

+performs

0..1
+erroneousStep

0..* {ordered}

+alternativeStep

0..* {ordered}

Figure 2.  Functional Requirements Metamodel 

Some constraints could be defined among the 

concepts defined in each metamodel. These constraints, 

defined in each class as invariants, limit the use of concepts 

and concretize their scopes. For example, in the metamodel 

for functional test there is a metaclass named TestStep. This 

metaclass represents a step that must be executed as part of 

one test case. It is related with two metaclasses in the 

metamodel: SourceExceptionalStep and SourceMainStep. 

These metaclasses are derived from MainStep and 

ExceptionalStep in the Functional Requirements Metamodel 

(see Figure 2). Both metaclasses express that any step in a 

test case must be derived from an initial step in the 

functional model. Therefore, an OCL constraint can be 

defined involving the TestStep, SourceMainStep and 

SourceExceptionalStep metaclasses. This constraint is 

introduced in Table I.  

TABLE I.  AN OCL CONSTRAINT  

self.SourceExceptionalStep ���� isEmpty() 

 implies not(self.SourceMainStep) 

���� isEmpty()) or

self. SourceMainStep  ���� isEmpty() 

 impliesnot(self.MainExceptionalStep 

���� isEmpty())

Basically, the constraint from table 1 expresses that any 

TestStep element must be originality derived from a 

SourceExceptionalStep or from a SourceMainStep.  

B. Transformations

Any MDE approach is composed of two parts: metamodels 

and transformations. Transformations are the way to 

“produce” results in a MDE approach. 

In the MDE Test approach, several transformations 

were defined. 

There are several ways to define transformations in 

the MDE environment. In this case, QVT was the selected 

language [22].  

Two different ways can be followed when using 

QVT: Relational QVT and Operational QVT. The first one 

is easier to be understood, however, some specific aspect are 

very difficult to be expressed with Relational QVT. For this 

reason, in the test generation approach a mix selection was 

used. Transformations are commonly defined with 

Relational QVT and, only in those cases that it is difficult or 

even impossible the use of Relational QVT, Operational 

QVT is used.  

C. Concrete Syntax

In practice, metamodels and transformations are not useful 

enough. They are the abstract definition of a set of concepts 

that must be enriched with a concrete syntax to represent 

these concepts. 

The decision of a concrete syntax is not easy. We 

define two different possibilities in our approach. 

A. UML profiles. A profile is a useful tool defined by

UML[19] that enables the definition of concepts as formal

extensions of UML artifacts. For each metamodel defined in

our approach, a concrete profile was defined. The elements

of each metamodel (such as FunctionalRequirement or



TestStep metaclasses) has been modeled by extending 

existing UML metaclases like Class and Operation. 

A profile adds important advantages in MDE 

approaches.  

1. It offers a standard vision of the approach. If

anybody wants to use our approach, they can

understand concepts in based of the standard

definition of UML. Thus, if MainStep (see Figure

2) is defined as a formal extension of an UML

Activity, anyone who knows UML can easily

understand its meaning.

2. It offers a suitable way for the use of tools. Most of

commercial or UML tools (such as Enterprise

Architecture[10], Rational Rose [23], StartUML

[25], etc.) include the possibility of defining

profiles. Thus, if this possibility is used and a

concrete profile is defined, for example in

Enterprise Architect, the development team

automatically can define our approach artifacts in

Enterprise Architect. This possibility was used in

practice with our approach. It is presented in

posterior sections.

3. It increases the compatibility with other

approaches. As we analyzed in Figure 1, our

approach only covers CIM and PIM level. The use

of standards makes easier the compatibility with

other approaches that works in PSM or Code

levels. In [8] some important references about this

advantage can be found.

B. The definition of concrete syntax. Apart of the definition

of profiles, our approach also included some specific

recommendation for the concrete syntax that may be used in

each metamodel. In fact, these syntaxes are going to be

introduced in section IV with the basic example. Thus, for

the functional requirements metamodel, the approach stakes

by language patterns and activity diagrams.

Language patterns are a textual way to express 

requirements. Concretely, the approach uses NDT 

(Navigational Development Techniques)[9] functional 

patterns. However, in order to automate the treatment of 

these patterns some normalization must be done. In order to 

analyze each path in functional requirements, the use of 

activity diagrams is simpler. They offer a graphical notation 

that makes easier to find each path in the functional 

requirements definition. Patterns are easier to be completed 

with users, because they use the own vocabulary of the 

users. But activity diagrams are clearer for test generation.  

For the metamodel of functional test, different 

notations are used. For test scenarios and operational 

variables some specific textual patterns were defined. We 

proposed to use XML form defining these artefacts. 

In section III, a complete example with this 

notation is presented.  

D. Tools

According of some comparatives developed in 

previous works [12], there is an important lack of tools to 

support system test generation. For this reason, as part of 

this project, an executable proof-of-concept tool has been 

developed. This tool is based in Java and it uses a XML 

representation of the functional requirement as input and 

generates a XMI activity diagram representation of the 

functional requirements, a set of paths through the activity 

diagram a set of operational variables and partitions [3] and 

a script that automatically calculate all valid combinations 

among partitions.  

This proof-of-concept tool has generated an 

invaluable amount of information used in the formalization 

and the practical testing of the transformation approach. 

After that, the tool was improved with support for use cases 

generated by Sparx Enterprise Architect[10] and with XMI 

tailored for StarUML[25] and Enterprise Architect tools.  

This approach has also enterprise experience in the 

use of supporting tools. As it was introduced, this approach 

uses NDT functional requirements definition. NDT is a 

Model-Driven Web approach that uses this paradigm to 

generate analysis models from requirements models 

systematically.  NDT has an associated group of tools, 

NDT-Suite. NDT-Suite is composed by four tools: 

1- NDT-Profile: This is a specific profile for NDT,

developed using Enterprise Architect. This tool offers an

environment to define specific profiles and NDT-Profile has

adapted Enterprise Architect to support each artifact of

NDT.

2- NDT-Driver: This is a tool to execute transformations of

NDT. NDT-Driver is a Java-free tool which implements

QVT Transformations in NDT and allows analysis models

to be obtained automatically from the requirements model.

3- NDT-Quality: This is a tool that checks the quality of a

project developed with NDT-Profile.

4- NDT-Report: This is a tool that prepares formal

documents in order to be validated by final users and clients.

For instance, it enables the automatic generation of a

Requirements Document with the format defined by clients.

All these tools and their manuals can be 

downloaded from www.iwt2.org.  

The presented test generation approach was 

recently included in this group of tools and, nowadays, it is 

being used in some projects in the Ministry of Culture and 

the local water company (EMASESA)[6]. 

The easier way to include the test generation 

approach in this tool environment is based in the powerful 

use of metamodels and profiles. Enterprise Architect, as 

other important commercial tools which supports UML, 

offers simple ways for profile definitions.  



Thus, in this case, the approach profiles were 

included in NDT-Profile and easily both approaches were 

integrated. 

IV. A BASIC EXAMPLE

In order to illustrate the presented approach, a simple 

example is presented in this section. The starting point of 

the approach is the definition of functional requirements as a 

use case diagram. In Figure 3 a simple use case diagram of a 

web application to manage an online link catalogue is 

presented
1
.  

Figure 3.  An use case diagram for the example 

A user can add a new link or search links in three 

different ways: by their descriptions, by their categories or 

see only the most recent links. 

Each of these use cases must be described using a 

pattern. A pattern is a table with specific fields that must be 

defined with users. In Table II, the pattern for Search links 

by description use case is presented. As can be observed, 

this pattern included any concept, relation and attributed 

presented in the metamodel in Figure 2. This pattern offers 

the first concrete syntax for our metamodel.  

Each path in this pattern is offering a suitable test 

way when the system will be developed. However, no all 

paths can be defined as a test case because it is impossible to 

cover the complete number of tests. 

With the textual notation presented in Table II, it is 

quite difficult to analyze each of these execution paths. 

Thus, using transformations defined in [13], an activity 

diagram can be automatically defined.  

This activity diagram is presented in figure 4. In 

this case, any possible execution paths are easier to be 

analyzed.  

After generating the activity diagram, a set of paths 

are discovered. Each path is a test scenario and a potential 

test case. In table III, derived paths are obtained. For get 

1  This example is available in www.codecharge.com 

results expressed in table III some CIM-to-PIM 

transformations were executed (see Figure 1).  

The second set of CIM-to-PIM transformations lets 

obtain operational variables. Operational variables can be 

identified in actions which express some entries or exits in 

the system or in decision nodes in the execution route. 

These are decision nodes in the activity diagram (Figure 4). 

For each operational variable its domain must be also 

identified. These can be identified in each decision node in 

the execution route (again decision nodes in the activity 

diagram). Each path in the decision node is a possible value 

for the operational variable. Thus, in the example, three 

operational variables can be obtained (one for each decision 

node): 

� Variable D1: Is the search cancel? 

o Possible values: Yes or not

� Variable D2: Is the description empty? 

o Possible values: Yes or not

� Variable D3: Are there errors or empty results? 

o Possible values: Errors, empty results or

OK

Combining possible values of test scenarios models and 

operational values the test cases models can be obtained. A 

possible syntax to express test cases is presented in table IV. 

In this case, the test case is obtained from the first test 

scenario, as can be observed in table IV. 

In this case, a concrete pattern was used to define 

this test case. Name and description are some fields to 

identify this test case. Source field stores the use case that 

produces this test case. Initial state and final state indicates 

the starting and the final point in the test case execution. 

They must be completed when the test case is tested. Test 

information and final results fields store initial values and 

final values of some external variables and information for 

the test (data used in the test execution). Priority expresses 

which the priority of the test is and comments field stores 

some relevant comments for the test case. 

Actions field describes steps that must be followed 

in the test case. Actions are derived automatically with the 

MDE approach.  

Other aspects are not obtained automatically and 

they must be completed by the development team. There are 

some studies to analyse for instance, the priority 

automatically, based on the probability of the execution 

paths. Even the automatic generation of data to test the use 

case could be possible, although this aspect is not yet 

included in our approach.  



TABLE II. A PATTERN EXAMPLE 

Name UC-02. Search link by description 

Preconditions NO 

Main Sequence 
1. The user asks the system for searching links by description.

2. The system asks for the description.

3. The user introduces the description.

4. The system searches for the links which matches up with the description

introduced by the user.

5. The system shows the results.

Errors/alternatives 3.1.1. At any time, the user may cancel the search, and then the use case ends. 

4.1.p. If the actor introduces an empty description, then the system searches for all stored 

links and the result is to continue the execution of this use case.4.2.i. If the system finds 

any error performing the search, then an error message is shown and this use case ends.  

5.1.i. If the result is empty, then the system shows a message and this use case ends. 

Results 
1. The system shows the results of UC-05

3.1.i. Out of the limits of this use case. 

4.2.i. Error message. 

5.1.p. Message of no found results 

Post condition NO 

Figure 4.  The activity diagram 



TABLE III.  TEST SCENARIOS 

TABLE IV.  TEST CASE 

Name TC-01 

Description - 

Source UC-02. Search link by description 

Initial State - 

Final results - 

Test 

information 

- 

Index Body Test data 

1 The user asks the system for searching links by 

description 

2 The system asks for the description. 

3 The system asks for the description. D1 = No 

D2= No 

4 The system searches for the links which 

matches up with the description introduced by 

the user 

Actions 

5 The system shows the results. D5 = No errors 

Final states - 

Priority - 

Comments - 

Test case definition using pattern like table IV is only one 

possible way to represent it. Nowadays, we have a tool that 

generates this test case definition in a XML file that is, 

probably easier to be implemented in a PSM level. 

However, patterns offer a more suitable way to understand 

the test definition. 

V. CONCLUSIONS

This paper has introduced an approach based on 

MDE paradigm for the systematic generation of system test 

cases from functional requirements. 

The paper starts with a presentation of the actual 

situation and a short introduction about Model-Driven 

paradigm. 

After that, a global description of the approach and 

an example are introduced.  

This proposal needs to define one CIM model 

(Functional Requirements model) and three PIM models 

(Test Scenarios, Operational Variable and Test Cases 

models) corresponding to the MDA paradigm. Also, we 

have included the transformations between models. These 

transformations can be defined by QVT. In this case a mix 

solution has been adopted and we have used Relational 

QVT and Operational QVT to define different aspects of the 

transformations. 

As it was presented in Section III, this approach is 

being used and integrated in the enterprise environment. 

Thus, at the end of 2007, the test case metamodel was 



integrated into NDT-Profile and it was used in a complex 

project named Mosaico[7].  

This project is developed in collaboration with the 

Ministry of Culture in Andalusia and it manages information 

about historical heritage. 

In fact, in this organization, NDT is applied in all 

its software development projects. And, nowadays, the test 

generation approach is also being included in these software 

projects. 

The feedback obtained from the enterprise 

environment is being an important improvement source. 

This is one of our future research lines. In fact, from the first 

application, in Mosaico, important comments and 

suggestions were obtained for the improvement of the 

approach. 

Another important detected aspect is to continue 

with the complete process. As it was presented in Figure 1, 

our approach only covers the CIM and the PIM level. The 

approach considers CIM-to-PIM transformations and PIM-

to-PIM. The complete definition of the approach, including 

PIM-to-PSM and PSM-to-Code and metamodels in this 

level is a very interesting fact. 

Other important open line is the definition of 

objective metrics which can measure the quality of the result 

in the approach. 

Obviously, tools are always interesting. Although 

the approach was integrated in NDT-Suite, the research in 

new tools possibilities is always interesting. 

ACKNOWLEDGMENT  

This research has been supported by the project QSimTest 
(TIN2007-67843-C06_03) and by the RePRIS project of the 
Ministerio de Educación y Ciencia (TIN2007-30391-E), 
Spain. 

We would like to thank Antonio Molina González, Emilio 
Martinez Force and Antonio Gómez Rodríguez by their 
interesting practical feedback in the real application of this 
approach. Mainly in the Mosaico project. 

REFERENCES 

[1] ArgoUWE. http://www.pst.informatik.uni-muenchen.de/projekte/
argouwe 

[2] F. Basanieri, A. Bertolino, E. Marchetti. The Cow_Suite Approach to 
Planning and Deriving Test Suites in UML Projects. Lecture Notes In 
Computer Science 2460 pp. 383-397. 2002. 

[3] R. V. Binder. Testing Object-Oriented Systems. Addison-Wesley.
USA. 2000. 

[4] R. Boddu, L. Guo, S. Mukhopadhyay. RETNA: From Requirements
to Testing in Natural Way. 12th IEEE International Requirements 
Engineering RE’04. 2004. 

[5] C. Denger, M. Medina. Test Case Derived from Requirement 
Specifications. Fraunhofer IESE Report. Germany. 2003. 

[6] Emasesa. Empresa Municipal de Aguas de Sevilla. 
http://www.aguasdesevilla.com 

[7] M.J. Escalona, Equipo de Coordinación. MOSAICO. El Sistema de 
Informacion para la gestión del Patrimonio Historico Andaluz 
Proceedings of XI International Congress on Project Engineering 
ISSN: 978-84-690-8134-1. Spain, 2007. 

[8] M.J. Escalona, N. Koch- Metamodelling the Requirements of Web 
Systems. Lecture Notes in Bussiness Information Process. Web 
Information Systems and Technologies: Int. Conferences WEBIST 
2005 and WEBIST 2006. Springer Verlag 
Vol.1, pp-.267-288 ISSN: 1865-1348. USA. 2007 

[9] M.J. Escalona, G. Aragón. NDT. A Model-Driven approach for Web 
requirements. IEEE Transaction on Software Engineering. Vol. 34. 
Nº3. pp.370-390. 2008. 

[10] Enterprise Architect. www.sparxsystems.com 

[11] F. Fondement and R. Silaghi.Defining Model Driven Engineering 
Processes. 3rd Workshop in Software Model Engineering (WiSME 
2004)Lisbon, Portugal 

[12] J.J. Gutiérrez, M.J. Escalona, M. Mejías, J. Torres. Comparative 
Analysis of Methodological Proposes to Systematic Generation of 
System Test Cases. 3º Workshop on System Testing and Validation. 
Paris. France. 2004. 

[13] J.J. Gutiérrez, C. Nebut, M.J. Escalona, M. Mejías, I. Ramos. 
Visualization of use cases through automatically generated activity 
diagrams. Lecture Notes in Computer Science. 5301. pp. 83-96. 2008 

[14] J. Heumann. Generating Test Cases from Use Cases. Journal of 
Software Testing Professionals.  EEUU. 2002. 

[15] Y. Labiche, L.C. Briand. A UML-Based Approach to System Testing, 
Journal of Software and Systems Modelling (SoSyM) Vol. 1 No.1 pp. 
10-42. 2002. 

[16] A. Naresh. Testing From Use Cases Using Path Analysis Technique. 
International Conference On Software Testing Analysis & Review. 
EEUU. 2002. 

[17] C. Nebut, F. Fleury, Y. Le Traon, J.M. Jézéquel. Automatic Test 
Generation: A Use Case Driven Approach. IEEE Transactions on 
Software Engineering Vol. 32. 3. March. 2006. 

[18] OMG: MDA Guide, http://www.omg.org/docs/omg/03-06-01.pdf.
Version 1.0.1. 2003. 

[19] OMG. Unified Modeling Language: Superstructure, version 2.0. 
Specification, OMG, 2005. http://www.omg.org/cgi-
bin/doc?formal/05-07-04. 

[20] T.J. Ostrand, M. J., Balcer. Category-Partition Method.
Communications of the ACM. 676-686. 1998.

[21] R.S. Pressman. Software Engineering. A practitioner’s Approach. 
Sixth Edition.McGraw Hill, 2005 

[22] Query QVT-Merge Group, Revised submission for MOF 2.0
Query/Views/ Trans-formations RFP. 2004, Object Management
Group, http://www.omg.org/cgi-bin/apps/doc?ad/04-04-01.pdf. 

[23] http://www-01.ibm.com/software/awdtools/developer/rose/

[24] A. Ruder. UML-based Test Generation and Execution. Rückblick 
Meeting. Berlin. Germany. 2004. 

[25] StarUML.http://staruml.sourceforge.net/en/




