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Abstract— The tuning of hierarchical fuzzy systems are not
supported by the majority of CAD tools available at the market
currently. The xfsl tool integrated into Xfuzzy 3 allows the
tuning of complex fuzzy systems, for instance, hierarchical
systems with modules in cascade. The authors propose the use
of this tool for tuning a complex fuzzy system for video de-
interlacing in this paper. The parameters obtained after tuning
are proven by de-interlacing a wide battery of sequences. The
use of tuning techniques improves the quality of de-interlacing
and provides an algorithm simplification that facilitates its
hardware implementation.

I. INTRODUCTION

Independently of the description of a Simple Fuzzy Sys-
tems (SFS) comes from a set of data or heuristic knowledge,
its behavior depends on both its structure (the number of
rules, the number of fuzzy sets covering the input and output
universes of discourse, etc) and its parameters (those which
define the membership functions associated with input and
output variables). A SFS is understood as a system with
a unique rule base and particular membership functions,
connective operators and defuzzification methods. The tuning
of the membership functions representing the antecedents
and the consequents of the rules usually improves the per-
formance of the SFS. Several CAD tools developed for
automatic tuning are currently available at the market [1]-
[4].

Hierarchical Fuzzy Systems (HFS), that is, systems that
contain several modules connected in cascade, in parallel,
or in a hybrid architecture allow the description of more
complex situations. For instance, a knowledge-based HFS
is described in [5] for a pilot pressure control system. Fur-
thermore, HFS have a nice property since the total number
of rules increases only linearly with the number of input
variables instead of an exponential increase of SFS [6]. This
issue is particularly relevant to carry out the implementation
of the whole system. All the above considerations have
encouraged the development of algorithms for the automatic
design of the Takagi-Sugeno HFS during the last years [7]-
[8].

Only a few number of CAD tools support the tuning of
a hierarchically structured knowledge. As far as we know,
xfsl integrated into the environment of Xfuzzy 3 is the most
versatile tool since it includes a large number of learning
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algorithms [9]. Besides, xfsl does not impose any severe
constraints on the description system: a large kind of mem-
bership functions can be used, linguistic hedges, connective
operators, and defuzzification methods, and a hierarchical
structure of any of the system type is supported.

This paper describes the use of xfsl to tune a knowledge-
based HFS for video de-interlacing application. De-
interlacing is one of the main tasks in video processing. It is
necessary whenever the transmission standard uses an inter-
laced format but the receiver requires a progressive scanning,
as happens to many consumer electronics equipments (LCDs
and plasma displays, projectors, and DVDs) [10]. The goal
of de-interlacing algorithms is the interpolation of missing
lines during the TV transmission.

This paper is organized as follows: Section II briefly
describes the algorithm for video de-interlacing. Its descrip-
tion into Xfuzzy 3 environment is detailed in Section III.
including the tuning stage by using xfsl. The results of
the tuned system are analyzed in Section IV. Finally, some
conclusions are expounded in Section V.

II. DESCRIPTION OF THE ALGORITHM

Among de-interlacing algorithms, motion-adaptive ap-
proaches are reported in the literature as a good midpoint
between simple linear algorithms and complex motion-
compensated-ones[10]. They are based on the fact that linear
temporal interpolator are perfect in the absence of motion,
whereas linear spatial methods offer a most adequate solution
in case that motion is detected. Motion detection can be
implicit, as in median-based techniques [11]-[12], or explicit,
using a motion detector [13]-[16].

The explicit motion-adaptive algorithms de-interlace video
by applying 1:

Ip(x, y, t) = (1− α)IT (x, y, t) + αIS(x, y, t) (1)

where IS is the output of a spatial interpolator, and IT is
the output of a temporal interpolator. The variable α, which
is the output of a motion detector, ranges from 0 to 1 and
determines the level of motion.

The performance of explicit motion-adaptive algorithms
relies on the quality of the motion detector, since it is
strongly dependent on the combination of both de-interlacing
algorithms. One way to improve the performance of this kind
of algorithms is to use a heuristic knowledge-based system.

1Motion-adaptive de-interlacing process may be performed separately on
each color space component for color transmission standards. However,
based on the fact that the details of an image are mainly determined
by the luminance component of the video signal, and much less by the
chrominance components, the motion detection is usually done with the
luminance component
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Fig. 1. H(x, y, t) measures the difference between the luminance values
of two pixels with the same spatial co-ordinates but belonging to different
fields.

In this sense, heuristics states that a spatial interpolator is
the most adequate when motion is large and a temporal
interpolation when motion is scarce. This algorithm was
presented in [17] and the aim of the present work is the
improvement of the tuning that was applied to the fuzzy
system.

The detection of motion is based on the assumption
that motion produces variations in the luminance of pixels
with the same spatial co-ordinates but in different fields.
Therefore, the simplest motion detector only evaluates the
difference between two fields of the same polarity as follows:

H(x, y, t) =
|I(x, y, t+ 1)− I(x, y, t− 1)|

2
(2)

The function H(x, y, t) involves the pixels shown in Fig. 1.
If the field differences of several pixels around the cur-

rent pixel are considered, the motion measurement is more
reliable. Our proposal in [17] uses a bi-dimensional convo-
lution since the use of sum-product allows to distinguish the
different levels of motion. Furthermore, convolution allows
to apply different weights to each neighbor when estimating
motion. As detailed in [17], the level of motion is estimated
as follows:

motion(x, y, t) =
Σ3
a=1(Σ3

b=1Ha,bCa,b)
Σ3
a=1Σ3

b=1Ca,b
(3)

where Ha,b are the elements of the following frame differ-
ence matrix:

H =

 H(−2,−1,−1) H(−1,−1,−1) H(0,−1,−1)

H(−2,0,0) H(−1,0,0) H(0,0,0)

H(−2,1,−1) H(−1,1,−1) H(0,1,−1)

 (4)

with H(i,j,k) corresponding to the frame difference H(x +
i, y + j, t+ k) (see equation (2)).

And Ca,b are the elements of the following weight matrix2:

C =

 0.0625 0.125 0.0625
0.125 0.25 0.125
0.0625 0.125 0.0625

 (5)

2The selection of these elements seem logical since the highest weight
is assigned to the position placed on the current pixel while the values of
the rest of weights are lower as the corresponding pixel is further from the
current one
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Fig. 2. Membership functions for the SMALL, MEDIUM, and LARGE
fuzzy concepts.
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Fig. 3. Block diagram of the proposed algorithm.

The measure of motion (motion) is the input of a SFS.
The rule base of this system only contemplates three rules
(see Table I):

1) If motion(x,y,t) is SMALL then the interpolation is re-
alized by applying a temporal de-interlacing algorithm
(IT ).

2) If motion(x,y,t) is MEDIUM then a linear combination
of the spatial (IS) and temporal (IT ).

3) If motion(x, y, t) is LARGE then the interpolation is
realized by applying a spatial de-interlacing algorithm
(IS).

Because of linguistic coherence, the membership functions
SMALL and MEDIUM are complementary, and something
similar happens to MEDIUM and LARGE as shown in Fig.
2. In principle, there is no limitation to choose the shape of
these functions. Due to its simplicity the piece-wise linear
functions in Fig. 2 have been finally selected to describe the
fuzzy sets SMALL, MEDIUM , and LARGE.

The new luminance component of a de-interlaced pixel
provided by the system is calculated by applying the FM
defuzzification method as follows:

IP (x, y, t) =
P3

i=1 βiciP3
i=1 βi

(6)

where βi is the activation degree of the i-th rule and ci is
the consequent of the i-th rule in Table I.

A block diagram of the algorithm to adapt the strategy
of de-interlacing to motion is shown in Fig. 3. In the work
presented in [17], a tuning technique is applied to the SFS
shown in Fig. 3. The aim of the work presented herein is to
exploit the capabilities of xfsl to tune the whole system, that
is, the module that performs the bi-dimensional convolution
and the SFS.



Fig. 4. Description of the HFS into Xfuzzy 3 environment.

TABLE I
FUZZY RULE SET FOR MOTION-ADAPTIVE DE-INTERLACING

Rule Antecedents Consequent
1. motion(x,y,t) is SMALL IT (x, y, t)
2. motion(x,y,t) is MEDIUM γ · IT (x, y, t)+λ · IS(x, y, t)
3. motion(x,y,t) is LARGE IS(x, y, t)

III. TUNING OF THE HFS

The whole system in Fig. 3 can be understood as a HFS
that is composed by two modules connected in cascade. The
first one performs the convolution and its output is a non-
fuzzy measurement (motion in (3)), and the second one is
the SFS for motion adaptation. The goal of this work is
the tuning of the whole HFS, the tuning of the convolution
coefficients (see equation in (5)) and the tuning of the SFS
parameters.

A. Description of the system into Xfuzzy 3

The inputs of the whole HFS are the nine frame differ-
ences, the spatial (IS) and the temporal (IT ) interpolators.
The HFS described in Xfuzzy 3 is shown in Fig. 4. The
modules of the HFS are named ‘convolution’ and ‘motion’,
and both are described in Xfuzzy 3 as first order Takagi-
Sugeno systems.

The inputs of the convolution module are the nine frame
differences. Since the aim of this first module is to have a
linear combination of the inputs, the rule base only contains
a unique rule that is always activated: ‘if any of the inputs
(Hij) is DUMMY then output0 is motion’.

The output variable called ‘output0’ of this system has a
unique label called ‘motion’ that is a parametric membership

Fig. 6. Configuration of the learning algorithm.

function with ten parameters, nine for each one of the
input variables and one parameter that corresponds to the
independent term.

The second fuzzy system uses three input variables. One
of them is the output of the first SFS, and the other two
corresponds to the spatial and temporal interpolators. The
edition of the rule base of this system is shown in Fig. 5.
The membership functions of the fuzzy concepts SMALL,
MEDIUM, and LARGE are defined as triangular functions
(see Fig. 2). The output variable of this second module
corresponds to the interpolated pixel (IP in equation (1)).

B. Tuning into xfsl

Since input/output training data can be extracted from
progressive standard video sequences, supervised learning
algorithms have been selected to tune the whole system.

Once the training file is available, a learning algorithm
has to be chosen. Among second-order conjugate gradient
algorithms, the Marquardt-Levenberg algorithm was selected.
The gradient of the error function is not supported for this
particular complex system but xfsl offers the possibility of
estimating the derivaties of the error function. The configu-
ration of the learning algorithm is shown in Fig. 6.



Fig. 5. Edition of the rule base used in the SFS for motion-adaptive de-interlacing.

Fig. 7. Evolution of the tuning process.

The strategy used to tune the whole HFS is the following3:

• Since the second system, named as ‘motion’ in Fig. 4,
has more influence in the result of de-interlacing, this
system has been tuned firstly.

• After fixing the parameters of the second system, the
first one is adjusted. Fig. 8 shows the inclusion of the
tuning parameters for the first fuzzy system.

The evolution of the tuning process is shown in Fig. 7.
The picture shows that the system learns after a few number
of iterations. The results obtained are analyzed in the next
section.

3This strategy was determined after analyzing several tests

IV. SIMULATION RESULTS

These results were obtained using a training file with
data that contemplates numerous situations. This means that
the data cover uniformly the universe of discourse of the
variables.

The more interesting results were obtained by following
the procedure explained in Section III.B. Firstly, the parame-
ters of the second module were tuned. The three membership
functions after tuning are shown in Fig. 9. The most relevant
result is the increase of the parameter b in Fig. 2 up to a
numerical value higher than 50. The values of weights for the
spatial and the temporal interpolator in the rules’ consequents
(see Table I) are also tuned. The parameter γ is modified



TABLE II
COMPARISON RESULTS AMONG METHODS BEFORE AND AFTER LEARNING

Method
Mother Carphone Missa Paris Salesman Trevor Fire Rose Fargo1
Video Video Video Video Video Video Film Film
QCIF QCIF CIF CIF CIF CIF PAL TV PAL TV

VT 2 fields [10] 39.61 34.08 40.25 30.73 36.54 36.61 40.32 35.87
Median motion [10] 38.49 33.31 39.44 30.27 36.61 35.43 39.45 35.32

MC field insertion [10] 39.72 34.63 40.89 34.48 38.32 37.11 42.61 42.77
Before learning 41.23 36.64 40.21 34.67 38.14 36.22 39.79 36.48

After learning +Ctuned in (7) 41.45 35.35 40.76 35.94 38.46 37.49 40.15 36.76
After learning +Cvertical in (10) 41.35 35.05 40.51 35.77 38.45 37.29 39.91 36.74

Fig. 8. The parameters of the first system are enable to participate in the
tuning process.

from 0.5 up to 0.4, and the parameter λ from 0.5 up to 0.6.
Although the sum of these parameters are not constrained to
be 1, the learning process converges to values that always
fulfill the condition γ+λ=1.

After the tuning stage, the matrix of coefficients is modi-
fied from equation (5) to the following one:

Ctuned =

 0.049 0.2052 0.043
0 0.381 0

0.047 0.2365 0.038

 (7)

The tuning process increases the weights of the pixels in the
vertical direction at expense of reducing the rest of weights.

The validation of the tuning process has been proven by
de-interlacing several sequences that have been widely used
as benchmarks in video processing applications. The origin
of the test material is categorized into two types: video and
film. Many error measures have been proposed as figures of
merit to evaluate the quality of digital video. However, as a
consequence of the complexity of the human visual system,
it is difficult to find an objective criterion to entirely quantify
image distortions. Nevertheless, some measures seem to have
a higher correlation than others with the perceived quality.
A very popular quality criteria is the MSE (Mean Squared

Error) between the original and the reconstructed images,
which is given by the following expression:

MSE =
1

M ·N
Σx,y(IP (x, y, t)− Ioriginal(x, y, t))2 (8)

where one frame has a resolution of MxN pixels, IP is
the value of the interpolated pixel, and Ioriginal is the pixel
value in the original progressive image. Strongly related to
the MSE is the PSNR, which is defined as follows:

PSNR = 20 log
255√
MSE

(9)

Table II shows the average PSNR values obtained when
de-interlacing 50 fields of different sequences with three
different formats: QCIF, CIF, and PAL TV. Table II includes
results after de-interlacing with the version of the algorithm
before learning, the algorithm after learning with the con-
volution mask in equation (7), and finally, a slight modified
version of the algorithm after learning with a convolution
mask that only considers neighbors in vertical direction as
follows:

Cvertical =

 0.25
0.5

0.25

 (10)

All the algorithms use two simple de-interlacing algorithms,
line average as spatial interpolator and field insertion as
temporal interpolator.

Fig. 9. Membership function after the learning stage.
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Fig. 10. De-interlaced image of the Mother sequence: (a) after learning:
(b) before learning.

A unique PSNR value in Table II is not meaningful, but the
comparison between two values from different methods gives
a measurement of quality. Generally, an improvement of 0.5
dBs in PSNR is quite perceptible by the human visual system
in the de-interlaced image. Taking into account all the above
considerations, the improvements after learning are evident
when comparing the first and second rows in Table II. The
loss of quality in terms of PSNR when the convolution mask
is modified from equation (7) to (10) is not significative as
can be seen after comparing the second and the third rows.

Fig. 10 corroborates the superior quality of a de-interlaced
frame after learning versus a picture without tuning. The
differences between the convolution masks in equations (7)
and (10) are not significant and they are not evident at naked
eye.

The resulting algorithm after the tuning stage performs
better than other algorithms of similar complexity such as
Vertico-Temporal (VT) and median-based approaches [10]
(see results in Table II). It also improves the results of many
sequences when an algorithm of much greater complexity,
such as a motion-compensated (MC) algorithm is used.

V. CONCLUSIONS

The motivation of our work is the improvement of a fuzzy
logic-based system for motion-adaptive de-interlacing by us-
ing tuning techniques. The whole system can be understood
as a HFS that has been tuned by using the tool called xfsl
integrated into Xfuzzy 3 environment.

Simulation results demonstrate that the system after tuning
improves the quality of de-interlaced images. The coefficients
of the convolution mask after tuning show that the weights of
the mask in the vertical direction have a significant influence
on the de-interlaced results. The convolution mask after tun-
ing is slightly modified to a new version that only considers
neighbors in the vertical direction. This modification allows
the simplification of the algorithm from a hardware point of
view without a relevant loss of quality.
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