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Abstrat

It is an open problem to determined whether a polygonal hain an be straightened inside a on�ning region if its

links are not allowed to ross. In this paper we propose a speial ase: whether a polygonal hain an be straightened

inside a irle without allowing its links to ross. We prove that this is possible if the straightened on�guration

an �t within irle. Then we show that these simple hains have just one equivalene lass of on�gurations.
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1. Introdution

A hain is a sequene of rigid rods or links

onseutively onneted at their endpoints, about

whih they may rotate freely. The link between

A

i�1

and A

i

(1 � i � n) is denoted by L

i

and the

length of L

i

is denoted by l

i

. The angle at inter-

mediate joint A

i

, �

i

2 [0; 2�), is that determined

by rotating L

i

about A

i

ounterlokwise to bring

L

i

to L

i+1

. The hain � is simple if it is non-self-

rossing and non-self-touhing. The subhain of �

with joints A

i

; :::; A

j

is denoted by �[i; j℄.

We say a bend operation is performed at joint

A

i

, when the joint angle �

i

is hanged between �

i

and �. Throughout this paper, we assume that the

only bend operations allowed are single-joint bend

operations, in whih only one joint angle is altered

at a time. A bend operation is omplete if, at the

end of the operation the joint angle is �. We then

say that the joint has been straightened. A bend

Operation that is not omplete is alled a partial

bend. A sequene of bend operations is said to be

monotoni if no operation inreases the absolute

deviation from straightness, j�

i

��j, for a joint A

i

.

Let � = (i

1

; i

2

; :::; i

n�1

) be a permutation of the

indies f1; 2; :::; n � 1g. For a simple hain �, we

say that a sequene (A

i

1

; A

i

2

; :::; A

i

n�1

) of joints is

unfoldable, if � an be straightened into a straight

line segment L using the joints in the sequene in
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turn, suh that � remains simple and all of the

bend operations are omplete. A simple hain � is

alled unfoldable hain, if it has a unfoldable se-

quene of joints. An intermediate joint A

i

is alled

unfoldable joint, if a omplete bend operation an

be performed at A

i

suh that during the perform-

ing bend operation, � remains simple.

The union hain, �

U

, of a hain � is a hain

whih is obtained from � in the following way: if

none of the joints of � is straight joint, �

U

= �; if

� has at least one straight joint, for any straight

joints A

i

, we delete joint A

i

and put A

i�1

A

i+1

as

a single link.

Reon�guration problem and in partiular, fold-

ing problem, been raised independently by several

researhers. [3℄ has onsidered reon�guration of

robot arms inside a irle, with allowing its links

to ross. In [4℄, Pei has proved that for a hain �

inside a irle whose radius is suÆiently big, there

is just one equivalene lass when its links are al-

lowed to ross. In [5℄ and [2℄, straightening a simple

hain in the plane is studied and is proved that any

simple hain an be straightened in the plane. And

in [1℄ Arkin, Fekete and Mithell have given an ef-

�ient algorithm to determined if a simple hain

an be straightened by performing omplete bend

operations. In this paper, we study straightening a

simple hain within a irle. we give a quadrati-

time algorithm to straighten a simple unfoldable

hain within a irle whose radius is suÆiently

big. Then we prove that all of simple hains an
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be straightened within a irle, if and only if their

straightened on�guration an �t in the irle. Fi-

nally we show that any two on�guration of these

simple hains are equivalent.

2. Preliminaries

Let � be a simple hain inside irleC(O; r) with

joints A

0

:::A

n

. For �tting straightened on�gura-

tion of � in C, we must have

P

n

i=1

l

i

� 2r. From

now on, we suppose � is a simple hain inside C

suh that

P

n

i=1

l

i

< 2r.

For a irle C(O; r) and two points x; y 2 �C,

we use

_

xy to denote the lokwise ar from x to y.

For a point A

i

2 �C we denote the other endpoint

of the diameter of C whih is ontainingA

i

, byM

i

.

De�nition 1 A joint A

r

i

is alled rim joint

if it lies on boundary of irle C. We denote

the set of all rim joints of hain � by A

Rim

=

fA

r

0

; A

r

1

; :::; A

r

s

g.

De�nition 2 For any rim joint A

i

of hain �, the

vetor

��!

OM

i

is alled radius vetor of A

i

and is de-

noted by r

i

.

Lemma 3 There is a diameter s = ab of irle C

suh that all of rim joints of hain � belong to one

of the ars

_

ab or

_

ba.

PROOF. If A

Rim

= ;, there is nothing to prove.

Let A

i

be a rim joint of � and X be a moving

objet whih is walking along ar

_

A

i

M

i

lokwise,

starting at the point A

i

. Suppose A

r

is the last rim

joint of � that is visited byX . Diameter s = A

r

M

r

is a solution. Beause ar

_

A

r

M

r

ontains no rim

joint of �, exept A

r

. 2

De�nition 4 Suppose A

Rim

has at least two point

and rim joints of � belong to

_

ab. The nearest rim

joints to points a and b are denoted by A

f

and A

e

,

respetively. These joints are alled limit-joints.

It is lear that all of the other rim joints of � are

on ar

_

A

f

A

e

.

De�nition 5 Let A

e

and A

f

be limit-joints of �.

Vetors r

e

and r

f

are alled diretion vetors.

De�nition 6 The sum of diretion vetors, r

e

and

r

f

, is alled entral diretion and denoted by d, i.e.,

d = r

e

+ r

f

.

Central Translation:We draw n vetors parallel

to d from any joint A

i

until hit irle at points

N

i

, then put "

i

= jj

���!

A

i

N

i

jj and " = minf"

i

j 0 �

i � ng. Translation of � inside C along the vetor

d

"

=

"

jjdjj

d, is alled entral translation of �. New

positions of � and any joint A

i

, after the entral

translation, are denoted by �

0

and A

0

i

. It is lear

that "

e

= "

f

.

3. Unfoldable Simple Chains

Suppose � = (A

i

1

; A

i

2

; :::; A

i

n�1

) is an unfold-

able sequene of joints of �. For straightening �

inside irle C(O; r), we propose the following al-

gorithm whih ontains three steps:

Algorithm 1 Unfolding Simple Chain �:

step 1. �

0

= �; j = 0.

step 2. �

0

= �

0

U

; j = j + 1. If j = n , stop. else

k = i

j

;

step 3. Straighten A

k

. Go to step 2.

Now for step 3, straightening joint A

k

within ir-

le C, we propose the following algorithm whih

ontains four steps:

Algorithm 2 Straightening joint A

k

:

step 1. �

0

= �[0; k℄; �

n

= �[k; n℄;

step 2. Rotate �

0

about A

k

until A

k

straightens or

one of joints of �

0

hitsC and �

0

an not rotate more

about A

k

. If A

k

straightens, stop; else go to step 3.

step 3. Rotate �

n

about A

k

until A

k

straightens

or one of joints of �

n

hits C and �

n

an not rotate

more about A

k

. If A

k

straightens, stop; else go to

step 4.

step 4. Calulate d

"

and transmit � by d

"

. Go to

step 2.

4. Corretness of Algorithm 2

Any repeat of algorithm 2 is alled a phase and

the joint angle at A

k

, at the end of phase i, is

denoted by �

i

. For showing orretness of algo-

rithm 2, we show that during the algorithm, � re-

mains simple and it remains insideC. And we prove

that by using algorithm 2, after a �nite number

of repeats, A

k

straightens. Furthermore, this �nite

number is independent of n.

Chain � remains simple, beause A

k

is an unfold-
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able joint in the plane. Now for showing that � re-

mains inside C, we �rst prove that entral transla-

tion always an be done.

Lemma 7 d

"

6= 0.

PROOF. If d = 0, we have r

f

= �r

e

. That is

implies A

f

= M

e

and A

e

=M

f

, i.e., A

f

A

e

= 2r.

Therefore

P

n

i=1

l

i

�

P

l

i

2�[e;f ℄

l

i

� A

f

A

e

= 2r.

That is a ontradition. Thus d 6= 0.

Beause the angles between d and its ompo-

nents are less than �=2 and all of radius vetors

lie between vetors r

e

and r

f

, the angle between

d and radius vetors are less than �=2, too. Thus

any rim joint an transmit in diretion d inside C.

Any interior points of C also an transmit in all di-

retions inside C. Therefore " 6= 0. Consequently

d

"

6= 0. 2

It is lear that during the step 1 and step 2, all of

the joints remain inside irle. At step 3, beause

" = minf"

i

j 0 � i � ng and the angle between

radius vetors and d are less than �=2, � remains

inside C.

Now to show that after a �nite number of repeats,

algorithm 2 is terminated, we �rst show that at

the end of any phase of algorithm 2, �

i

beomes

strongly lose to �, i.e., j� � �

i+1

j < j� � �

i

j. So

we have to prove at the end of entral translation

of �, at least one of the subhains �

0

or �

n

, an

rotate about A

k

suh that joint angle at A

k

has

beame lose to �. Note that at the end of step 1

and step 2, if A

k

does not straighten, A

Rim

has at

least two points, one point from �

0

and the other

point from �

n

.

Lemma 8 Let A

e

and A

f

be the limit-joints of �

at phase i. If both of A

e

and A

f

belong to one of the

subhains �

0

or �

n

, then at the end of translation,

none of the joints of the other subhain lie on �C.

Furthermore, this subhain an rotate about A

k

at

phase i+ 1.

PROOF. Assume without loss of generality that

A

f

; A

e

2 �

0

. Suppose for a ontradition, A

t

is a

joint of �

n

suh that A

0

t

2 �C. At the beginning

of translation, �

n

has at least one rim joint, A

m

,

whih lies on ar

_

A

f

A

e

. If A

k

is in the exterior

of losed urve Æ =

_

A

f

A

e

[�

0

[e; f ℄, �

n

[m; k℄ and

�

0

[e; f ℄ will be interseting. Thus A

k

is in the in-

terior of Æ. See �gure 1. Therefore A

0

k

is in the in-

terior of the losed urve Æ

0

= � [ �

0

0

[f; e℄ where

A
f

A
f

-

Ae

Ae

-A
k

-

A
k

A
m d

G
-

A
0

G

b

Fig. 1. If �

n

ontains no limit-joints, �

0

n

has no rim joint.

� is the translation of ar

_

A

f

A

e

by the vetor d

"

.

But A

0

t

is in the exterior of Æ

0

. So �

0

n

[k; t℄ intersets

boundary of Æ

0

. That is a ontradition. Beause

�

n

[k; t℄ does not interset boundary of Æ. 2

By lemma 8, we suppose A

e

and A

f

don't belong

to the same subhain. From now on, the subhain

whih ontains A

e

is denoted by �

e

and the other

subhain whih ontains A

f

is denoted by �

f

. We

have the following theorem.

Theorem 9 At the end of translation, at least one

of the subhains �

e

and �

f

an rotate about A

k

.

PROOF. Refer to full paper. 2

Corollary 10 j�

i

� �j > j�

i+1

� �j.

By orollary 10, the on�guration of � in two on-

seutive phase is di�erent. Thus during the algo-

rithm 2, straightening A

k

is strongly progressed

and yling is not possible. Now for showing that

after a �nite number of repeats, algorithm 2 is ter-

minated, we use simpliity of �. Assume without

loss of generality that �

k

< �. Thus aording to

de�nition of joint angle, �

0

must rotate about A

k

lokwise. First suppose there is no on�ning re-

gion. So A

k

an be straightened and then �

0

an

rotate about A

k

lokwise more, until �rst self-

touhing is ourred. This operation is alled �-

passage motion and the joint angle atA

k

is denoted

by � + �

k

, that �

k

> 0. Now suppose � is inside

C(O; r). We hange the stopping riteria of algo-

rithm 2, from ahieving � to ahieving � + �

k

and

use this new algorithm on A

k

. All of above proofs

also hold for this new algorithm. So by orollary

10 we also have:

j�

i+1

� � � �

k

j < j�

i

� � � �

k

j (�)
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Assumption �

k

< � yields: for every i � 0, �

i

�

�+�

k

. So (�) yields �+�

k

��

i+1

< �+�

k

��

i

. In the

other words, f�

i

g

i�0

is a bounded and monotone

sequene. Therefore it onverges to its suprimum,

� + �

k

. Thus for every " > 0 exists a �nite natural

number N > 0 suh that for every i � N we have

j�

i

����

k

j < ", i.e., for every i � N , �+�

k

��

i

<

". Thus for " = �

k

, there is a �nite number N

�

suh that for all i � N

�

, � + �

k

� �

i

< �

k

. So for

i = N

�

, we have � + �

k

� �

N

�

< �

k

, i.e., �

N

�

> �.

Beause N

�

is the smallest natural number that

�+�

k

��

i

< �

k

, we have �+�

k

��

N

�

�1

� �

k

, i.e.,

�

N

�

�1

� �. Therefore A

k

an straighten in phase

N

�

or N

�

� 1. Beause �

N

�

�1

� � and �

N

�

> �.

It is lear that N

�

is independent of n.

Therefore proof of orretness of algorithm 2 is

terminated. Complexity of algorithm 1 is O(n

2

),

beause omplexity of eah step is O(n) and the

number of repeats is n� 1.

5. Arbitrary Simple Chains

Now we prove that an arbitrary simple hain an

be straightened inside a irle. First we have the

following theorem.

Theorem 11 Any simple hain � an be straight-

ened using a �nite number of monotoni single-

joint bend operations.

PROOF. See [1℄ and [2℄. 2

Theorem 11 is true, if hain is inside a irle as a

on�ning region.

Theorem 12 A simple hain � an be straight-

ened inside a irle using a �nite number of mono-

toni single-joint bend operations, if

n

X

i=0

l

i

< 2r.

PROOF. By theorem 11, � an be straightened

in the plane using a �nite number of monotoni

single-joint bend operations. If all of these bend

operations are omplete, � an be straightened by

using algorithm 1. But if at least one of the bend

operations is not omplete, these bend operations

will be in aordane with a sequene of motions,

M = fM

j

g

k

j=1

, suh that M

j

is a partial bend

operation and � an be straightened by using M .

Any operation M

j

is single-joint, so it is in aor-

dane with a joint A

i

j

and this aordane is not

one to one, beause M

j

s are not omplete. Sup-

pose any bend operationM

j

is hanged joint angle

at A

i

j

by �(A

i

j

; j). Now note that any operation

M

j

is monotone; so if we hange the stopping ri-

teria of algorithm 2, from ahieving � to ahieving

�

i

j

+�(A

i

j

; j), this new algorithm an be used to

perform any bend operation M

j

inside C. There-

fore � an be straightened inside C by performing

M

j

s in turn, beause k is �nite. 2

6. Conlusion

Assume that � is a simple hain suh that

P

n

i=1

l

i

< 2r and �

1

and �

2

are two on�guration

of � inside irle C(O; r). We denote their straight

on�gurations by L

1

and L

2

, respetively. Let M

be a sequene of bend operations for straighten-

ing �

2

inside C and M

R

be the reverse of Motion

M . It is lear that by performing M

R

, L

2

an be

reon�gured to �

2

. Now by theorem 11, we an

reon�gure �

1

to L

1

, then we an reon�gure L

1

to L

2

by translation and rotation operations and

�nally we an reon�gure L

2

to �

2

by M

R

. So �

1

an be reon�gured to �

2

inside C, i.e., for a simple

hain �, if

n

X

i=1

l

i

< 2r, then any two on�gurations

of �, inside irle C(O; r) are equivalent.
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