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Unfolding Simple Chains Inside Circles
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Abstract

It is an open problem to determined whether a polygonal chain can be straightened inside a confining region if its
links are not allowed to cross. In this paper we propose a special case: whether a polygonal chain can be straightened
inside a circle without allowing its links to cross. We prove that this is possible if the straightened configuration
can fit within circle. Then we show that these simple chains have just one equivalence class of configurations.
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1. Introduction

A chain is a sequence of rigid rods or links
consecutively connected at their endpoints, about
which they may rotate freely. The link between
A;—1 and A; (1 <i < n)is denoted by L; and the
length of L; is denoted by [;. The angle at inter-
mediate joint A;, 6; € [0,27), is that determined
by rotating L; about A; counterclockwise to bring
L; to L;y1. The chain I' is simple if it is non-self-
crossing and non-self-touching. The subchain of I"
with joints A;, ..., 4; is denoted by I'[i, j].

We say a bend operation is performed at joint
A;, when the joint angle 6; is changed between 6,
and 7. Throughout this paper, we assume that the
only bend operations allowed are single-joint bend
operations, in which only one joint angle is altered
at a time. A bend operation is complete if, at the
end of the operation the joint angle is 7. We then
say that the joint has been straightened. A bend
Operation that is not complete is called a partial
bend. A sequence of bend operations is said to be
monotonic if no operation increases the absolute
deviation from straightness, |#; — 7|, for a joint A;.

Let 0 = (i1, 142, ...,in—1) be a permutation of the
indices {1,2,...,n — 1}. For a simple chain T, we
say that a sequence (A, , Ay, ..., A;,_,) of joints is
unfoldable, if I' can be straightened into a straight
line segment L using the joints in the sequence in
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turn, such that I' remains simple and all of the
bend operations are complete. A simple chain I is
called unfoldable chain, if it has a unfoldable se-
quence of joints. An intermediate joint A; is called
unfoldable joint, if a complete bend operation can
be performed at A; such that during the perform-
ing bend operation, I' remains simple.

The union chain, I'y, of a chain I' is a chain
which is obtained from I' in the following way: if
none of the joints of I is straight joint, I';y = I'; if
I" has at least one straight joint, for any straight
joints A;, we delete joint A; and put A; 14;41 as
a single link.

Reconfiguration problem and in particular, fold-
ing problem, been raised independently by several
researchers. [3] has considered reconfiguration of
robot arms inside a circle, with allowing its links
to cross. In [4], Pei has proved that for a chain I’
inside a circle whose radius is sufficiently big, there
is just one equivalence class when its links are al-
lowed to cross. In [5] and [2], straightening a simple
chain in the plane is studied and is proved that any
simple chain can be straightened in the plane. And
in [1] Arkin, Fekete and Mitchell have given an ef-
ficient algorithm to determined if a simple chain
can be straightened by performing complete bend
operations. In this paper, we study straightening a
simple chain within a circle. we give a quadratic-
time algorithm to straighten a simple unfoldable
chain within a circle whose radius is sufficiently
big. Then we prove that all of simple chains can
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be straightened within a circle, if and only if their
straightened configuration can fit in the circle. Fi-
nally we show that any two configuration of these
simple chains are equivalent.

2. Preliminaries

Let I be a simple chain inside circle C(O, r) with
joints Ag...A,,. For fitting straightened configura-
tion of I' in C, we must have > ;" I; < 2r. From
now on, we suppose I' is a simple chain inside C'
such that 1" | 1; < 2r.

For a circle C(O,r) and two points z,y € 0C,
we use y to denote the clockwise arc from & to y.
For a point 4; € 0C we denote the other endpoint
of the diameter of C' which is containing A;, by M;.
Definition 1 A joint A,, is called rim joint
if it lies on boundary of circle C. We denote
the set of all rim joints of chain I' by Agim =
{AT‘07 AT‘1 2ty ATs }

Definition 2 For any rim joint A; of chain T, the
vector (WZ is called radius vector of A; and is de-
noted by rj.

Lemma 3 There is a diameter s = ab of circle C
such that all of rim joints of chain T belong to one

of the arcs ab or ba.

PROOF. If Ag;, = 0, there is nothing to prove.
Let A; be a rim joint of I' and X be a moving

object which is walking along arc A; M; clockwise,
starting at the point A;. Suppose A, is the last rim
joint of " that is visited by X . Diameter s = A, M,

is a solution. Because arc A, M, contains no rim
joint of I') except A4,. O

Definition 4 Suppose Ag;., has at least two point

and rim joints of I' belong to ab. The nearest rim
joints to points a and b are denoted by Ay and A,
respectively. These joints are called limit-joints.

It is clear that all of the other rim joints of I' are

on arc ArA..

Definition 5 Let A, and Ay be limit-joints of L.
Vectors re and rg are called direction vectors.
Definition 6 The sum of direction vectors, re and
re, s called central direction and denoted by d, i.e.,
d=r¢ +ry.

Central Translation:We draw n vectors parallel
to d from any joint A; until hit circle at points
N;, then put ¢; = ||A;N;|| and € = min{e; | 0 <
i < n}. Translation of T" inside C' along the vector
d. = ||fT|| d, is called central translation of I'. New
positions of I' and any joint A;, after the central
translation, are denoted by I and Aj. It is clear

that e, = €.

3. Unfoldable Simple Chains

Suppose ¢ = (4;,, Ay, ..., 4, _,) is an unfold-
able sequence of joints of I'. For straightening I"
inside circle C(O,r), we propose the following al-
gorithm which contains three steps:

Algorithm 1 Unfolding Simple Chain T':

stepl.I'=T;;=0.

step2. I =Ty, =47+1.If j =n, stop. else
k= ij 5

step 3. Straighten Ay. Go to step 2.

Now for step 3, straightening joint Ay within cir-
cle C', we propose the following algorithm which
contains four steps:

Algorithm 2 Straightening joint Ay :

step 1. Iy =T'[0, k]; '), = T'[k, n];

step 2. Rotate I'g about Ay, until Ay, straightens or
one of joints of Uy hits C and L'y can not rotate more
about Ay. If Ay, straightens, stop; else go to step 3.
step 3. Rotate I',, about Ay, until Ay straightens
or one of joints of I'y, hits C' and T';, can not rotate
more about Ay. If Ay straightens, stop; else go to
step 4.

step 4. Calculate d. and transmit I’ by d.. Go to
step 2.

4. Correctness of Algorithm 2

Any repeat of algorithm 2 is called a phase and
the joint angle at Ay, at the end of phase i, is
denoted by «;. For showing correctness of algo-
rithm 2, we show that during the algorithm, I" re-
mains simple and it remains inside C. And we prove
that by using algorithm 2, after a finite number
of repeats, Ay straightens. Furthermore, this finite
number is independent of n.

Chain I' remains simple, because Ay, is an unfold-
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able joint in the plane. Now for showing that I re-
mains inside C', we first prove that central transla-
tion always can be done.

Lemma 7 d. #0.

PROOF. If d = 0, we have rf = —r.. That is
implies Ay = M, and A, = My, ie., AfA, = 2r.
Therefore 32, li > 3 crpepli > Apde = 27
That is a contradiction. Thus d # 0.

Because the angles between d and its compo-
nents are less than 7/2 and all of radius vectors
lie between vectors re and rg, the angle between
d and radius vectors are less than 7/2, too. Thus
any rim joint can transmit in direction d inside C'.
Any interior points of C' also can transmit in all di-
rections inside C'. Therefore £ # 0. Consequently
d. A#0. O

It is clear that during the step 1 and step 2, all of
the joints remain inside circle. At step 3, because
e = min{e; | 0 < ¢ < n} and the angle between
radius vectors and d are less than 7/2, I' remains
inside C.

Now to show that after a finite number of repeats,
algorithm 2 is terminated, we first show that at
the end of any phase of algorithm 2, «; becomes
strongly close to m, ie., |7 — ajt1| < |7 — a4]. So
we have to prove at the end of central translation
of I', at least one of the subchains I'y or I'y,, can
rotate about Ay such that joint angle at Ay has
became close to w. Note that at the end of step 1
and step 2, if A, does not straighten, Ag;,, has at
least two points, one point from I'g and the other
point from I',,.

Lemma 8 Let A, and Ay be the limit-joints of
at phase . If both of A. and Ay belong to one of the
subchains Ty or Ty, then at the end of translation,
none of the joints of the other subchain lie on 0C'.
Furthermore, this subchain can rotate about Ay at
phase i + 1.

PROOF. Assume without loss of generality that
Ay, A, € T'g. Suppose for a contradiction, A; is a
joint of T, such that A} € OC. At the beginning
of translation, I';, has at least one rim joint, A,;,,

which lies on arc AyA.. If Ay is in the exterior
of closed curve § =ArA. ULyle, f], Tnlm, k] and
Tole, f] will be intersecting. Thus Ay, is in the in-

terior of d. See figure 1. Therefore A}, is in the in-
terior of the closed curve §' = S U TI'y[f, e] where
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Fig. 1. If ', contains no limit-joints, I}, has no rim joint.

B is the translation of arc Ay A, by the vector d..
But A} is in the exterior of ¢'. So I'!, [k, t] intersects
boundary of §'. That is a contradiction. Because
I, [k,t] does not intersect boundary of 6. O

By lemma 8, we suppose A, and A; don’t belong
to the same subchain. From now on, the subchain
which contains A, is denoted by I’ and the other
subchain which contains A; is denoted by I'y. We
have the following theorem.

Theorem 9 At the end of translation, at least one
of the subchains I'. and I'y can rotate about Ay.

PROOF. Refer to full paper. O

Corollary 10 |o; — 7| > |1 — 7.

By corollary 10, the configuration of I' in two con-
secutive phase is different. Thus during the algo-
rithm 2, straightening Ay is strongly progressed
and cycling is not possible. Now for showing that
after a finite number of repeats, algorithm 2 is ter-
minated, we use simplicity of I'. Assume without
loss of generality that 8, < 7. Thus according to
definition of joint angle, Iy must rotate about Ay
clockwise. First suppose there is no confining re-
gion. So Ay can be straightened and then I'y can
rotate about Ay clockwise more, until first self-
touching is occurred. This operation is called -
passage motion and the joint angle at Ay, is denoted
by 7 + 73, that 7, > 0. Now suppose I is inside
C(0,r). We change the stopping criteria of algo-
rithm 2, from achieving 7 to achieving © + 7, and
use this new algorithm on Ag. All of above proofs
also hold for this new algorithm. So by corollary
10 we also have:

|Ozi+1—7T—Tk|<|Oli_7T_Tk| (*)
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Assumption 0, < 7 yields: for every i > 0, o; <
w475 So (%) yields m+71 —;11 < m+7;—a;. In the
other words, {c;}i>0 is a bounded and monotone
sequence. Therefore it converges to its suprimum,
7 + 7. Thus for every € > 0 exists a finite natural
number N > 0 such that for every i > N we have
|a; —m—T1| < g,1.e.,foreveryi > N, n+7, —a; <
€. Thus for € = 7, there is a finite number N
such that for all ¢ > N,, # + 7, — a; < 7. So for
t = N,, wehave 7 + 1, —an,_ < T, le., an,. > 7.
Because N, is the smallest natural number that
T4+TE—o; < T, wehave m+ 7, —an__1 > Ty, i€,
an,.—1 < w. Therefore Aj can straighten in phase
N, or N; — 1. Because ay,—1; < 7 and ay_ > 7.
It is clear that N, is independent of n.

Therefore proof of correctness of algorithm 2 is
terminated. Complexity of algorithm 1 is O(n?),
because complexity of each step is O(n) and the
number of repeats is n — 1.

5. Arbitrary Simple Chains

Now we prove that an arbitrary simple chain can
be straightened inside a circle. First we have the
following theorem.

Theorem 11 Any simple chain I' can be straight-
ened using a finite number of monotonic single-
joint bend operations.

PROOF. See[l]and [2]. O

Theorem 11 is true, if chain is inside a circle as a

confining region.

Theorem 12 A simple chain I can be straight-

ened inside a circle using a finite number of mono-
n

tonic single-joint bend operations, zfz li <2r.
=0

PROOF. By theorem 11, I' can be straightened
in the plane using a finite number of monotonic
single-joint bend operations. If all of these bend
operations are complete, I' can be straightened by
using algorithm 1. But if at least one of the bend
operations is not complete, these bend operations
will be in accordance with a sequence of motions,
M = {Mj};?:l, such that M; is a partial bend
operation and I' can be straightened by using M.

Any operation Mj is single-joint, so it is in accor-
dance with a joint A;; and this accordance is not
one to one, because M; s are not complete. Sup-
pose any bend operation M; is changed joint angle
at A;; by A(A;;;4). Now note that any operation
Mj is monotone; so if we change the stopping cri-
teria of algorithm 2, from achieving 7 to achieving
0i; + A(A;;; ), this new algorithm can be used to
perform any bend operation A; inside C'. There-
fore I'' can be straightened inside C' by performing
Mj s in turn, because k is finite. O

6. Conclusion

Assume that I' is a simple chain such that
Z?Zl l; < 2r and I'; and T’y are two configuration
of I inside circle C(O, r). We denote their straight
configurations by L; and Lo, respectively. Let M
be a sequence of bend operations for straighten-
ing Iy inside C and M* be the reverse of Motion
M. It is clear that by performing M#, L, can be
reconfigured to I'y. Now by theorem 11, we can
reconfigure I'y to Ly, then we can reconfigure 1y
to Lo by translation and rotation operations and
finally we can reconfigure Ly to I's by MF. So I';
can be reconfigured to I's inside C i.e., for a simple

n
chain T, if Z l; < 2r, then any two configurations
i=1
of T, inside circle C(O,r) are equivalent.
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