
Requirements Capture Workflow in Global
Information Systems

M.J. Escalona, J. Torres, and M. Mejías

Department of Computer Languages and Systems, University of Seville

Abstract. The development of information systems has changed a lot in
the last years. Nowadays, applications are often developed in
distributed environment. It is quite common, they are distributed via
Internet and they usually have hypermedia and multimedia elements in
huge databases. They are characterized by having complex functional
and security requirements, many and undefined users who have
different degree of knowledge. These systems are named Global
Information Systems. The development of these complex global
information systems must be like a software project, based on a
development methodology, to get the application suitable to the client’s
requirements. This methodology must offer a right treatment of all its
aspects. Nowadays, there is no standard methodology which covers all
these characteristics. On the one hand, there are some traditional
propositions, like the Unified Process [11]. This is a good proposition
to work with storage and functional requirements. On the other hand,
there are propositions that have come from the multimedia
environment, like OOHDM [18], Hyper-UML [14], WSDM [4], etc.
which, although give more importance to the interface and navigation,
don’t cover all the phases of the whole life cycle. After doing a
comparative study of the most relevant methodologies for hypermedia
and Web development published in the last few years [7], we have
made a methodology proposition to develop global information
systems. This methodology is based on the Unified Process, but it adds
new models and aspects to treat correctly the navigation, the
hypermedia and the interface. In this paper, we present a global vision
of our methodology and we focus on the proposition to get
requirements from the user. To present the results, we apply the
proposition to a real problem in a public company in Seville.

Keywords: Global Information System, development methodology,
requirements, navigation, global interface.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/132461118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

.

1 Introduction

Nowadays, if a developer wants to apply a methodology to develop his global
information system, he has a lot of possibilities. Global information systems are
similar to classic management systems because both must deal with complex storage
and functional requirements. So, the developer could use an object-oriented
methodology like RUP [2]. However, global information systems have some
characteristics like navigation, interface or hypermedia, which need a special
treatment. In this sense, the developer could use a proposition to hypermedia
applications, like OOHDM, EORM, etc. But these propositions don’t cover the
complete life cycle. They are often focused on design and they forget other phases
like requirements capture or analysis. We have studied the actual possibilities that a
developer has to apply to his global information system. In table 1, we offer an
abstract of this study [7]. In this table, we can read the name of the methodology, its
reference and a short description. Also, we show what life cycle phases it treats (R:
Requirements capture; A: Analysis; D: Design; I: Implementation; T: Tests) and the
aspects which it covers (S: Storage; F: Functional; N: Navigation; I: Interface; M:
Multimedia)

In this table, we can observe that there isn’t any proposition which cover the whole
life cycle and deal with all global information system characteristics. However, these
propositions offer models and techniques that can be applied successfully.

We have studied all these models and techniques to decide which are the most
suitable. Therefore, we are developing a new methodological proposition to global
systems [6]. This proposition takes some of these models and techniques and proposes
others. The life cycle of our methodology is quite simple. Our methodology proposes
that the project life is divided into five workflows: requirements capture, analysis,
design, implementation and test. In each workflow, our methodology proposes
different activities and tasks to treat correctly the classic aspects (storage,
functionality, security, etc.), as well as the multimedia aspects (interface, navigation,
hypermedia, etc.). The first workflow to do is the capture and the definition of
requirements. In this paper, we would like to present this workflow, namely, the
activities to do, the techniques that we have to apply and the structure of the workflow
results.

2 Getting Requirements

In global information systems, the requirements capture is a critical workflow because
the rest of the process is based on it. In this workflow, users and developers must
decide what the system must offer. We have said that global information systems
have some special characteristics: complex storage and functionality, navigation,
interface and hypermedia. These special characteristics must be defined in the first
workflow. Therefore, it’s necessary that the methodology offer a mechanism to define
all these aspects. However, this mechanism must be simple enough to be understood
by the user as well as complete enough to be useful to the developer.

Table 1. Abstract of the actual methodology

Phases AspectsMethodolo
gy

Description
R A D I T S F N I M

HDM [8] It proposes a model to design
hypermedia systems. It’s based
on ERD.

X X X X

RMM [9] It’s a methodology to design
hypermedia system. It is based
on HDM.

X X X

EORM
[12]

It’s a methodology to design
hypermedia system. It has a
tool to help the developer.

X X X X

OOHDM
[18][19][20
]

It’s a methodology to design
hypermedia system. It offers
new models and quite
interesting techniques.

X X X X X X

WSDM [4] It’s a methodology to design
kiosk web. Its design is based
on the user

X X X X X

OO-
Method
[17]

It’s an environment to develop
information systems. X X X X X X

SOHDM
[12][21]

It’s a methodology that uses
OOHDM, but that adds the
scenario technique to capture
requirements to it.

X X X X X X X X

RNA [1] It’s a proposition to do the
analysis in web information
systems.

X X X X

HFPM [16] It’s a proposition that
describes what process must
be used to develop web
systems.

X X X X X X X X

RUP [2] It’s the methodology proposed
by the authors of UML

X X X X X X X

Building
Web
Applicatio
ns with
UML [3]

It’s a proposition which add
some stereotypes to UML to
design web information
systems.

X X X X

Our proposition is based on getting the system objectives. Starting from them, the
developer has to define the information storage requirements, that is, what
information the system has to store. Afterwards, actors, which are going to interact
with the system, must be defined, as well as the functionality the system offers them,
defining the functional requirements. When the designer knows what actors can do
with the system, who can work with it and what will be stored by the system, the

interaction requirements must be identified and described. The interaction
requirements capture how the information will be presented to the user and how
actors will be able to use the system functionality and to do queries to the system.
Finally, in this workflow, non-functional requirements, like security, communication
aspects, etc., must be defined. In figure 1, a diagram of requirements capture
workflow is shown.

Fig. 1. Requirement capture squema

In our methodology, in order to present the result to the client, patterns have been
defined. These patterns offer a structured and complete technique, but also easy to be
interpreted by the client. To present the different activities, we will use a real
example. A global information system to spread out and manage information about
historic heritage.

2.1 Activity 1- To Define Objectives and the Environment

In this activity, the developer must:

! Study the environment and the company. To get that, it’s necessary to get
brochures and to study old systems. This study isn’t necessary when the
developer knows the company well.

! Do interviews with final users in order to get their necessities. Some interview
techniques (JAD, Brainstorming, etc.) could be applied [5].

! Define the objectives. When the developer knows the necessities, he must
define the objectives. In order to describe them, a pattern is used. In our
example, the principal system objective is to manage the information of
monuments. In table 2, this objective description is made using the pattern.

Table 2. An objective pattern to our example

OBJ-01 To manage the information of monuments
Description The system must let manage patrimonial information. This

information is divided into:
Identification information, which lets identify each monument
Description information, which describes each monument
Graphical information, which is a set of images of each
monument

An identifier names each objective. This identifier starts with OBJ, followed by a
unique number. A description of the objective must be offered.

2.2 Activity 2- To Define Storage Requirements

When we know what we want to get, it’s necessary to define what information is
stored by the system. To describe this information, we propose to use another pattern.
So, our example must store the information of monuments. The user needs the name
and the address of the monument, its chronology, namely when it was built; its
authors, that is who did it; its styles, such as baroque, gothic, etc.; its typology: a
church, a square, etc; and a list of images where the monument appears. These are its
specific data. In the pattern in table 3, we can read the description of this storage
requirement. An identifier names each storage requirement, which starts with “SR”,
and a unique number follows it. In the ‘associated objectives’ row, the developer must
enumerate which objectives are gotten (or are partial gotten) with this storage
requirement. So, storing information about monuments we get a partial solution to
manage the information of monuments.

Table 3. A storage requirement description

SR-01 Information of the monument
Associated
objectives

OBJ-01: To manage the information of monuments

Description The system must store information about monuments. Specifically:
Name and description Nature
Name: It’s the name of the monument. String
Address: It’s the address of the monument. String
Chronology: It’s the date when the monument
was built

Chronology

Author: It’s a set of authors or creators, who
did the monument or contributed in its
building.

String
Cardinality: 0..n

Style: It’s the set of the monument styles. String
Cardinality: 0..n

Typology: It’s the set of the monument
typologies.

String
Cardinaly:0..n

Specific data

Image: It’s a set of images where the
monument appears.

Image
Cardinality: 0..n

In the next row, a description is required. After that, the specific data are described.
Each piece of specific data has a unique name, a description and a nature. The nature
is the abstract type of each piece: integer, string, sound, image, etc. In our
methodology, there are some predefined nature, but a mechanism to define new
natures is given. In this example, there are some specific data with predefined nature:
string, images, etc. But there is a new nature, namely the chronology. Each new
nature must be described by another pattern, in order to clarify its meaning. In table 4,
the Chronology structure is described. In this pattern, we describe the structure of the
nature, its rank and its restrictions.

Table 4. A new nature description

NA-01 Chronology
Field Nature
Beginning year: It’s the year when the monument
was started to build.

Date
Format:
yyyy

Structure

Finished year: It’s the year when the monument
was finished.

Date
Format:
yyyy

Rank Years can be positive (a. D.) or negative (b. C).

In table 3, we can observe that some specific data can have a cardinality. When a
storage requirement can have multiple values for a piece of specific data, we show the
number of values in the cardinality. So, a monument can have 0 or an indeterminate
number of styles or typologies.

2.3 Activity 3- To Define Actors

When the developer knows what the system has to store, he must define who can use
the application. Therefore, he must define actors. An actor is a person, an external
system or an external process that works with the system.

In this activity, the developer has to start defining basic actors. A basic actor is a
simple role, which is identified with a specific criterion. In our system, we can
classify according to two criteria. On the one hand, we can classify the actor
according to his investigation area. So we have: Archaeologist (table 5) or Artistic.
On the other hand, we can classify according to the actor’s use in the system. So we
have: Administrator or General User. An administrator is the person who can update
and consult information. A general user can only consult.

In order to define basic actors, the developer has to do a pattern. We present the
Archaeologist description in table 5. This actor has a unique identifier: AC-01. In the
second row, objectives that are associated with this actor must be enumerated.
Afterwards, the used criterion to classify this actor must be described. Finally, the
developer has to describe the basic actor.

Table 5. A basic actor definition

AC-01 Archaeologist
Associated
objectives

OBJ-01: To manage the information of monuments

Criterion This is a possible actor in the system when we classify users
according to his investigation area

Description The system must offer a mechanism to work with archaeologists.
An archaeologist is a person who is interested in archaeologist
monuments.

After defining basic actors, we must study the incompatibility between them. Two
basic actors are incompatible when a user can’t use the system playing like both of
them. Therefore, in our system, the same user can’t be an administrator and a general
user, but he could be an administrator and an Archaeologist at the same time.

In order to define actors’ incompatibility, a matrix must be used. In table 6, we
present our system incompatibility matrix.

Table 6. An incompatibility matrix

Basic Actor Archaeologist Artist Administrator General user
Archaeologist -
Artist -
Administrator - X
General user X -

‘X’ represents the incompatibility between two actors. So Administrator and
General user are incompatible. Sometimes, there are other very important actors in the
systems, which are complex actors. A complex actor is a role, which is composed of
two or more actors (basic or complex). So, in our system we must have an artistic-
archaeologist. It’s an actor who is an archaeologist and an artist at the same time.

To define complex actors, we use a matrix. In table 7, we show the complex actor
matrix of our system.

Table 7. Complex actor definition

Actor
Complex Actor Archaeologist Artist Archaeologist-

Artist
Administrator General

user
Archaeologist-
Artist ∧ ∧

Archaeologist-
Administrator ∧ ∧

Archaeologist-
Artist-
Administrator

∧ ∧ ∧ ∧

Artist-
Administrator ∧ ∧

‘∧’ represents that the complex actor in the row takes the same role as the actor in the
column.

2.4 Activity 4- To Define Functional Requirements

When the developer knows what the system stores and who can use it, he must define
the system functionality. To define functional requirements, we propose to use the
standard use cases [10]. It’s not necessary to explain what it is. In our example, we
have a lot of use cases. One of these is the use case which describes how a user can
introduce a new monument into the system. A use case is composed of a diagram and
a description. In figure 2 we show a use case diagram for this example.

Table 8. A functional requirement definition

FR-01 Introducing a new monument
Associated
objectives

OBJ-01: To manage the information of monuments

Description The system has to do this use case when the user wants to introduce a
new monument into the database

Preconditio
n

The user has to be an available user in the system

Actors AC-04: Administrator
Step Action
1 Execute the option “New”.
2 The system accepts the user.
3 The user introduces the address of the monument.
4 The system asks for the name of the monument.
5 The user introduces the name.
6 The system introduces the new monument in the database and the

user is allowed to introduce the information of the monument
(images, chronology, etc.).

7 The user introduces the rest of the information.

Normal
sequence

8 The systems goes back to the main menu.
Postconditi
on

Nothing

Step Action
1 The user is not an available user in the system, so the system

doesn’t let introduce a new monument

Exceptions

5 The monument is already in the system. So an error message is
showed

Approxima
te
frequency

10 times a month

Each use case has to be described using a pattern. In table 8, we describe use case
diagram in figure 2. In this pattern we must identify the use case with a unique
identifier (FR-01). We must justify why this use case is defined, therefore it’s
necessary indicate associated objectives. Afterwards, it’s necessary to do a description
and indicate the functional requirement precondition. In the ‘Actors’ row, the
developer has to enumerate actors who can execute this use case. To complete the use
case description, normal execution sequence, postcondition and exceptions of this use

case must be described. Eventually, if it’s possible, the developer has to give an
approximate frequency.

Fig. 2. A use case diagram

2.5 Activity 5- To Define Interaction Requirements

At this point, the developer knows what the system has to store, who can use it and
what can be done with it, but it isn’t enough. In global information systems, interface
and navigation are critical aspects, so we have to define how the information will be
presented to the user. In order to define this, the developer has to define interaction
requirements using patterns again. Each interaction requirement is a node, in which
specific information is showed. Information in a node is about a specific subject.
Therefore, in our system we can define a node, which shows information about the
identification of monuments. In this node, we must show information, which
identifies the monument: its name, its address and its images.

A unique identifier names each interaction requirement. In the pattern of table 9 is
IR-01. For each interaction requirement, the developer has to enumerate the actors
who can interactuate with it. Moreover, a description must be defined. If some entry
parameters are necessary in order to show this requirement, they will be described in
the fourth row. In the ‘associated functionality’ row, the developer must enumerate
functional requirements, which can be executed in this interaction requirement.
Afterwards, the developer has to mention specific data of storage requirements in
order to detail the information showed by the node. An interaction requirement can
show specific data of different storage requirements and a piece of specific data can
be showed in different interaction requirements. So, in this row, we must indicate the
storage requirement identifier and the names of each piece of specific data.

Eventually, we must indicate navigation. From this information requirement, the
user will be able to navigate to other information requirements, so the developer must
enumerate them in the ‘Exit’ row. As the same time, from other information
requirements, the user can navigate to this information requirement. Those are
enumerated in the ‘Entry’ row. In our example, the user can get IR-01 information
requirement from IR-03 and can navigate from IR-01 to IR-02 too.

2.6 Activity 6- To Define Non-functional Requirements

To conclude, it could be possible that there are other requirements which aren’t
storage, functional or interaction requirements. These are non-functional
requirements. In the last workflow activity, the developer has to describe other
requirements like security, efficiency, etc. To describe these requirements, we
propose another pattern.

For instance, in our system we can indicate that it must offer a mechanism to do
automatically backups. In table 10, we describe this requirement.

Table 9. An interaction requirement definition

IR-01 Monument identification information
Actors AC-01: Archaeologist

AC-02: Artist
Description The system has to show information about the identification of

monuments.
Entry
parameters

The user must introduce the name of the monument.

Associated
functionality

FR-01: Introducing a new monument

Showed
information

SR-01.Name
SR-01.Address
SR-01.Image

Exit IR-02
Entry IR-03

Table 10. A non-functional requirement definition

NFR-01 Backups
Associated
objectives

OBJ-05: Get a safe system to manage monuments

Description The system must offer an automatic mechanism to do backups
and to recover the information when it is necessary.

Commentary This is a very important requirement because in this system there
is very important information

Again, we must identify each non-functional requirement with a unique identifier:
NFR-01, in this case. Moreover, we must indicate its associated objectives and give a
short description. In addition, we can indicate other commentaries about the
requirement.

3 Requirements Capture Document

To present results of the requirements capture workflow, the developer must do the
requirements capture document. Our methodology proposes a structure to this
document.

The first page of the requirements capture document must be a cover. The cover
must include the version, the name of the document and the date. If the organization
has a predefined cover, it can be assumed. Afterwards, an index, a figure index and a
table index must be include.

Table 11. Searching matrix structure

OBJ-01 OBJ-02 … OBJ-0n
IR-01 X X
IR-02 X
...
AC-01 X X
AC-02 X
...
FR-01 X X X
FR-02 X
...
IR-01 X X
IR-02 X
...
NFR-01 X
NFR-02 X
...

Fig. 3. The structure of the Requirements capture document

After these pages, the developer must include definitions of objectives and
requirements. Therefore, the developer has to write patterns of objectives, defined in
activity 1, patterns of storage requirements and new natures (activity 2). After these
patterns, patterns of actors and functional requirements (defined in activity 3 and 4)
must be included.

Afterwards, the developer has to describe interaction and non-functional
requirements, using patterns defined in activity 5 and 6. To finalize, the developer
must design a matrix. This matrix shows what objectives are associated to a specific
requirement. In table 11, we show the structure of this matrix.

To finalize, in figure 3 we show the structure of the requirement documents
following our proposition.

4 Conclusions

In this paper, we have presented our proposition to do the requirements capture
applying our idea to a real information global system in a public company.

This proposition has been applied to several real global information systems,
giving very good results. Using patterns to define system requirements and objectives
is a very interesting idea. Users who are not expert in computer science, understand
patterns easily. But patterns present complete and non-ambiguous information to the
developer, who can use them in analysis and design.

Nowadays, we are developing a proposition to do the analysis workflow in global
information systems. This analysis proposition is based on the requirements capture
presented in this paper. The use of patterns is a good technique to get the analysis
class diagram and interface prototypes cuasi-automatically.

Moreover, we are developing a tool which lets generate the patterns easily. Patterns
are structured, so it’s quite easy to introduce their information in a database, which
produce the requirements capture document automatically.

References

1. M.Bieber, R.Galnares And Q. Lu. Web engineering and flexible hypermedia.
The 2nd Workshop on Adaptative Hypertext and Hypermedia, Hypertext 1998.

2. G. Booch, J. Rumbaugh, I. Jacobson. Unified Modeling Language User Guide.
Ed. Addison-Wesley, 1999.

3. J. Conallen. UML Extension for Web Applications 0.91. Available in
http://www.conallen.com/technologyCorner/webextension/WebExtension091.htm .

4. O.M.F. De Troyer, C.J. Leune. WSDM: A User Centered Design Method for Web
Sites. Tilburg University, Infolab. 1997

5. Durán. Un Entorno Metodológico de Ingeniería de Requisitos para Sistemas de
Información. Department of Language and Computer Science. University of
Seville. September 2000. Available in http://www.lsi.us.es/~amador .

6. M.J. Escalona, J.Torres, M.Mejías. Propuesta de metodología para el desarrollo
de sistemas para el tratamiento de bibliotecas digitales. Internal Report, 2-2000.
Department of Language and Computer Science. University of Seville. Seville,
June 2000. Available in http://www.lsi.us.es/~informes .

7. M.J. Escalona. Metodología para el desarrollo de sistemas de información
global: análisis comparativo y propuesta. Department of Language and
Computer Science. University of Seville. Seville, January 2002. Available in
http://www.lsi.us.es/~informes .

8. F. Garzoto, D.Schwabe and P.Paolini HDM-A Model Based Approach to
Hypermedia Application Design. ACM Transactions on Information System, 11
(1), Jan 1993, pp 1-26.

9. T.Izakowitz, E.Stohr, P. Balasubramaniam: RMM:A methodology for structured
hypermedia design. Comm. Of ACM, October 1995, pp.34-35.

10. Jacobson. Modeling with use cases-Formalizing use-case modelling. Journal of
Object-Oriented Programming, June 1995.

11. Jacobson, G. Booch, J. Rumbaugh. The Unified Software Development Process.
Ed. Addison-Wesley, 1999.

12. D.B. Lange. An Object-Oriented Design Approach for Developing Hipermedia
Information Systems. Research Report RT00112, IBM Research, Tokyo
Research Laboratory, Japan, 1995.

13. H. Lee, C. Lee & C. Yoo. A Scenario-based object-oriented methodology for
developing hypermedia information systems. Processing of 31st Annual
Conference on Systems Science. Eds. Sprague R.

14. L. Mandel, A.Helmerich, L.A. Olsina, G.Rossi, M.Wirsing, N.Koch. Hyper-
UML. Specification and modeling of multimedia an Hypermedia Applications in
Distributed systems. August 2000.

15. J. Nanard, M. Nanard. Hypertext design environments and the hypertext design
process. Communication of the ACM, August 1995. Vol 38(8), 49-56. 1995.

16. L. Olsina. Building a Web-based information system applying the hypermedia
flexible process modeling strategy. 1st International workshop on Hypermedia
Development, Hypertext 1998.

17. O. Pastor, E.Insfran, V. Pelechano, J.Romero and J. Merseguer. OO-METHOD:
An OO Software Production Environment Combining Conventional and Forma
Methods. CAiSE’97. International Conference on Advanced Information
Systems, 1997.

18. G. Rossi. An Object Oriented Method for Designing Hipermedia Applications.
PHD Thesis, Departamento de Informática, PUC-Rio, Brazil, 1996.

19. Schwabe, D., Rossi, G.. An Object Oriented Approach to Web-Based
Applications Design. TAPOS – Theory and Practice of Object Systemss, vol. 4,
1998.

20. Schwabe, D. Rossi, G. A Conference Review System with OOHDM. 1st

International Workshop on Web-Oriented Software Technology. Valencia, Junio
2001.

21. W. Suh, and H. Lee, A Methodology for Building Content-oriented hypermedia
systems The Journal of Systems and Software, Vol. 56, 2001, pp. 115-131.

	Requirements Capture Workflow in Global Information Systems
	Introduction
	Getting Requirements
	Activity 1- To Define Objectives and the Environment
	Activity 2- To Define Storage Requirements
	Activity 3- To Define Actors
	Activity 4- To Define Functional Requirements
	Activity 5- To Define Interaction Requirements
	Activity 6- To Define Non-functional Requirements

	Requirements Capture Document
	Conclusions
	References

