
New features of the fuzzy logic development environment Xfuzzy

Angel Barriga, Santiago Sánchez-Solano, Iluminada Baturone, *Diego López, **Francisco Moreno-
Velo, Piedad Brox, Federico Montesino, Nashaat M. Hussein Hassan, María Brox, Andrés Gersnoviez

Instituto de Microelectrónica de Sevilla,
Avda. Reina Mercedes s/n, Edif. CICA, 41012-Sevilla, Spain

barriga@imse.cnm.es

* RedIRIS, the Spanish National Research and Education Network
Edif. Bronce, Pza. Manuel Gomez Moreno s/n. Planta 2. E-28020 Madrid, Spain

** Departamento de Ingeniería Electrónica, Sistemas Informáticos y Automática
Escuela Politécnica Superior. Carretera Huelva - La Rábida

21071 Palos de la Frontera (Huelva), Spain

Abstract

The characteristics of the new version
of the fuzzy systems development
environment Xfuzzy is presented. The
environment covers the aspects related
to the specification, verification,
adjustment and implementation of
fuzzy systems. It is an open
environment (in the sense that the user
can define many functional and
structural aspects) and a free
distribution tool that allows proving
new formalisms and helps the definition
and implementation of complex
systems.

1 Introduction

The use of CAD tools provides many
advantages for designing complex fuzzy systems
such as the reduction of the cost and the time-to-
market of a potential product and also easing the
exploration of new theoretical aspects. This is
why several tools have been tailored to the fuzzy
paradigm in the last few years. The limitation is
that many of them are dedicated to specific
realizations and/or have constraints on the set of
fuzzy operations they support, the complexity of
the systems they can design, and their capability
for automatic tuning, simulation or synthesis.

The fuzzy system development environment
Xfuzzy integrates a set of tools that ease the user
to cover the several stages involved in the
design process of fuzzy logic-based inference

systems, from their initial description to their
final implementation.

The new features of Xfuzzy3.1
(http://www.imse.cnm.es/Xfuzzy/) using a new
release of the specification language called
XFL3 which extends its predecessor advantages,
and new CAD tools at the verification stage,
tuning stage and synthesis stage.

Xfuzzy has been entirely programmed in Java.
Hence, it can be executed on any platform where
JRE (Java Runtime Environment) is installed.
Xfuzzy executes under GPL license based on
freeware GNU.

2 XFL3 Specification Language

The core of the Xfuzzy environment is the fuzzy
system specification language called XFL3. It
allows designing hierarchical rule bases, which
can interchange fuzzy or non-fuzzy values and
can employ the same or different fuzzy
operators. Moreover, the user can define new
fuzzy connectives, linguistic hedges,
membership functions and defuzzification
methods.

In order to describe complex fuzzy systems the
specification can be improved by the use of
complex antecedent parts in the rules, that is, by
connecting the several antecedents using any
kind of conjunctive and/or disjunctive
connectives, by relating input variables with
fuzzy sets using any kind of linguistic hedges,
and by even applying linguistic hedges to some

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/132461279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

connected antecedents. As a result, two related
advantages are obtained: the expressiveness and
linguistic interpretability of the resulting fuzzy
system increases, and the number of rules and
fuzzy sets required to model a linguistic
knowledge is reduced. For instance, the
following rule shows this fact:

“If y is small and, either x or z are not close to
their target values, and z is greater than -90º and
smaller than 90º, then drive forward”

This rule is expressed in XFL3 as:

“if(y == Small & (x != Zero | z != Zero) & z >
LB&z< RB) -> v = Forward”

The language has been improved with the
concept of family of membership functions that
facilitates the fuzzy system specification. The
definition of membership functions families
(they are related to the linguistic labels of a
variable) uses a list of parameters to define the
whole set of functions.

The definition of membership functions as
families introduces several advantages. Firstly,
the number of parameters is smaller than if free
membership functions would be used. This eases
the tuning of the fuzzy system and permits the
use of some automatic learning algorithms (such
as simulated annealing or genetic algorithms),
which are not appropriate with a large number
of parameters. Secondly, the use of a common
list of parameters facilitates the assignment of a
meaning for each membership function. In
particular, the membership functions cannot
evolve into the construction of a state with
highly overlapped or disordered functions in an
automatic modification process. Finally, a
family of membership functions can be defined
with a fixed overlapping degree. This is very
useful to simplify the inference mechanism (by
using grid partitions), which is essential to
perform the hardware synthesis of the fuzzy
systems. The main disadvantage of this kind of
definition is the imposition of hard constraints in
the functions, which could be an obstacle to
achieve a suitable system optimization
(especially in the description of the output
variables).

Moreover, this version of XFL3 introduces a
novelty related to the definition of the system
specification by means of structural instances,
which combine two different types of
components: fuzzy rule bases and non-fuzzy
blocks.

3 Design methodology

The development environment for fuzzy
systems, Xfuzzy, does not impose any design
methodology but it allows adapting the needs of
the designer for a particular purpose. The tools
are integrated into the environment do not
impose any restriction to the design flow since
they are independent tools to perform different
tasks for the development of fuzzy systems.

Considering this premise a possible design flow
is depicted in Figure 1. The specification of the
system can be obtained from the knowledge
expressed by an expert or it can be provided by
a set of numerical data. In the first case, there
are tools that facilitate the description of the
fuzzy system. In the second case, there are
identification tools that allow to extract the
knowledge base from numerical data.

Figure 1: A design methodology

As soon as the knowledge base is defined, it is
necessary to verify the behavior of the system.
Simulation and representation tools are required
to carry out this task.

Another required task consists of fitting the
parameters of the system and simplifying the
knowledge base, in order to refine the
specification, by means of tuning/pruning tools.

The verification and adjustment activities are in
the feedback flow of the design task. When the

specification of the fuzzy system fits with the
requirements and the specifications, the last
stage of the design process is the final
implementation. To achieve it, Xfuzzy integrates
different types of software and hardware
implementation tools.

4 New CAD tools

The new version of Xfuzzy environment
includes new tools that extend the capacities of
the specification, monitoring, adjustment and
synthesis of fuzzy systems. Figure 2 shows the
block diagram of the tools included in the
environment. These tools are grouped in four
clusters associated with the different design
stages of a fuzzy system: the description stage,
the verification stage, the adjustment stage and
the synthesis stage.

Figure 2: Xfuzzy tools

The description tools facilitate the graphical
specification of the fuzzy system. The system is
described by means of a specification using the
XFL3 language. There are some graphical tools
like xfedit and xfpkg, which help such
specification. Xfedit tool eases the edition of
operator sets and hierarchical systems. Figure 3
illustrates some xfedit windows. Xfpkg allows to
edit function packages that contain the
descriptions of the fuzzy operators (binary
functions like min, max, etc.), linguistic hedges
(unary functions like strongly, more or less,
etc.), membership functions (triangles,
trapezoids, etc.), and defuzzification methods
(center of area, first maximum, etc.). The user
can freely define his own functions with this
tool.

Once a fuzzy system has been described the
verification tools allow testing its functionality.

In this way, xfplot lets represent graphically
systems of 2 and 3 dimensions as it is shown in
Figure 4. The xfmt tool allows to modify the
input variables values and to visualize the effect
on the system (rule base, membership functions
and output variables). Finally, xfsim is a
simulation tool that allows inserting the fuzzy
inference engine into a wider system containing
other elements described in Java. It allows
realizing behavior simulations in order to
validate the specification of the fuzzy system.

Figure 3: Xfedit windows

Figure 4: Xfplot tool

xfsl tool performs different supervised learning
algorithms. It has been renewed to include new
algorithms as well as pre- and post-processing
techniques to simplify the obtained rule bases.
In this sense, it includes a wide set of supervised
learning algorithms and it is able to cope with
complex fuzzy systems. In particular, xfsl
(figure 5) is able to adjust hierarchical fuzzy
systems; systems described by the user freely
using different membership or connective
functions, defuzzification methods, or even
linguistic hedges; and fuzzy systems with
continuous outputs (such as fuzzy controllers) as
well as categorical outputs (such as fuzzy
classifiers).

Figure 5: Xfsl window

Figure 6: Xfdm window

There are also identification tools (xfdm) that
extract the fuzzy system knowledge from data
applying various data mining techniques as well
as a knowledge base simplification tool (xfsp).
Several techniques have been proposed in the
literature to extract symbolic knowledge (rules)
from data. Among those dedicated to generate
fuzzy modules, two groups can be distinguished:
one group generates fuzzy systems based on a
grid partition of the input universes of discourse,
while the other techniques use partitions based
on data clustering. The efficiency of a particular
grid- or clustering based technique depends very
much on the application. This is why we have
developed a CAD tool to cover as much as
possible the different possibilities. Figure 6
shows the xfdm window with the implemented
algorithms.

The system implementation can be performed
by means of synthesis tools. There are two sets
of tools: software and hardware synthesis tools.
The software one produces the system
implementation as C (xfc), C++ (xfcpp) or Java
(xfj) functions. The hardware synthesis tool
xfvhdl produce the fuzzy system description in
terms of VHDL hardware description language.
This kind of description can be synthesized
using a standard hardware synthesis tool. The
implementation strategy is based on specific
architecture of fuzzy processing element.

Acknowledgements

This work was partially supported by projects
TEC2005-04359/MIC from the Spanish
Ministry of Education and Science as well as
TIC2006-635 from the Andalusian regional
Government

References

[1] I. Baturone, A. Barriga, S. Sánchez-Solano,
C. Jiménez, D.R. López, “Microelectronic
design of fuzzy logic-based systems”, CRC
Press., 2000. ISBN: 0-8493-0091-6.

[2]F.J. Moreno-Velo, S. Sánchez-Solano, A.
Barriga, I. Baturone, D.R. López, “XLF3: a
New Fuzzy System Specification Language”,
in Advanced in Scientific Computing,
Computational Intelligence and Applications.
Edited by N. Mastorakis, V. Mladenov, B.S.
Suter, L.J. Wang. WSES, pp. 361-366., 2001.

[3] F. J. Moreno Velo, I. Baturone, S. Sánchez
Solano, A. Barriga, “The Parametric
Definition of Membership Functions in
XFL3”, IEEE International Conference on
Fuzzy System (FUZIEEE’2004), Budapest
(Hungary), July 2004.

[4] F. J. Moreno-Velo I. Baturone F. J. Barrio-
Lorite, S. Sánchez-Solano, A. Barriga, “A
design methodology for complex fuzzy
systems”, European Symposium on
Intelligent Technologies, Hybrid Systems
and their implementation on Smart Adaptive
Systems (EUNITE’2003), Oulu (Finland),
July 2003.

[5] F. J. Moreno-Velo, I. Baturone, S. Sánchez-
Solano, and A. Barriga, “Rapid design of
fuzzy systems with XFUZZY”, IEEE
International Conference on Fuzzy System
(FUZZIEEE’2003), St. Louis (USA), May
2003

