
209

A Case Study for Generating Test Cases from
Use Cases

Javier J. Gutierrez, Maria J. Escalona, Manuel Mejias, Jesus Torres, Arturo H. Centeno
Department ofComputer and Software Languages

University ofSevilla
Spain

{javierj, escalona, risotto, jtorres}@lsi. us. es

Abstract- The verification of the correct implementation
of use eases is a vital task in software development and
quality assurance. Although there are many works describing
how to generate test eases from use cases, there are very few
ease studies and empirical results of their application and
effectiveness. This paper introduces a first ease study that
test the correct implementation of use cases in a web system
and a command line system, analyses the results and exposes
that generation of use cases has a successful about 80%.

Index Terms-Test objective, Use case, Automatic
generation, Testing tools, Case study, Empirical evaluation.

I. INTRODUCTION

Nowadays, use cases are a widely used technique to
define the functional requirements of software

systems. Several authors, like Cockburn [6], Ben Achour
[4] or Escalona [9] [10], propose how to define use cases
with UML Use Case Diagrams, which describes the
relations between use cases and actor and between use
cases and other use cases, in combination with templates
for describing the behaviour of every use case and their
preconditions, post-conditions, performance, priority,
stability, etc. Templates are writing in narrative English
with few or none formalism.

Two reports [7] [11] discovered two main gaps in the
generation of test cases from use cases: lack of automatism
and absence of empirical evaluation. The automatism of
scenarios analysis written in natural language (first gap)
has been resolved in our previous works [13] [14] using
language patterns and regular expressions for extracting
information from use case templates. This paper is focused
in the second gap. Few empirical results about functional
system testing have been published. So, the main goal of

this paper and its original contribution is the execution of
two cases studies to measure and evaluate the effectiveness
of scenario analysis technique. The case study not only
generates test cases, but implements and executes them to
evaluate their effectiveness. The scenario analysis
technique is a common technique for generating test cases
from use cases. It identifies the scenarios from a use case
and generates test cases from them. As mentioned before,
the main contribution of our previous papers are the
automatism ofthis technique.

This paper is organised as followed: section II describes
the technique for generating test cases from use cases
using use case scenarios. Then, section III describes
systems under test and the preparation of the case study.
Section IV describes the results of the case study. Section
V introduces other related works. Finally, section VI
exposes conclusions and ongoing works.

II. AN OVERVIEW OF SCENARIO ANALYSIS

As seen in section I, a use case is mainly defined by
natural language and it is mainly composed of steps. In
this paper, those steps are grouped in a main sequence, an
alternative sequence and an erroneous sequence. An
alternative sequence defines the steps that may be realised
as an optional alternative to a step of the main sequence,
while an erroneous sequence defines the steps that may be
used if a step from the main sequence meets an error and
is unable to exercise its behaviour. An example ofuse case,
taken from the case study, is showed in table 2. The textual
template is codified as a XML file to improve automation.

However, the natural language is often too ambiguous
and generic to be automatically processed. Thus, the first
task is to translate the behaviour of a use case into a more
formal model. An UML Activity diagram has been chosen
to define the behaviour of a use case. An Activity diagram
allows indicating if an action is performed by the system or



210

by an external action; it includes different execution flows;
it does not need to expose information about the
implementation of the system or its external interfaces. An
example is shown in figure 1.

The algorithms used to extract information from a use
case and to generate an activity diagram may be consulted

in previous papers [13] and [15]. They have been
implemented in an open-source software tool called
TestGen (available in www.lsi.us.es/-javierj/). The result
of this tool is shown in figure 1 according to the use case
of table 1.

Table 1. Use case example

<useCase id="Search link by description">
<description> A use case searches a set of links by their description and shows the results. </description>
<mainSequence>

<step id="l"> The visitor asks the system for searching links by description. </step>
<step id="2"> The system asks for the description. </step>
<step id="3"> The visitor introduces de description. </step>
<step id="4"> The system searches for links which match up with the description introduced by the visitor. </step>
<step id="S"> The system shows the found results. </step>

</mainSequence>
<alternativeSteps>

<astep id="3.1"> At any time, the visitor may cancel the search, then the use case ends. </astep>
<astep id="4.1"> If the visitor introduces an empty description, then the system

searches for all the stored links and step 5 is repeated. </astep>
</alternativeSteps>
<errorSteps>

<estep id="4.2"> If the system finds any error performing the search, then an error
message is shown and this use case ends. </estep>

<estep id="4.3"> If the result is empty, then the system shows a message and this use case ends. </estep>
</errorSteps>

</useCase>

. <<Vlsltar»
l ..Thev~ asks the systemfoneerthtlg~ bydestrfl:tion.

.«vlstDr»
3. The vsltor Introduces I pIeCe d the desalptiOn of the seerched Inks.

. .«9fstem»
4~2.an errorn1!~ Sstown..

the systemflnds any error 0rrrt1g the search.

<<system»
4.1. ~systemseard1esforalstored lila, .

.«system>>.
5•.1. the 'sYster:nshcPNs s' rTeSsage.

the visitor htrociJces an enpty piece of

2~----------":iIll

«system»
4. The systemsearches for the links which rretches l4' wth the fntrOdLO!d desaiption•.

Not(the vstor tltroduces an el11tY piece ri teet)

«~Stem»
S'"(he systemshiws the results found.

Fig 1. Activity diagram automatically generated.



211

Then, use case scenarios are derived from the activity
diagram. The TestGen tool implements the all-nodes, all­
transitions, and all-scenarios criteria to select scenarios. For
the all-nodes criterion, the TestGen tool selects the paths that
go across a higher number of actions until all the actions of
the activity diagrams have been traversed at least once. For
the all-transitions criterion, the TestGen tool selects the path
that traverse a higher number of object-flow edges until all of
them have been crossed at least once.

If the activity diagram has not got any loops, as in figure 1,
the all-scenarios criterion selects the paths that go through all
output object-flow edges from decision nodes at least once. If
the activity diagram has got some loops, the all-scenarios
criterion selects the paths that go through all output object­
flow edges from decision nodes and all combinations among
loops at least once. Table 2 shows an example of the paths
and use case scenarios that have been obtained after applying
the all-scenarios criterion in the activity diagram of figure 1
(each path is a test case). The numbers in each test case
indicates the activities and decisions traversed from the
activity diagram.

Table 2. Paths and a use case scenario.
Use case: Search link by description
The All-Scenarios Criterion
Test cases (Tc): 7

1 : 1, 2, 001, End.
2: 1, 2, 001, 3, 002, 4.1, 003, 4.2, End.
3: 1, 2, 001, 3, 002, 4.1, 003, 004, 5.1, End.
4 : 1, 2, 001, 3, 002, 4.1, 003, 004, 5, End.
5: 1, 2, 001, 3, 002, 4, 003, 4.2, End.
6: 1, 2, 001, 3, 002, 4, 003, 004, 5.1, End.
7: 1, 2, 001, 3, 002, 4, 003, 004, 5, End.

Use case scenario 1:

1: The visitor asks the system for searching
links by description.
2: The system asks for the description.
001: The visitor cancels the search then the use
case ends.
End.

Second row in table 2 describes the steps performed by the
test case number 1.

ITI. CASE STUDY SETTINGS

The goal of this case study is to measure de effectiveness of
the test cases generated from use cases using scenario
analysis. For this reason, mutant systems, with different
behaviour than the one described in its use cases are
generated. Effectiveness is measured with the number of
mutant killed (this means, different behaviour detected) by
the test cases.

A. Systems under test

Two systems have been tested in the case study: a CRUD
web system (WEB) and a desktop system with a command-

line interface (CML). Not all use cases have been tested. The
statistics of the tested use cases of both systems are resumed
in table 3.

The WEB system allows to maintenance an on-line link
catalogue. The four use cases under test for WEB system are:
add new link, search links by description (showed in table 1),
show recent links and view details of a link.

Table 3. Use cases under test.

WEB CML

Use cases 4 3

Total number ofsteps 14 11

Total number ofalternative 13 9
steps

The CML system is a simple annotation application. The
three use cases under test for CML system are: add a new
note, erase all notes and list all notes. Implementation details
ofboth systems are described in table 4.

Table 4. Implementatioo details.

WEB CML

Modules 20 I

Lines ofcode 4630 76

WEB system was developed in Java using Struts 2.0
framework. Modules include Java classes and JSP pages.
CML was developed also in Java, as a stand-alone class,
using standard packages only.

B. Mutating use cases

A set of mutant versions of the two systems under test were
codified. Those mutant versions were able to run successfully,
but they exhibit a different behaviour than the one specified
in their use cases.

Faults were introduced into systems using mutant operators.
No classic code mutant operators were used, due our objective
is not to change the source code (we do not test code). Our
objective was mutant use cases for describing a different
behaviour. So, the first step was to generate a new set of
mutant operators for use cases. These mutant operators were
obtained from the use cases fault model introduce by Binder
[5]. The complete list of mutant operators used is showed in
table 5.

Mutant operators were applied over use cases to generate
mutant systems. A mutant system is a complete system with
only one fault, which generates a different behaviour. Table 6
shows mutants obtained for each use case ofthe WEB system.



212

Table 7 shows mutants obtained for each use case of the CML Table 8. Examples ofmutating a use case.

system. Mutants

Even little use cases may have a big number ofmutants and
variations. An example of mutants obtained after apply the
mutant operator 3 (sudden end of the use case) over the use
case described in table I (Search link use case of the WEB
system) is showed in table 8.

Table 5. Mutant operators for use cases.

Step 4:

Instead of performing the query, the use case ends.

Step 4.1

If description is empty, then the use case ends.

10 11 12

10 11 12

l-

I-

I--

I--
0 0

8
I-- - ,-'

I- -

~ - - ,
2 2

m- .- -
II II 0 n II 0 0

-

-
i-

-
10

-'HJ-il 5 6~'
4

n ' , fTID 0 0 0 n
10

15

20

30

25

Fig. 2. Mutants obtained for each mutant operator (CML system).

18 17

16

14

12

10

35

Figures 2 and 3 describe the number of mutants obtained
from each mutant operator to the CML system (figure 2) and
the WEB system (figure 3).

Fig. 3. Mutants obtained for each mutant operator (WEB
system).

Table 6. Mutants for WEB system.

Id Mutation operator

I Logical operator from a condition of an alternative or
erroneous step replacement.

2 Condition of an alternative or erroneous step always
evaluated to true or false.

3 A sudden end step.

4 A step deletion.

5 A new step performed by the system addition.

6 Incorrect data admission or validation rules
replacement.

7 Incorrect or incomplete information showed by the
system.

8 An operation that may fail, always works correctly.

9 An operation that has not an erroneous step attached
fails.

10 Information showed to the actor has fewer elements.

11 Step performer replacement.

Use cases Mutants obtained

Add new list 34

Search links 33

List recent links IS

View details ofa link 10

Avg. mutants per use 92/4 = 23
case

IV. CASE STUDY RESULTS

Table 7. Mutants for CML system.

Use cases Mutants obtained

Delete all notes 15

Add new note 18

List notes 20

Avg. mutants per use 53/3 = 17'7
case

A. Test case generation

Test cases were generated (before obtaining mutant systems)
using the supporting tool, TestGen, developed in the cited
previous works.

Table 9 enumerates the test cases obtained after applying
three coverage criteria (described in section II) over the
activity diagram generated from each use case of the WEB
system.



Table 9. Test cases for WEB use cases.

Use cases AlINodes AlIScena rios AlITransitions

Add new list 3 10 5

Search links 6 7 5

List recent 3 3 3
links
View details of 1 3 3
a link

Total: 13 23 16

Table 10 enumerates the test cases obtained after applying
the three coverage criteria over the activity diagram generated
from each use case of the CML system. In both tables (9 and
10), the littlest number of test cases is obtained with the all­
nodes criterion and the bigger number is obtained with the
all-scenarios criterion.

Table 10. Test cases for CML use cases.

Use cases AIlNodes AlIScenarios AlITransitions

Delete all notes 2 4 4

Add new note 1 8 3

List notes 4 4 4

Total: 7 16 11

B. Test case codification and execution

Taking every scenario as a test case, the number of scenarios
calculated was 23 for WEB system and 16 for CML system.
Then, test cases were codified with the help of two test
harness described next. Test cases for all-nodes and all­
transitions are subsets of the test cases for all-scenarios.

The test harness selected for the WEB system was
JWebUnit (jwebunit.sourceforge.com). This tool interacts
with the web system under test in the same way than a web
browser. It also includes the mnit tool for validating results.

For the CML system, an ad-hoc console test harness was
developed. This test harness redirects the standard input and
output. This one allows simulating a set of inputs from a user
and evaluating the output of the system using the mnit tool
too.

After that, use case scenarios were codified in Java and
executed over all the mutant versions generated in section
TILB. Results for the test cases obtained with the all-scenarios
criteria are listed in table 11.

Table 11. Results using all-scenarios aiteria.

WEB CML

Killed mutants 76 45

Effectiveness 76/92 = 82'6% 45/53 = 84'9%

213

Results for the test cases obtained with the all-nodes
criteria are listed in table 12.

Table 12. Results using all-nodes criteria.

WEB CML

Killed mutants 60 45

Effectiveness 60 / 92 = 65'2% 45/53 = 84'9%

Results for the test cases obtained with the all-transitions
criteria are listed in table 13.

Table 13. Results using all-transitions criteria.

WEB CML

Killed mutants 72 45

Effectiveness 72 / 92 = 78'3% 45/53 = 84'9%

Results for the three criteria are the same in the CML
system. This mct seems to indicate than it is possible to
reduce .the number of test cases from 16 to 7 by selecting the
minimum number of test cases for each use case in table 9.
The implementation of the all-nodes criterion tends to find
the biggest path, this means, the path that traverse a bigger
number of activities and decisions and, therefore, the test case
that verify more steps. So, this fact suggested that size matters
when testing use cases. This means that big paths, and test
cases that exercise much of the steps of a use case, are better
than little paths.

However, results from WEB systems invalidate these ideas.
As showed in tables 12 and 13, a reduction of the number of
test cases executed implies a reduction of the effectiveness
(mutants detected), even when all steps of the use cases are
exercised at least once (all-nodes) and all execution flows of
the activities diagrams are traversed al least once (all­
transitions). This fact is provoked for implementation details
of the WEB system. As mentioned, this system has been
codified using Struts framework. This tool imposes a concrete
way of work, with object caching, session mechanisms, etc.
So, if an operation where executed successfully the first time,
second and other times the results are already available and
operation is not repeated. This mct justifies the decrement of
effectiveness when reducing the test case number and it
suggests that a big number of use cases with the same test
steps executed in different sequences are useful.

V. RELATED WORKS

There are several papers and approaches about the testing of
use cases defined in a textual tabular notation. An extensive
list of references may be found in [7] and [II] reports. In next
paragraphs, some of the most relevant approaches are
summarised.



214

TDEIUML approach, [8], expresses a use case as a UML
activity diagram and uses the Category-Partition method [12]
to generate test cases. However, the approach does not
indicate if the activity diagram may be generated
automatically from the use cases, nor the format in which the
use cases must be defined.

TOTEM [18], Requirement-based Contract [17] and the
CowSuite [2] approaches expressed a use case as an UML
sequence diagram. The sequences of messages are expressed
as regular expressions and are combined between them to
generate test cases. We found some problems using sequence
diagrams. It is very difficult to express alternative or
erroneous sequences in the same diagram. Information about
architecture and internal implementation, like classes and
messages are also needed, so it cannot be applied in the early
phases ofthe development.

Other approaches work directly with natural language, like
references [16] and [19]. All of them propose a simple
combinational explosion among all scenarios in a use case.
These approaches are quite simple and omit many important
aspects, like coverage, test values, expected results or test
implementation.

As mentioned in introduction, there are very few works
that describes case studies. One of them is [3]. In this paper
describes the testing of a real E-Ticket system for the
Netherlands. For testing, a test scenario was generated (by
hand) from each use case scenario, then, each test scenario
was instantiate into a test case with concrete test values.
Results were satisfactory, discovering and resolving all
critical issues and about 50% ofmedium ones.

VI. CONCLUSIONS

It is not the same mutating test cases for generating mutant
systems than testing real system with real faults. Some
studies, like [1] exposes that real system and faults are less
elaborated than mutant faults. However, the results described
in this paper indicates that it may be valuable apply the use
case scenario analysis to real systems. Results from section
IV.B suggested that it is not only important to exercise all
steps from a use case but exercise them in different
combinations. Each step is codified into test code once and,
then, used in every test case that exercises the step, so it is
easily to generate a big amount of test cases with little
codification effort. Moreover, results in section IV.B also
exposes that the automatic generation of software testing may
detect a valuable amount of errors. However, case studies and
experiments are also hard to perform due the generation and
implementation of mutants is not automatic. The biggest
amount of time dedicated to this case study have been spent in
developed mutant systems and executing test cases over
mutant systems, instead of generating ofcodifying test cases.

The main ongoing work is to repeat this case study with the
operational variable analysis technique [5] and compare
results.

VII. ACKNOWLEDGES

This work is supported by the Ministry of Science and
Education under the National Program for Researching,
Development and Innovation, project QSimTec (TIN2007­
67843-C06-03) and REPRIS (TIN2005-24792-E).

REFERENCES

[1] Briand L.C. Labiche Y. 2005. Is Mutation an Appropiate Tool for Testing
Experiments? International Conftrence ofSoftware Engineering
ICSE'05. St. Louis, Missouri, EEUU.

[2] Basanieri F. Bertolino A. Marchetti E. 2002. The Cow_Suite Approach to
Planning and Deriving Test Suites in UML Projects. Lecture Notes In
Computer Science 2460 pp. 383-397.

[3] Roubtsov S. Heck P. 2006. Use Case-Based Acceptance Testing ofa Large
Industrial System: Approach and Experience Report. TAlC-PART 06.
Windsor, UK.

[4] Ben Achour C. 1998. Writing and Correcting Textual Scenarios for
System Design. Natural Language and Information Systems Worlcshop.
Vienna, Austria.

[5] Binder R. V. 2000. Testing Object-Oriented Systems. Addison-Wesley.
USA.

[6] Cockburn, A. 2000. Writing Effective Use Cases. Addison-Wesley 1st
edition. USA.

[7] Denger, C. Medina M. 2003. Test Case Derived from Requirement
SPecifications. Fraunhofer lESE Report. Germany.

[8] Ruder A. 2004. UML-based Test Generation and Execution. Rilclcblick
Meeting. Berlin. Germany.

[9] Escalona M.J. 2004. Models and Techniquesfor the Specification and
Analysis ofNavigation in Software Systems. Ph. European Thesis.
Department ofComputer Language and Systems. University ofSeville.
Seville, Spain.

(10] Escalona M.J. Gutierrez J.J. Villadiego D. Le6n A. Torres A.H. 2006.
Practical Experiences in Web Engineering. 15th International Conference
On Information Systems Development. Budapest, Hungary, 31 August­
2 September

(11] Gutierrez, J.1., Escalona M.J., Mejias M., Torres, J. 2004. Comparative
Analysis ofMethodological Proposes to Systematic Generation ofSystem
Test Cases. 3° Workshop on System Testing and Validation. Paris. France.

(12] Ostrand T. J., Balcer M. J. 1988. Category-Partition Method
Communications ofthe ACM. 676-686.

(13] Gutierrez J.J. Escalona M.1. Mejias M. Torres J. 2006. Derivation oftest
objectives automatically. Fifteenth International Conference On
Information Systems Development (lSD06). Budapest, Hungary, 31
August - 2 September, 2006

[14] Gutierrez J.J. Escalona M.1. Mejias M. Torres J. 2006. Towards a
Complete Approach to Generate System Test Cases. IeEIS Doctoral
Consortium. Oaphos, Cyprus.

(15] Gutierrez J.J. Escalona M.J. Mejias M. Torres J. 2006. Modelos Y
Algoritmos Para La Generaci6n De Objetivos De Prueba. Jornadas sobre
Ingenieria del Software y Bases de Datos JISBD. Sitges. Spain.

[16] Heumann, J. 2002. Generating Test Cases from Use Cases. Journal of
Software Testing Professionals. EEUU.

[17] Nebut C. Fleury F. Le Traon Y. Jezequel J. M. 2006. Automatic Test
Generation: A Use Case Driven Approach. IEEE Transactions on
Software Engineering Vol. 32. 3. March.

(18] Labiche Y., Briand, L.C. 2002. A UML-Based Approach to System
Testing, Journal ofSoftware and Systems Modelling (SoSyM) Vol. 1
No.1 pp. 10-42.

[19] Naresh, A. 2002. Testing From Use Cases Using Path Analysis Technique.
International Conference On Software Testing Analysis & Review.
EEUU


