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Abstract

Let A(Γ) be the arrangement induced by a set Γ of n unbounded Jordan curves in the plane that intersect each
other in at most two points. The upper bound for constructing those arrangements by an incremental method is,
up to now, O(nλ4(n)). In this paper we improve this bound to O(nλ3(n)).
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1. Introduction

The arrangement of a set Γ of n unbounded Jor-
dan curves, denoted by A(Γ), is the plane subdivi-
sion induced by the curves in Γ. Let γ0 be a curve
not belonging to Γ. The zone of γ0 in A(Γ), denoted
by z(γ0), is the set of faces of A(Γ) intersected by
γ0.

Up to now, the best known upper bound for the
zone of γ0 in A(Γ) is O(λ4(n)) = O(n 2α(n)), ob-
tained from its relation with the complexity of a
face in an arrangement of Jordan arcs: by deleting
small pieces in the curves of Γ just containing the
intersection points with γ0, all faces of z(γ0) be-
come a part of the same face of an arrangement of
Jordan arcs. The total amount of new elements in
the arrangement is a constant factor of the size of
the arrangement ([3], pg. 23). By using an incre-
mental algorithm, in which curves are inserted in
the arrangement one by one, the construction of
A(Γ) takes O(nλ4(n)) time. In this paper we im-
prove this bound to O(nλ3(n)) if the curves inter-
sect each other in at most two points (remember
that λ4(n) = O(n2α(n)) and λ3(n) = O(nα(n)) ).
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The algorithm that computes A(Γ) in O(nλ3(n))
time is based in three lemmas.

The first lemma considers the frontier of a face
in the external zone composed by the edges of the
face not belonging to γ0 and says that if p and q

are the extreme points of the frontier of a face in
the external zone, then the segment pq in γ0 is an
edge of the arrangement. This property allows to
travel through the frontiers of the successive faces
of the external zone thus obtaining the intersection
points of γ0 with the curves in the arrangement just
in the order they appear in γ0. Therefore, the time
complexity for the insertion of γ0 depends on the
complexity of the external zone which is O(λ3(n)).

The second lemma considers the case in which
the infinite extremes of all the curves that intersect
γ0 in two points are in the same side of γ0, and
proves that the complexity of the zone in this side
of γ0 is O(λ3(n)). We call external zone to this part
of the zone.

Last lemma shows that it is always possible to
list the curves of Γ in order γ1, γ2, . . . , γn, such
that each γi with 2 ≤ i ≤ n verifies that the infinite
extremes of every curve in the set {γ1, γ2, . . . , γi−1}
that intersects γi in zero or two points are in the
same side of γi.

20th EWCG Seville, Spain (2004)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/132461215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


20th European Workshop on Computational Geometry

2. Notation and definitions

Every curve in Γ intersecting γ0 is decomposed
by γ0 in two or three connected pieces. The un-
bounded pieces will be called branches. Branches
will be oriented, being the starting point the in-
tersection point with γ0. This point will be called
the base of the branch. Base of a branch r will be
noted by r. Every curve in Γ intersecting γ0 in two
points give rise to two branches.

If all branches of the curves intersecting γ0 in two
points are in the same side of γ0 we will say that
γ0 is a pseudo-convex curve in the arrangement
and the external zone of γ0 will be the half-zone
containing all these branches. From now on γ0 will
be pseudo-convex in the arrangement A(Γ) and we
will only consider the external zone of γ0, noted by
z+(γ0).

We will call external frontier every connected
component obtained by deleting edges contained
in γ0 in the frontier of a face of the external zone.
As a consequence, extreme points of the external
frontiers belong to γ0.

Without lost of generality, we will suppose that
every face of the external zone, but the first and
the last, are bounded. If this where not the case,
one can add a curve to Γ that intersects only the
unbounded faces.

3. The external frontier

Lemma 1 The extreme points of an external fron-
tier are the extreme points of an edge contained in
γ0 in the arrangement A(Γ ∪ {γ0}).

PROOF. Let F∗ be the external frontier of a face
in the external zone. Let p and q be the extreme
points of F∗. If pq, the arc of γ0 with extreme points
p and q, were not an edge in the mentioned ar-
rangement, pq would contain at least one intersec-
tion point c in its interior. As pq is contained in γ0,
then necessarily c is the base of a branch. Because
branches are not bounded, c and F∗ intersect each
other. This is a contradiction with the fact that F∗

is an external frontier of a face.

4. External zone complexity

In this section one proves the O(λ3(n))
complexity of the external zone of γ0 in A(Γ). It is
proved by bounding the number of its edges.

The idea is to visit the external frontiers in the
order they appear along γ0 and write down, for
every edge encountered, the branch or supporting
curve. Let U = 〈u1, u2, . . ., um〉 be the obtained
list of symbols. One realizes that U is a Davenport-
Schinzel sequence.

(n, s) Davenport-Schinzel sequences have to
satisfy the following properties (see [4], pg. 1):

(i) To contain at most n different symbols.
(ii) ui 6= ui+1 for every 1 ≤ i < m.
(iii) there cannot be s + 2 indices 1 ≤ i1 < i2 < . . .

< is+2 ≤ m such that ui1 = ui3 = ui5 . . . = a,
ui2 = ui4 = ui6 . . . = b and a 6= b.
In order to have condition (ii) satisfied one uses

different symbols for each side of the same branch.
In this way, n curves give rise to 4n symbols at
most (two for every of the 2n possible branches).

Proposition 2 U is a (4n, 3) Davenport-Schinzel
sequence.

PROOF.
(i) 4n symbols corresponds to the, at most, 2n

branches.
(ii) In the same face there are not two consecutive

edges from the same branch (nor curve, if it does
not intersect γ0). This is due to the fact that
curves intersect in a transversal way. When pass-
ing from one face to the consecutive one, there
are neither two equal consecutive symbols be-
cause they corresponds to the two sides of the
same branch, marked with different symbols.

(iii) Third condition is due to the fact that two
branches intersect in at most two points. One
can prove that, under this condition, the maxi-
mum length of an alternating sub-chain of two
symbols is 4.

Lemma 3 The external zone of γ0 has O(λ3(n))
complexity.

PROOF. By proposition 2, it suffices to note that
λ3(4n) = O(λ3(n)).
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5. Insertion order

In this section it’s seen how to sort the set of
curves Γ in such a way that, if they are inserted
one by one in this order in the arrangement, curve
γi is pseudo-convex with respect to the previous γj

inserted curves, 2 ≤ j ≤ i − 1.
Without lost of generality one can suppose that

the external zone of every curve is always to its left.
The idea for sorting is the following: a curve γ

is fixed while the others are classified with respect
to γ into two sets that will be recursively sorted:
the set of curves that must be inserted before γ in
the arrangement and the set of curves that have
to be inserted after γ. We insert before γ all the
curves that give rise to unbounded branches to
the left of γ (γ must be oriented before doing this
classification). Let |δ ∩ γ| denote the number of
intersection points between δ and γ.

Procedure for sorting the set Γ;

(1) If Γ = ∅ nothing to do. Return ∅.
(2) Select at random a curve γ ∈ Γ.
(3) If it is still not oriented, select an orientation

for γ.
(4) Classify the rest of curves into two sets C1(γ)

and C2(γ) containing the curves of Γ - {γ} that
have to be inserted in the arrangement before
and after γ respectively:
– Curve δ is included in C1(γ) whenever one of

the three following conditions holds:
|δ ∩ γ| = 0 and δ is to the left of γ.
|δ ∩ γ| = 1.
|δ ∩ γ| = 2 and the branches of δ are to the
left of γ.

– Curve δ is included in C2(γ) if it has not been
included in C1(γ), that is:
|δ ∩ γ| = 0 and δ is to the right of γ or
|δ ∩ γ| = 2 and the branches of δ are to the
right of γ.

(5) Orient the curves in C2(γ) depending on the
orientation of γ in such a way that the infinite
extremes of γ lay to the left of each curve.

(6) Recursively repeat the procedure for C1(γ)
and C2(γ), thus obtaining the sorted lists L1(γ)
and L2(γ) respectively.

(7) The final sorting in Γ is L1(γ) + [γ] + L2(γ),
being “+” the concatenation of lists operation.

Definition 4 Curve γ is called reference curve of
the process. Sets C1(γ) and C2(γ) determined by γ

are called associated sets.

One can proof that the orientation that a refer-
ence curve γ determine in its associated set C2(γ)
do not prevent a future sorting of this set. No care
is necessary with curves in C1(γ) because they
appear in the arrangement before γ.

Observation: Every curve is, at some point dur-
ing the execution of the procedure, a reference
curve having the corresponding associated sets
(may be empty some of them).

In order to facilitate the proof of the pseudo-
convexity of every curve with respect to the pre-
ceding ones, one consider a surrounding pseudo-
circumference containing in its interior all in-
tersection points of the arrangement. This extra
curve represents the infinity and intersects every
curve in two points.

Definition 5 The intersection points between a
curve γ ∈ Γ and the pseudo-circumference are
called the extreme points of γ. They are considered
points at infinity.

Definition 6 Every curve γ divides the pseudo-
circumference in two pieces called vaults. Once the
curve γ is oriented, the corresponding vaults be-
comes left vault and right vault of γ. The left vault
is denoted by γ̂.

Vault concept allow us to define pseudo-
convexity in the following way:

Definition 7 γ is pseudo-convex with respect to a
set of curves if all of them have at least one inter-
section point with γ̂.

Proposition 8 A curve γ and its associated sets
verify the following properties:

(i) γ is pseudo-convex with respect to curves in
C1(γ).

(ii) Curves in C2(γ) are pseudo-convex with respect
to γ.

(iii) Curves in C2(γ) are pseudo-convex with respect
to those in C1(γ).
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PROOF. Items (i) and (ii) are verified by con-
struction. For item (iii), let be γ1 ∈ C1(γ). By
construction, γ1 have at least an intersection
point with γ̂. Let be γ2 ∈ C2(γ). By construction,
γ̂ ⊂ γ̂2. That means that γ1 have at least an in-
tersection point with γ̂2. Therefore, by definition
7, γ2 is pseudo-convex with respect to γ1.

Finally, we can proof the third lemma:

Lemma 9 If γ1, γ2, . . ., γn is the sorted set of
curves given by the sorting procedure, then γi is
pseudo-convex with respect to γ1, γ2, . . ., γi−1 for
every 2 ≤ i ≤ n.

PROOF.
Let be 2 ≤ i ≤ n and let γj be a curve with

j < i. By construction there is a reference curve
γk, j ≤ k ≤ i, separating γi and γj , thus having
one of the three following situations:

(i) γk = γi and γj ∈ C1(γk).

(ii) γk = γj and γi ∈ C2(γk).

(iii) γj ∈ C1(γk) and γi ∈ C2(γk).

Taking into account proposition 8 one verifies in
all three cases that γi is pseudo-convex with re-
spect to γj .

As a consequence of the previous lemmas, one
verifies the main theorem of the paper:

Theorem 10 The arrangement A(Γ) of un-
bounded Jordan curves that intersect each other in
at most two points can be computed incrementally
in O(nλ3(n)) time.

6. Applications

This result can be applied in geometric location
problems. In particular in covering problems with
geometric figures as wedges, circular annulus or
strips.

In these problems one wants to locate the best
position for a geometric figure in the plane in order
to cover as much points of a given set of points as
possible. In the solution of these problems in the
dual space, arrangements as the considered in this
paper have to be managed. (Details can be found
in [1]).

7. Open problems

An open problem is to determine the complexity
of the internal zone of this kind of arrangements.
Internal zone is the half-zone which is not the ex-
ternal zone. It is an open problem for s ≥ 1 for
specific families of curves. For arbitrary curves the
known complexity is O(λs+2(n)) ([4], pág. 125).

Note that for s = 1 one have a known problem
that is open from more than ten years ( as men-
tioned M. Sharir in the Dagstuhl Workshop [2]):

Problem 11 Given a circle and an arrangement
of pseudo-lines determine the complexity of the
half-zone of the circle contained in its interior.
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