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Abstract

Coalitional model predictive control for systems of systems

An aspect so far rarely contemplated in distributed control problems is the explicit
consideration of individual (local) interests of the components of a complex system. In-
deed, the focus of the majority of the literature about distributed control has been the
overall system performance. While on one hand this permitted to address fundamental
properties of centralized control, such as system-wide optimality and stability, one the
other hand it implied assuming unrestricted cooperation across local controllers. How-
ever, when dealing with multi-agent systems with a strong heterogeneous character,
cooperation between the agents cannot be taken for granted (due to, for example, logis-
tics, market competition), and selfish interests may not be neglected. Another critical
point that must be kept into consideration is the diversity characterizing systems of
systems (SoS), yielding very complex interactions between the agents involved (one
example of such system is the smart grid).

In order to tackle such inherent aspects of SoS, the research presented in this the-
sis has been concerned with the development of a novel framework, the coalitional
control, that extends the scope of advanced control methods (in particular MPC) by
drawing concepts from cooperative game theory that are suited for the inherent het-
erogeneity of SoS, providing as well an economical interpretation useful to explicitly
take into account local selfish interests. Thus, coalitional control aims at governing
the association/dissociation dynamics of the agents controlling the system, according
to the expected benefits of their possible cooperation. From a control theoretical per-
spective, this framework is founded on the theory of switched systems and variable
structure/topology networked systems, topics that are recently experiencing a renewed
interest within the community. The main concepts and challenges in coalitional control,
and the links with cooperative network game theory are presented in this document,
tracing a path from model partitioning to the control schemes whose principles delin-
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eate the idea of coalitional control. This thesis focuses on two basic architectures: (i)
a hierarchically supervised evolution of the coalitional structure, and (ii) a protocol
for autonomous negotiation between the agents, with specific mechanisms for benefit
redistribution, leading to the emergence of cooperating clusters.

Keywords: model predictive control, cooperative MPC control, cooperative game
theory, multi-agent systems, systems of systems, microgrid, smart grid, irrigation canals
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Chapter 1

Introduction

The evolution of information and communication technologies (ICT) has yielded means
of sharing measures and other information in an efficient and flexible way [1], increas-
ing the size and complexity of control applications [2]. At the same time, the im-
provements in the computational and communicational capabilities of control devices
have fostered the development of noncentralized control architectures, already moti-
vated by the inherent structural constraints of large-scale systems. Computer-based
control approaches such as model predictive control (MPC) are visible beneficiaries of
these advances and have registered a significant growth regarding both theoretical and
applied fields [3, 4].

Whether or not the system arises from the interaction of different entities, it is
generally possible to identify a set of coupled local control problems, often defining a
clear structure, that jointly configure the global one. Hence, the variables of a system
can be grouped to highlight weakly coupled blocks: within each block (usually des-
ignated as neighborhood) dynamic interactions propagate quickly, affecting the rest of
the system on a longer time scale [5]. In most cases centralized strategies do not ex-
ploit such structure, sometimes leading to unviable computational or communicational
requirements.

As a natural way of avoiding the dependence on unavailable information—as well as
to keep computational requirements at a minimum—it is desirable to formulate control
laws based exclusively on local information [6, 7]. Noncentralized control strategies seek
a tradeoff between performance loss and a scalable and flexible implementation [1].
In general, though, the stronger the interaction among different parts of a system,
the denser the communication required between the control agents—the extreme case
corresponding to a distributed solution of the centralized control problem [8].
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2 Chapter 1. Introduction

An extra degree of flexibility in the optimization of the computational and com-
municational requirements can be derived by the online identification of subsystems’
interactions and the consequent real-time adjustment of the control law structure. This
is the idea behind coalitional control, a novel theory inspired by cooperative games,
where the control strategy adapts to the varying coupling conditions between the con-
trollers, promoting the formation of coalitions—clusters of controllers that cooperate
in order to benefit from a jointly optimized control action. The adaptation of the
controller topology may be the result of a top-down architecture, that is, imposed by
a supervisor [9, 10, 11], or of a bottom-up approach [12], an autonomous coalition
formation process occurring between the control agents. In all cases, the outcome will
be a dynamically evolving coalitional structure of the overall controller.

Coalitional control focuses on the local interests that motivate the controllers to
assemble, an aspect so far rarely contemplated in the distributed control literature.
Indeed, although a well-defined global organizational objective may be present in large-
scale infrastructures, it is not uncommon for the individual components to show in-
terests that do not align with the global one [13]. The smart grid and the intelligent
transportation system are clear examples: a consistent research effort is being devoted
to the issues associated with their management, typically involving different game-
theoretic models in order to grasp the complex interaction phenomena produced by
their heterogeneous user population [14, 15].

This thesis presents the main concepts and challenges in coalitional control, and the
links with cooperative network game theory. In Section 1.1, a path is traced from the
issues related with model partitioning—a fundamental step in the design of distributed
controllers—to the solutions proposed in the literature whose principles delineate the
idea of coalitional control.
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1.1 Controlling large-scale systems: the path to
coalitional control

Consider a large-scale system described by the following discrete-time model:

x+ = f(x, u),
y = g(x),

(1.1)

where x ∈ Rn and u ∈ Rq are the global state and control input vectors, respectively,
constrained in the sets X and U , and y ∈ Rp is the vector gathering the outputs of the
system.

A standard practice is to implement controllers on top of an already defined plant’s
structure—usually following structural constraints and fault tolerance requirements.
This typically involves a prior partition of (1.1) into a set N = {1, . . . , N} of submod-
els, such that the essential dynamics characterizing the system are retained. Dynamic
interactions typically occur between adjacent subsystems: coupling effects sensed be-
yond neighboring subsystems are seen through intermediate subsystems. Hence, the
system’s topology appears as a fundamental guideline for the reduction of the over-
all information exchange, which represents a critical aspect of distributed cooperative
MPC schemes [8]. The problems of system partitioning and distributed control are
closely related. Coalitional control encompasses both of them, allowing the dynamic
partitioning of the system into cooperative components.

1.1.1 Model partitioning

Model partitioning consists in the assignment of subsets of the global state and in-
put variables to each of the agents involved in the control of a system, such that
x = (xi)i∈N ∈ Rn, u = (ui)i∈N ∈ Rq. According to the classification provided by [16],
the system decomposition can be either horizontal or hierarchical. The first type re-
lates to the physical structure of the system, while the second is based on the nature
of the process, its characteristic time scales, and the control objectives. Hierarchical
decompositions provide larger flexibility in shaping the controller to the heterogene-
ity of many large-scale systems—different sampling times, asynchronous operation of
the different parts [17, 5]. A general systematic methodology is hard to define due to
the manifold nature (subsystems’ interactions, time-scale, communication constraints,
privacy concerns) of controlled systems, so that ad hoc approaches are frequently im-
plemented.



4 Chapter 1. Introduction

Once the global model has been partitioned, each resulting subsystem i ∈ N is
assigned to a local control agent that has partial knowledge of the overall system, such
that its behavior can be described by

x+
i = fi(xi, ui) + wi,

yi = gi(xi) +$i,
(1.2)

where xi ∈ Rni and ui ∈ Rqi are respectively the local state and input vectors, con-
strained in the sets Xi and Ui respectively, and yi ∈ Rpi is the local output vector.
The vector wi ∈ Rni represents the measurable state disturbances resulting from the
coupling with other subsystems,

wi =
∑
j∈Mi

fij(xj, uj), (1.3)

whereMi , {j ∈ N \ {i} : ∃(xj, uj) ∈ Xj × Uj | fij(xj, uj) 6= 0} is referred to as the
neighborhood of subsystem i. Similarly, $i ∈ Rpi expresses the measurable disturbances
on the local output. Notice that neither the external state and inputs xj and uj nor
their relation fij with the local ones are known a priori by the local agent, eventually
inducing some modeling error due to possibly neglected state–state, input–state, or
input–output interactions.

In the search for the optimal structure of the control system, an important limit-
ing factor comes from the available computation and communication resources. For
instance, the excessive partitioning of the system may reduce the model size and hence
the computational requirements at each node, yet at the expense of an increased com-
munication load—which in turn limits the possibilities of a parallel implementation of
the control algorithm. Similarly, while a small sampling time allows to obtain a model
that reflects the actual structure of the system, it will result in high communication
rates between nodes, as well as in a shorter time available for computation [1].

Besides, more often than not, large-scale systems are characterized by multi-scale
dynamics—typically slower overall dynamics arising out of a group of subsystems with
fast dynamics. With specific attention towards the strong relationship between model
decomposition and sampling time, a structural analysis for decomposition is presented
in [1], oriented to the implementation of a hierarchical multi-rate estimation and control
architecture. In [18], the coupling structure of the plant is analyzed prior to the design
of feedback laws in order to decompose the model into hierarchically coupled clusters.
A two-layer multi-rate control for such hierarchical decomposition is proposed in [19],
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where information is exchanged at each time step within clusters of strongly coupled
subsystems, while a slower communication rate is required between different clusters.

The interaction among subsystems can be as well viewed as multiplicative output
uncertainty. In [20], the selection of best model partition within a given set of candi-
dates is based on their associated (open loop) uncertainty bounds. The implications
of system decomposition on robustness are investigated in [21]. The robustness of dis-
tributed MPC schemes characterized by different levels of knowledge of the non-local
dynamics of the system is evaluated by means of an H∞ index. The formulation of a
multi-objective mixed-integer nonlinear programming problem (MINLP) based on this
index allows to seek a tradeoff between global robust performance and the degree of
connectivity among agents (translated in terms of local interaction model coverage).
Given N subsystems, the MINLP considers N(N − 1) binary variables to choose the
structure of the controller over all possible connections among the subsystems. Simula-
tion results show how controllers characterized by dense connectivity are more sensitive
to errors in the interaction models. When these are affected by significant uncertainty,
a fully decentralized structure can provide higher robustness.

Several other methods have been proposed in the literature. In [22], the most
relevant variables of the system are controlled by a central coordinator MPC, and a set
of decentralized controllers complete the control action by responding to the inputs of
the coordinator. The work of [23] addresses the assignment of actuators to a given set
of controllers on the basis of two criteria, in order to achieve submodels of manageable
size for MPC control. The first is an open-loop criterion based on maximizing the
connectivity of the weighted graph representing the system, as an expression of the
Hankel norm resulting by the controllability and observability Grammians. The second
is a closed-loop criterion that aims at minimizing the performance degradation due to
model partitioning, measured through the MPC’s cost function. A method for the
derivation of a distributed model is suggested in [24], based on the Kalman canonical
form of the linear state-space model for each input-output pair [25].

An exhaustive study of the issues related to model partitioning for the decentralized
control of large-scale systems can be found in [6]. One contribution of [6] is that
of showing how graph theory methods are well suited to gain an insight about the
structural controllability and observability of large-scale systems, and employ these as
a basis for model decomposition. Graph theory methods have been as well employed for
the analysis of the impact of system topology on controllability and observability in [26,
27]. Based on graph partitioning is the work of [28], where a decomposition method
providing a set of non-overlapping subgraphs, with balanced number of vertices and
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minimal number of interconnecting edges, was developed. More recently, a threshold
on the Shapley value [29] of the potential communication links between the controllers
was proposed in [30] as a criterion for partitioning.

1.1.2 Cooperative control

We assume in the following that the objective of each local controller is to drive the
subsystem’s state towards the origin of the state space. The cost of subsystem i at any
given time step k is expressed by the stage cost `i(xi, ui). At time k, a control sequence
is derived by the solution of the MPC problem

min
ui

Ji =
Np−1∑
t=0

`i(xi(t|k), ui(t|k)) + Vi(xi(Np|k)) (1.4a)

s.t.
xi(t+ 1|k) = fi(xi(t|k), ui(t|k)) + ŵi(t|k), (1.4b)
hin
i (xi(t|k), ui(t|k)) ≤ 0, t = 0, . . . , Np, (1.4c)
heq
i (xi(t|k), ui(t|k)) = 0, t = 0, . . . , Np − 1, (1.4d)
xi(0|k) = xi(k). (1.4e)

The first element of the minimizer u∗i , [ui(0|k)∗, ui(1|k)∗, . . . , ui(Np − 1|k)∗] is applied
as input to the subsystem, and the problem is solved again at subsequent time steps
in a receding horizon fashion.

Notice that, in absence of measures from the rest of the system, an estimate of
the disturbance term (1.3) is employed in the solution of (1.4). For this reason, de-
centralized schemes generally require either assuming a priori bounds on the coupling
between subsystems, or considering worst-case interactions, resulting in a loss of per-
formance [1]. Communication between local controllers allows to achieve a visible
enhancement in the overall control performance; however, it is difficult to synthesize
a general result, due to the dependence on the particular scheme used [31, 32]. It is
essential that the communication serves as a means to reach a shared consensus—an
improvement over the decision that each agent would be able to make by relying merely
on locally available information. Once the model partitioning is given, the control by
means of a cooperative scheme requires to answer fundamental questions. We analyze
some of them in the following.
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How communication improves performance? According to the degree of self-
ishness of the objective function employed, two categories of controllers emerge in the
distributed MPC literature: noncooperative, where the agents pursue a local objective,
and cooperative, where the influence on the rest of the system, including how nonlocal
objectives are affected, is taken into account in the choice of the inputs locally applied
by each agent. More specifically, a global objective—consisting of a given (weighted)
combination of individual objectives—is optimized over local inputs ui, i ∈ N ,

min
ui

J =
Np−1∑
t=0

`(xi(t|k), ui(t|k), x−i(t|k), u−i(t|k)) + V (xi(Np|k), x−i(Np|k)), (1.5)

subject to (1.4b)–(1.4e) (subscript ‘−i’ designates all subsystems j ∈ N \{i}). Several
techniques can be applied to obtain feedback about the values of nonlocal variables
in (1.5): typically, controllers update these values over intermediate iterations, by di-
rect exchange or through Lagrangian multipliers.
The importance of cooperation among MPC control agents is underlined in [8]: the
exchange of information among subsystems provided with mutual interaction models
does not constitute a sufficient guarantee for closed-loop stability, due to the compe-
tition arising from the pursuit of conflicting objectives. Similar conclusions are given
by [33], showing that increased cooperation not always translates to a gain in perfor-
mance; indeed, in some cases it may even lead to a performance loss. This emphasizes
the importance of the criteria upon which the cooperation is based. In case that the
interests of local controllers diverge from the global benefit, a reward scheme may be
implemented at the supervisory layer in order to bring these interests as much in line
as possible [13].

Who should communicate with whom? The control agents communicate through
a data network whose topology can be described by means of the undirected graph
G = (N , E), where to each subsystem in N is assigned a node. Dependence of the
optimal topology E ⊆ N × N of the communication graph on the coupling between
the local control problems is expected. The answer can be derived from a case-oriented
evaluation of the performance deterioration due to the absence of communication be-
tween a given pair of local controllers. Control architectures for large-scale systems
typically include a supervisory level, which may act as a coordinator to set the neces-
sary information flows [13].
The sharing of information in a networked system can be represented through a knowl-
edge graph, where each node stands for the model of a given subsystem, and the edges
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indicate that the information about the models is available to the agents controlling
the pointed nodes. The connectivity and the degree distribution of such graph can be
interpreted in quantitative terms [34].
In [33], a graph representing the coupling between subsystems is updated at each time
step by identifying the constraints that were active at the previous time step. Then,
the cooperating sets are formed by those subsystems that are connected by a path in
the graph. Further control-related studies, such as [35, 36], focus on the PageRank
index, a variant of the eigenvector centrality measure, used to quantify the relevance
of nodes from a coalition formation viewpoint.

What information should be available to each local agent? The answer to
this problem depends on the coupling source and the type of distributed control strat-
egy that is implemented. In general, the need for information exchange is inversely
proportional to the coverage of the locally available information. In [37], the control
is performed by means of a (global) linear feedback law. A continuous exchange of
information is avoided by providing models of the coupled subsystems to each agent.
In the interval between broadcasts, these models are used to predict a local estimate of
the evolution of the neighbors’ state. In [10] the effect of input coupling is viewed—on
the grounds of the slow dynamics of the plant under study—as a constant disturbance
along the prediction horizon, which is then estimated with a Kalman filter. Usual
choices are the expected state and/or input sequences [38, 39], or auxiliary coordina-
tion variables such as prices [40] or sensitivities [41]. See also [42] for further details
regarding the information exchange in different schemes.
Regardless of the knowledge of the global dynamics that may be available to each agent,
the closed-loop behavior can range from stable and almost optimal, to unstable Nash
equilibria if conflicting objectives are pursued. This sensible difference in performance
is likely to be detected when dealing with strongly coupled subsystems [8].

How to deal with constrained communications? The system dynamics impose
limits on the time available to make agreements over cooperative decisions. Limitations
in bandwidth or in energy consumption, as well as communication delays or packet
losses concerning the data link infrastructure, need to be taken into account. Some
algorithms are more flexible than others in this regard, providing superior robustness to
delays or failures in communication. For example, the strategy presented in [24] admits
the injection of suboptimal control actions in order to relax the heavy communicational
requirement typical of iterative distributed schemes. Through a hierarchical design,
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this same strategy has been later extended to allow the asynchronous update among
different neighborhoods [5]. Another example of algorithms showing such properties
can be found in [39], where the robust tube feedback formulation admits steps with no
updates (by employing shifted input sequences).

1.1.3 Dynamic neighborhoods and coalitional control

The coupling among subsystems can be categorized over three classes. In presence
of dynamical coupling, a subsystem’s behavior may be influenced by the value of the
state and/or input of some other subsystems. Output coupling is a particular case
of state coupling. This class of coupling can be described as in (1.2)–(1.3). When
the system is characterized by constraints involving multiple subsystems, the coupling
is seen through the constraints. This wide class includes constraints on input and/or
state variables (such as physical limits of the plant or common-pool resources), and
constraints not involving physical limits but related with the objective functions of the
subsystems (for example, limited benefit within a free market with limited demand).
Such problems may be analyzed under a zero-sum games perspective. Notice that
constraint-coupled subsystems are not necessarily dynamically coupled. In this case,
constraints (1.4c)–(1.4e) take the form:

hin(x, u) ≤ 0, heq(x, u) = 0, (1.6)

where hin and heq cannot be fully decomposed into independent equations hin
i (xi, ui),

heq
i (xi, ui), i ∈ N .

Lastly, coupling can appear through the objective function: subsystems are part of a
larger interacting environment and, therefore, it is likely that external variables exert
some influence on their performance. These variables are usually related with the state
of other subsystems, and often express economic indices. Notice that this category
may overlap with the previous ones.

Broadly speaking, a neighborhood designates a group of agents whose control prob-
lems show appreciable coupling that can be sensed within a limited time delay. Al-
though the coupling structure may be fixed for a given system, in most cases the effect
of coupling fluctuates. At this point, a natural question is what to do when coupling
varies with time? Is it reasonable to consider time-varying neighborhoods?

Some distributed control schemes in the literature have already moved in this di-
rection. The notion of cooperating sets is employed in [33, 39]. Within any given
cooperating set, one subsystem at each time step locally computes optimal control ac-
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tions for all the subsystems involved in the set, even if only the results relative to that
subsystem are broadcast. The rationale behind computing such “hypothetical” non-
local control inputs is to optimize the individual strategy considering what others may
be able to achieve, so that cooperation is indirectly promoted among the agents. The
composition of such sets is updated according to a graph representing the active cou-
pling constraints. Interestingly, the results of [33] show that the optimal cooperating
set is not necessarily restricted to directly coupled subsystems.

In the distributed MPC scheme of [43], the cost incurred by each local controller is
dynamically adjusted to fulfill minimum local requirements, on the basis of situational
altruism criteria. On a similar line is the work of [44], where a flexible hierarchical
MPC scheme is proposed for a hydro-power valley, where the priority of the agents in
optimizing their control actions can be rearranged according to the different operational
conditions.

The work of [10] investigates the design of a hierarchical control scheme charac-
terized by some flexibility over the employ of the data network through which the
local control agents exchange information. The application on an irrigation canal is
considered as a case study. The design of an optimal communication topology and its
associated set of decentralized feedback control laws can be posed as a mixed-integer
problem. However, such formulation generally suffers from high computational com-
plexity as the number of control nodes and the possible communication links between
them grow. This issue is addressed through a two-layer greedy approach in [10], with
the aim of optimizing the data links usage and decomposing the global MPC problem
in small sized subproblems whenever possible. The goal of the supervisory layer is to
find the best compromise between control performance and communication costs by
actively modifying the network topology. The actions taken at the supervisory layer
alter the control agents’ knowledge of the complete system, and the set of agents with
which they can communicate. Each group of linked subsystems constitutes a coali-
tion, independently controlled on the basis of a decentralized MPC scheme managed
at the bottom layer. This feature is particularly interesting for communication infras-
tructures based on battery-powered wireless communication devices. The properties of
a multi-agent control scheme based on this same idea are discussed in [9], where the
time-variant relevance of the communication within a set of dynamically coupled linear
systems is analyzed using tools from cooperative game theory.

A different approach is found in [45], where the distributed MPC problem for
dynamically-coupled subsystems is analyzed under a dynamic bargaining game per-
spective. The formulation follows a few recent proposals in which the classic (static)
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bargaining theory has been extended to dynamic decision environments (see references
in [45]). These works focus on the coalition as the objective of the bargaining, as a
means of implementing a coalition-wide solution (the same for all members). However,
the application of the same control input by all the agents in a coalition is likely to pro-
vide poor performances—if not an infeasible strategy—in a controlled system. Filling
this gap, the work of [45] provides a distributed MPC formulation where cooperation
is subject to bargaining: an agent accepts to be part of a coalition only if a benefit
is foreseen over the performance expected by acting independently. Guarantees for
the satisfaction of a minimum individual performance are imposed by means of a dis-
agreement point, defined as the threshold of maximum allowed loss of performance in
case of cooperation. An agent’s disagreement point is decreased whenever it decides to
cooperate, and increased otherwise such as to foster a later participation; in this way,
the disagreement point tends to the optimal expected value of the objective function.

The recent advances on ICT, particularly the spread of wireless networks and cloud-
based applications, simplify the deployment of a communication infrastructure between
local controllers. The use of a distributed database of systemwide measures to achieve
a globally optimal, yet scalable, control is a promising line of research yet to be ex-
plored [1]. Nonetheless, when non-local information is critical for adequate global
feedback, issues derived by privacy-concerned subsystems not inclined to share local
models and/or state information need to be specifically addressed.

1.2 Coalitional MPC control

The distinct feature of such adaptive schemes, namely the rerouting of information
flows among changing sets of controllers, can be schematized by the dynamical graph
G(k) = (N , E(k)), where the time dependence of E(k) ⊆ N ×N reflects the possibility
to activate or shut down data links at any given time step k. A coalition is constituted
by establishing flows of information—a broadened control feedback—within a given
set of agents. The cooperation of the agents within a coalition can be carried out in
different ways: the agents can exchange whichever information is required to enhance
their performance by jointly solving the control problem—commonly state or output
trajectories, or planned input sequences. The flow of such information from agent i to
agent j is enabled by the activation of the associated link lij = {i, j} ∈ E .

The description provided by G(k) delineates a partition P(N ,G(k)) = {C1, . . . , CNc}
of the set of controllers into Nc connected components, referred to as coalitions [46].
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Coalitions are disjoint sets such that [47]

Ci ⊆ N , for all i ∈ {1, . . . , Nc}, and
Nc⋃
i=1
Ci = N .

The number of coalitionsNc pertains to the interval [1, |N |], whose extremes correspond
to the centralized control case (all the |N | subsystems connected) and the case where
each subsystem “forms a coalition” on its own (all links disabled). The dynamics (1.2)
of all subsystems relative to a given connected component i ∈ {1, . . . , Nc} can be
aggregated as

ξ+
i = Fi(ξi, νi) + ωi, (1.7)

with ξi , (xj)j∈Ci
, νi , (uj)j∈Ci

the aggregate state and input vectors, and Fi(ξi, νi)
the relative state transition function, describing the state and input coupling between
members of the same coalition. Finally, the vector

ωi = (w′j)j∈Ci
(1.8a)

gathers the disturbances due to the coupling with subsystems external to Ci. Follow-
ing (1.3) it holds that

w′j =
∑
r

fjr(xr, ur),with r ∈Mj \ Ci, (1.8b)

pointing out how, for each j ∈ Ci, the set of unknown coupling from neighboring
subsystems is reduced to the neighbors left out of the coalition. That is, from the
coalition standpoint, the uncertainty comes from any subsystems r ∈ (⋃j∈Ci

Mj) \ Ci.
Notice that in case of singleton coalition, i.e., Ci ≡ {i}, the description given by (1.7)
coincides with (1.2).

1.2.1 Objective of coalitional control

In the remainder, we refer to the stage cost extended to Ci ⊆ N as `i(ξi, νi). Although
the most straightforward example would be `i ≡

∑
j∈Ci

`j, the coalitional stage cost
can be formulated differently to exploit the added knowledge provided by cooperation.
One such example is provided in 3.6. Local controllers aggregate into a coalition with
the aim of coordinating the effort and achieving a better overall performance. At time
k, a control sequence for all subsystems j ∈ Ci is derived by the joint solution of the
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MPC problem

min
νi

Ji =
Np−1∑
t=0

`i(ξi(t|k), νi(t|k)) + Vi(ξi(Np|k)) (1.9a)

s.t.
ξi(t+ 1|k) = Fi(ξi(t|k), νi(t|k)) + ω̂i(t|k), (1.9b)
H in
i (ξi(t|k), ν(t|k)) ≤ 0, t = 0, . . . , Np, (1.9c)

Heq
i (ξ(t|k), ν(t|k)) = 0, t = 0, . . . , Np − 1, (1.9d)

ξi(0|k) = ξi(k), (1.9e)

Problem (1.9) is solved independently for each coalition Ci ∈ P(N ,G(k)). At time
k the first element of νi(k)∗ is applied to every subsystem involved in the coalition.
Given (3.1b) and (1.8b) we have

∥∥∥w′j∥∥∥ ≤ ‖wj‖ for j ∈ Ci; in words, since the effect of
unmodeled interactions on the dynamics of any subsystem is reduced by its participa-
tion in a coalition, an improvement of the associated performance index is expected.
Broadly speaking, provided the agents cost functions are linked, a prerequisite of coop-
eration is that the aggregate cost of the agents participating in a coalition outperforms
the cost that the agents would have achieved through noncooperative optimization,
that is, J∗i <

∑
j∈Ci

J∗j must hold. In case the cost function expresses economical
quantities, this translates in the availability of a surplus that can be split among the
members of the coalition.

1.2.2 Cost of cooperation

Cooperation may not come for free. First, as previously discussed, communication
may be constrained: a clear example is given by wireless networks, where the use of
the links can be restricted in bandwidth/duration to reduce the energy consumption.
In order to stimulate an optimal use of the network, it is reasonable to associate a cost
to any communication (including those performed for the obtainment of measures). In
some contexts, where privacy concerns are preponderant, the cost may also depend on
the identities of the transmitter and the receiver: some agents may be less prone to
exchange information than others. Besides, the coordination of a large number of agents
can become a problem itself because the computation and communication requirements
grow with the number of cooperating controllers involved. Therefore, costs required
for the cooperation of a given set of agents can be taken into account by means of
ad hoc indices related with the composition of the coalition or the data links needed
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in order to establish communication between every member of the coalition. Further
measures may be employed to evaluate cooperation costs, based on, for example, the
number of decision variables and/or constraints of the aggregate problem, reflecting
the computational requirements. For coalition Ci, cooperation costs can be expressed
as a function χi(ξi, νi, Ci, Ei(k)), where Ei(k) ⊆ E(k) is the subset of edges of the graph
G(k) connecting the nodes in Ci. Such cooperation costs can be assumed comparable
with the stage cost. We can thus modify what stated at the beginning of the previous
section in “local controllers aggregate into a coalition with the aim of coordinating
the effort and achieving the best tradeoff between the performance and the associated
cooperation costs”.

1.2.3 Global control problem

The overall control problem can be stated as

min
ν,E

∑
i∈SP

Ji(ξi(k), νi) + Jχi (E) (1.10a)

s.t.
ξi(t+ 1|k) = Fii(ξi(t|k), νi(t|k)) + ω̂i(t|k), (1.10b)
H in
i (ξi(t|k), ν(t|k)) ≤ 0 t = 0, . . . , Np, (1.10c)

Heq
i (ξ(t|k), ν(t|k)) = 0, t = 0, . . . , Np − 1, (1.10d)

ξi(0|k) = ξi(k), (1.10e)
E(t) ⊆ N ×N , t = 0, . . . , Np, (1.10f)
E(t) = E(0), t = 1, . . . , Np, (1.10g)

where SP = {1, . . . , Nc}, and

Jχi (E) =
Np∑
t=0

χi(t|k). (1.11)

Notice that, according to constraints (1.10f) and (1.10g), we assume the set of edges
E—hence the system partition P(N ,G)—constant during the prediction horizon t ∈
[k, k + Np]. Problem (1.10) constitutes a dynamic optimization with mixed integer
variables, which is generally not practical to solve. Since any given E corresponds to
a partition of the global system, the composition of the resulting coalitions’ state and
input vectors and matrices will implicitly depend on it. The choice of the network
topology is made within a discrete set whose size grows exponentially with the number
of subsystems.
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1.2.4 A game theoretical perspective

The role and properties of coalitions in multi-agent interactive decision problems have
been studied in game theory for decades. Great interest has been directed on the fair
allocation of benefit among the members of a coalition. Despite the intrinsic compu-
tational complexity, which hinders its use in real-time applications, some pioneering
works explored the use of coalitional game theory in engineering applications. Being
natural fields for the application of game theoretic analyses, wireless networks [48],
the smart grid [49, 14] and the recharge market for plug-in electric vehicles [50] have
received particular attention so far.

Formation of coalitions of controllers

The control agents can decide with whom to cooperate and under which conditions
(namely, the allocation of the payoffs derived from the cooperation). Such situation
can be modeled as a coalitional game, uniquely defined by the pair (N , v), where N is
the set of players and v is the value of a given coalition.

Coalition-formation games consider scenarios in which the network topology and
the cost for cooperation play a major role, such that the formation of a coalition is
not necessarily beneficial. The theory about coalition formation games focuses on
issues like: Which coalitions will form? What is the optimal coalition size? Which
methodologies can be employed to study the properties of the resulting structures?

Unlike the canonical form of coalitional games, where the fundamental assumption is
that cooperation always brings benefit, in coalition-formation games gains are limited by
the costs of forming a coalition. Thus, the value of the merger of two disjoint coalitions
can be worse than the sum of the coalitions’ separate values, that is, the superadditivity
property does not hold. Consequently, the grand coalition (the coalition containing
all the players) is seldom the optimal arrangement. Environmental changes—such as
variations in the number, relevance, or constraints of the players—can affect their
distribution over the coalitions. Coalition formation games can be classified in static
and dynamic. In the first case the objective is to study the structure imposed on the
coalitions by some external factor; the second category concerns the analysis of the
formation of coalitions arising by the interaction between the agents. The properties
of the resulting dynamical structure and its adaptability to the environment are object
of the research on dynamic coalition formation games. A monograph on this field can
be found in [51]. Unfortunately, the availability of formal rules and analytical concepts
is mostly limited to games in canonical form.
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Coalition formation involves three main steps. The first two are (i) generation of the
coalition structure and (ii) solution of the optimization problem for each coalition [52,
53]. Coalition formation is commonly studied in the form of characteristic function
games, where a value is assigned to any possible coalition C ⊆ N through a function
v : 2N → R. Given the graph G = (N , E) describing the associations among the control
nodes of the system, the value of a coalition structure P(N ,G) ≡ {C1, C2, . . . , CNc} is
defined as its aggregate value

V(P) =
∑
i∈SP

v(Ci), (1.12)

where SP = {1, . . . , Nc}. The optimal coalition structure P∗ is the one character-
ized by the highest value V∗. However, the problem of finding the optimal coalition
structure has been demonstrated to be NP-complete [52]. To overcome this issue,
several solutions—resorting to heuristics, dynamic-programming, branch-and-bound
algorithms—have been proposed in the literature (see [53, 9] and references therein).
Particularly interesting for control applications is the analogy first proposed in [9] be-
tween (1.12) and (1.10), which serves as the foundation for a hierarchical scheme that
manipulates the global controller structure (by decentralizing the feedback law over
coalitions of local controllers) with regard to both the current state of the system and
the communication cost. A similar architecture has been employed in the work of [10].

In characteristic form games, the value of a given coalition depends only on its
members, with no regard to how the rest of the agents are organized. Such model
does not apply to the vast majority of real life applications. Indeed, although games
in characteristic form provide a means of modeling a wide spectrum of scenarios, it is
natural in engineering applications to encounter problems in which the value of a given
coalition cannot be determined regardless of how the rest of the agents are organized.
Games in partition form can model this type of problems [54]. In these games, given
a partition P = {C1, . . . , Cl} of N , the value of any coalition Ci ∈ P is expressed
as v(Ci,P). However, it is not possible to derive a general closed-form allocation in
the considered setting. Nevertheless, in some cases the partition function game can
be approximated as a characteristic function game by assigning values to coalitions
following an heuristic approach: for example, if a minmax approach is employed, the
value of a given coalition will take into account the most unfavorable externalities
produced by any coalitional setup of the rest of agents.

Particularly interesting when global objectives do not take over local ones, the
third and final step consists in the (iii) distribution of the value of a coalition among
its members. The payoff φi is the utility received by each agent i ∈ C by the division
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of v(C); the vector of payoffs assigned to all the agents is referred to as the allocation.
A variety of payoff rules have been proposed in the cooperative game theory, such as
the core or the Shapley and Banzhaf values [55]. Of course, this third step is only
possible if the real value v(C) associated with coalition C ⊆ N can be divided and
transferred among its members (for instance, in the form of side-payments used to
attract players). Let us define J(j)

i as the quota relative to agent j ∈ Ci in the coalition
cost (1.9a). Notice that the solution of (1.9) does not imply any relation between the
cost J∗j achievable independently by any j ∈ Ci, and the cost J∗(j)i incurred through
its participation in the coalition. Provided a surplus is available, there exists a payoff
assignment function such that J∗(j)i ≤ J∗j is fulfilled for all j ∈ Ci. As first pointed out
in [56], the payoff allocation concepts developed for canonical games do not admit a
straightforward implementation in presence of a coalitional structure different from the
grand coalition. In the same work, the definitions of the core, the Shapley value and the
nucleolus were extended to static coalition formation games, by redefining the group
rationality concept with that analogous of relative efficiency. However, the results
clearly showed that the complexity of the problem grows noticeably when dynamic
coalition formation is considered, especially when the solution has to be computed in a
distributed manner [48]. This fact motivates the application-oriented solutions found
in the recent literature, such as [57, 51].

The essential steps of a coalitional control algorithm are summarized in Table 1.1.
To handle the combinatorial explosion problem, Steps 3a and 3b can be executed at a
lower rate as in [9]. Prior to the application of any change in the topology, theoretical
properties such as stability or robustness can be checked [58, 59]. Once the structure
of the coalitions is defined, local controllers belonging to a same coalition exchange
information to calculate the control actions using a distributed control scheme [42].
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Table 1.1: Steps of a coalitional control algorithm.

Step Level Function
1 Local Measure the state xi(k).

2 Local Evaluate performance Ji.

3a
(Top-down) Global

Supervisory layer gathers information of the controllers’
performance and evaluates alternative network topologies.
Changes in the topology are allowed only if the theoretical
properties of interest (for example, stability) are retained
after the switching.

3a
(Bottom-up)

Coalition +
neighbors

Collect information of the controllers involved in the coali-
tion and its neighbors and decide whether to enable or
disable links. Changes are allowed only if properties of
interest are retained.

3b Coalition Update the information about the structure and members
of the coalition.

4 Coalition
Exchange information with the rest of the members of the
coalition and calculate the control actions νi(k). No com-
munication takes place with other coalitions.

5 Local Implement ui(k). Go to step 1.
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1.3 Contributions of the thesis

An aspect so far rarely contemplated in distributed control problems is the explicit con-
sideration of individual (local) interests of the components of a complex system [60].
Indeed, the focus of the majority of the literature about distributed control has been the
overall system performance. While on one hand this permitted to address fundamental
properties of centralized control, such as system-wide optimality and stability, one the
other hand it implied assuming unrestricted cooperation across local controllers. How-
ever, when dealing with multi-agent systems with a strong heterogeneous character,
cooperation between the agents cannot be taken for granted (due to, for example, logis-
tics, market competition), and selfish interests may not be neglected. Another critical
point that must be kept into consideration is the diversity characterizing systems of
systems (SoS), yielding very complex interactions between the agents involved (one
example of such system is the smart grid).

In order to tackle such inherent aspects of SoS, the research presented in this the-
sis has been concerned with the development of a novel framework, the coalitional
control, that extends the scope of advanced control methods (in particular MPC) by
drawing concepts from cooperative game theory that are suited for the inherent het-
erogeneity of SoS, providing as well an economical interpretation useful to explicitly
take into account local selfish interests. Thus, coalitional control aims at governing
the association/dissociation dynamics of the agents controlling the system, according
to the expected benefits of their possible cooperation. From a control theoretical per-
spective, this framework is founded on the theory of switched systems and variable
structure/topology networked systems, topics that are recently experiencing a renewed
interest within the community. The main concepts and challenges in coalitional control,
and the links with cooperative network game theory have been presented in [61], tracing
a path from model partitioning to the control schemes whose principles delineate the
idea of coalitional control. The work of this thesis focused on two basic architectures:
a hierarchically supervised evolution of the coalitional structure [10], and a protocol
for autonomous negotiation between the agents, with specific mechanisms for benefit
redistribution, leading to the emergence of cooperating clusters [62].

The application of the hierarchical coalitional control architecture to an irrigation
canal case study has been presented in [63, 10, 64]. Like most public infrastructures,
water networks are geographically disperse systems, whose management requires a
trade-off among sectors in direct competition (agricultural, municipal, and industrial),
and whose different parts are often owned by independent entities. Permanent com-
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munication between the various control stations is impractical. Considering all these
factors, the study focused on the design of an MPC control scheme featuring flexible
structure. The approach relied on partitioning the global control law amongst a number
of local control agents, a common starting point in distributed architectures. The aim
was to adapt the partitioning to the varying coupling conditions between different parts
of the system, in an online fashion, promoting cooperation among clusters of control
nodes when clear benefits in the performance were foreseen. A two-layer architecture
was developed, where the information flow is manipulated by disconnecting data links
that do not yield a significant improvement of the control performance, compared with
their relative cost of use. This feature is particularly interesting, for example, when-
ever battery-powered devices are used for decentralized sensing and control, or when
such tasks are delegated to human-in-the-loop interventions. As a result, the system is
partitioned into coalitions working in a decentralized fashion. The work was validated
on a detailed model of a 45 km section of the Dez irrigation canal, implemented on the
hydrodynamic simulator SOBEK [10].

While in [10] the cooperation in the achievement of the global objective is not ques-
tioned, in [65, 62] it is assumed instead that the agents controlling the system base their
cooperation on the individual rationality criterion: they will be willing to cooperate
only if the expected individual benefit derived through cooperation exceeds the one
achieved through noncooperative control. Such individual rationality concerns have
been addressed in an autonomous coalition formation framework, where coalitions are
the outcome of an pairwise bargaining procedure, through which the structure of each
agent’s controller is adapted to the time-variant coupling conditions. Furthermore, the
distribution of the value of a given coalition among its components is addressed in [62]
by means of an iterative utility transfer scheme that compensates the dissatisfaction
of subset of members with respect to their currently assigned payoff. Such method
guarantees coalition-wise stability, provided that the set of stable allocations of the
associated transferable-utility (TU) game is nonempty.

The last part of the thesis shows the application of coalitional control for the man-
agement of fast charging stations for plug-in electric vehicles (EV). Pricing strategies
have been studied considering an open market scenario (analogous to common gas
stations), with offers by several competing parties (charging managers). In such a sce-
nario, the prices serve as incentive for EV drivers to deviate from their ideal route and
seek for the best battery recharging alternative. The coalitional control framework has
been employed to improve the performance of the charging managers on the market,
by joint strategy planning and subsequent benefit redistribution [66].
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1.4 Thesis outline

The thesis is organized in five chapters. After the introductory research outline pre-
sented before, chapters are described as follows.

• Chapter 2 addresses the hierarchical supervision of the cooperation structure
among the agents of the system. A two-layer coalitional control architecture is
presented: the cooperation structure is manipulated at the top layer according
to given collective objectives, whereas the bottom layer handles the real-time
control tasks, decentralized into the coalitions arising from the chosen cooperation
structure. The discussion is directed on two case studies. The first regards
the management of water distribution infrastructures, where the objectives of
the local control agents align with those of the whole system. Coalitions are
implemented as a means to change the cooperation topology to best fulfill an
overall efficiency objective. The second illustrates a smart grid scenario involving
a set of prosumers connected to the main grid and equipped with local generation
and storage devices. Prosumers can establish a local energy market running in
accordance to the coalitional control scheme, pursuing the minimization of the
cost of buying energy from the main grid while minimizing losses due to transfers
over the distribution lines. In this case, the prosumers are decoupled agents
with autonomous objectives: therefore, the cooperation here aims at the energy
loss reduction (collective goal) and at the maximization of individual economic
objectives.

• In Chapter 3, the assumption of the availability of an omniscient supervisor is
dropped. A protocol for autonomous negotiation between the agents is intro-
duced, based on pairwise bargaining over coalition formation. This protocol
provides a specific method for benefit redistribution, to specifically address indi-
vidual rationality (agents cooperate only if the expected individual benefit derived
through cooperation exceeds the one achieved through noncooperative control).
This method consists in an iterative utility transfer scheme that compensates
the dissatisfaction of subset of members with respect to their assigned payoff.
Coalition-wise stability is subject to the nonemptiness of the set of stable al-
locations of the associated transferable-utility (TU) game. A wide-area control
application for power grid, with the objective of minimizing frequency deviations
and undesired inter-area power transfers, has been considered to demonstrate
this second architecture.



22 Chapter 1. Introduction

• Chapter 4 shows the application of coalitional control for the management of
fast charging stations for plug-in electric vehicles (EV). The use of coalitional
control as a means to improve the performance of the charging managers on the
market is shown. By modeling the interaction of charging managers in an open
market scenario as a coalitional game, joint strategy planning and subsequent
benefit redistribution are evaluated. Pricing strategies are optimized in order to
incentivize EV drivers to deviate from their ideal route and seek for the best
battery recharging alternative.

• The thesis is finally concluded in Chapter 5 by an overview of the results with
last remarks about future developments and reserch challenges.



Chapter 2

Supervised coalition
structure generation

2.1 Introduction

Often different parts of a networked system are owned and managed by independent
entities (think about infrastructures), unwilling to coordinate their action unless strictly
necessary. In addition, permanent communication across the entire system network can
be impractical. Consequently, even when the whole system is owned and managed by
a single entity, the use of a traditional centralized control approach is hampered. This
motivates the two-layer hierarchical control scheme presented in this chapter. The basic
setting, introduced in Chapter 1.1, is reported here for the linearized case specifically
employed for the controller design. The proposed algorithm is an approximation of the
global problem (1.10) formulated in Section 1.2.3, for the generation of the optimal
coalitional structure according to (1.12).

The main goal of the supervisory layer is to find the best compromise between
control performance and coordination effort by actively modifying the cooperation
topology. The actions taken at the supervisory layer alter the control agents’ knowl-
edge of the complete system, and the set of agents with which each one of them can
communicate. Each group of linked subsystems—a coalition—is independently con-
trolled following a decentralized MPC scheme, constituting the bottom layer of the
architecture [10].

The basic idea is to partition the centralized problem over a given number of local
controllers or agents (see, e.g., [6]). The presence of a supervisor makes possible the
global design of a feedback control law, that may be structured in accordance to any

23



24 Chapter 2. Supervised coalition structure generation

given partition. By a global design, the satisfaction of certain global properties can be
guaranteed. Given such a feedback law, the cooperation of the agents can be realized
in two ways: (i) it can turn into an explicit exchange of local information (such as
interaction models, state measures, etc.) for the joint optimization of future input
sequences, or (ii) it can remain at the implicit level dictated by the globally-designed
control law.

A multi-agent control scheme based on the same basic idea is discussed in [9], where
a design method with closed-loop stability guarantees is provided. The optimization
of the data network topology, through which the agents establish cooperation links, is
regarded as a cooperative game in order to study the relevance of the different links and
agents (in view, e.g., of fault-tolerant policies) From this game-theoretical perspective,
the sequence of optimal network topologies is interpreted as a set of coalitions of links
that evolve in order to optimize the trajectory of the closed-loop system.

Among other related works is [33], addressing the formation of groups of coopera-
tive agents according to the coupling constraints that are active at a given time. [19]
describes a hierarchical framework where information is exchanged at each time step
within clusters of strongly dynamically coupled subsystems, while a slower communi-
cation rate is required between different clusters. In [67], the complexity of the MPC
control problem of the Barcelona drinking water network is reduced by means of a par-
titioning algorithm, controlling the resulting subnetworks in a hierarchical-distributed
manner. In [44] a flexible hierarchical MPC scheme is proposed for a hydro-power
valley, where the priority of the agents in optimizing their control actions can be rear-
ranged according to the different operational conditions.

The scheme presented here focuses on how the coupling between subsystems varies
with time [10, 61]. A cost on the coordination effort is considered according to several
possible criteria, such as the data link usage, the total number of agents involved in the
coalition, the number of decision variables and/or constraints of the aggregate problem,
reflecting the computational requirements [65], etc. In this way, the overall structure
of the controller evolves by trading off performance for savings on coordination costs.
As a result, coordination between agents is promoted whenever the undesired effect
of dynamic interaction between coupled subsystems (or the benefit of cooperative tra-
jectory planning in case of uncoupled systems) exceeds the threshold dictated by the
allowed cooperation costs.
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2.2 System description

2.2.1 Model

Consider a set N = {1, . . . , N} of interconnected systems. The dynamics of any
subsystem i ∈ N are described by the linear model:

xi(k + 1) = Aiixi(k) +Biiui(k) +Diwi(k), (2.1a)
wi(k) =

∑
j∈Mi

Aijxj(k) +Bijuj(k), (2.1b)

where xi ∈ Rni and ui ∈ Rqi are the state and input vectors respectively, and wi ∈ Rmi

describes the influence on xi of the neighbors’ states and inputs. In (2.1b), xj ∈ Rnj

and uj ∈ Rqj are the state and input vectors of each neighbor j ∈ Mi of subsystem i.
The neighborhood setMi is defined as:

Mi = {j ∈ N|Aij 6= 0 ∨Bij 6= 0, j 6= i} , (2.2)

i.e., it contains all the subsystems j 6= i whose state and/or input produce some effect
on the dynamics of subsystem i.

2.2.2 Exchange of information

The set of controllers can communicate through a network infrastructure described by
the undirected graph G(k) = (N , E(k)), where to each subsystem in N is assigned a
node, and E(k) ⊆ N ×N is the set of edges. The time dependency of E(k) reflects the
possibility to establish cooperation links at any given time step k. The description pro-
vided by G(k) delineates a partition P(N ,G(k)) = {C1, . . . , CNc} of the the set of control
agents into Nc connected components. As agents within the same communication com-
ponent will benefit from cooperation—sharing information in order to aggregate their
control tasks—we will refer to such components as coalitions, and the partition result-
ing by a given network topology E(k) will be denoted as P(N ,G(k)) = {C1, C2, . . . , CNc}.
The set of indices SP = {1, . . . , Nc} is defined as well.

2.2.3 Coalition dynamics

In order to describe the dynamics of each coalition Ci ∈ P, the following extension of
(2.1a) holds:

ξi(k + 1) = Aiiξi(k) + Biiνi(k) + Diωi(k), (2.3)
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where ξi and νi are respectively the state and input vectors of coalition Ci, composed
by stacking the vectors of all the subsystems in the coalition:

ξi = (xj)j∈Ci
, υi = (js)j∈Ci

, i ∈ SP,

As an extension of (2.1b), ωi expresses the influence on ξi of subsystems external to
the coalition Ci:

ωi = (w′j)j∈Ci
, (2.4c)

where (2.4d) replaces (2.1b), since, for each j ∈ Ci, the unknown coupling is that
relative to the neighbors left out of the coalition:

w′j =
∑
r

Ajrxr(k) +Bjrur(k), with r ∈Mj \ (Ci ∩Mj) . (2.4d)

That is, from the coalition standpoint, the uncertainty comes from any subsystems
r ∈ (⋃j∈Ci

Mj) \ Ci. Matrices Aii, Aij, Bii, Bij and Di are arranged in order to match
the composition of the state and input vectors.1

2.3 Control objective

We assume in the remainder that the objective of the controller is to drive the system’s
state toward the origin of the state space. The performance of the controller in this
task is measured by the MPC cost function

J =
Np−1∑
t=0

∑
i∈SP

(
ξᵀi (t|k)Qiξi(t|k) + νᵀi (t|k)Riνi(t|k) + ξᵀi (Np|k)Piξi(Np|k)

)
, (2.5)

where Qi ≥ 0, Ri > 0 and Pi = Pᵀi > 0 are constant weighting matrices. Costs
required for the cooperation of the coalition members are taken into account by means
of ad hoc indices related with the composition of the coalition or the number of data
links needed to share the feedback information. For coalition Ci, cooperation costs
are expressed as a function χi(Ci, Ei), where Ei ⊆ E is the subset of edges of the graph
G = (N , E) connecting the nodes in Ci. Such cooperation costs are assumed comparable
with the cost (2.5). Hence, the optimal cooperation structure for the system at a given
time step k, together with its associated global input, is obtained by the supervisor as

1In case of singleton coalition, i.e., C ≡ {i}, the description given by (2.3) coincides with (2.1).
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the solution of the following problem:

min
ν,E

J =
Np−1∑
t=0

∑
i∈SP

(
ξᵀi (t|k)Qiξi(t|k) + νᵀi (t|k)Riνi(t|k)

+ ξᵀi (Np|k)Piξi(Np|k)
)

+ χi(Ci, Ei(k)) (2.6a)

s.t.
ξi(t+ 1|k) = Aiiξi(t|k) + Biiνi(t|k) + Diωi(t|k), (2.6b)

ξi(t|k) ∈ Ξi, t = 0, . . . , Np, (2.6c)
νi(t|k) ∈ Ψi, t = 0, . . . , Np − 1, (2.6d)
ξi(0|k) = ξi(k), (2.6e)
ωi(t|k) = ω̂i(k + t), t = 0, . . . , Np − 1, (2.6f)
E(t) ⊆ N ×N , t = 0, . . . , Np, (2.6g)

where Ξi = X1 × X2 × . . .XNi
is the Cartesian product of the local state constraints

relative to each member of the coalition (an analogous definition holds for the input
constraint set Ψi). Since any topology corresponds to a partition of the global system,
the composition of the resulting coalitions’ state and input vectors and matrices will
implicitly depend on E . The choice of the network topology is made within a dis-
crete set whose size grows exponentially with the number of subsystems. As already
mentioned in Section 1.2.3, Problem (2.6) constitutes a dynamic optimization problem
with mixed integer variables (MINQP). Moreover, the predition model (2.6b) requires
the knowledge of (2.4c), describing the effect of possible coupling between subsys-
tems belonging to different coalitions. As previously motivated, one of the goals here
is to avoid such communication requirement. Next, we present a hierarchical multi-
agent control algorithm with lower computational and communicational requirements,
though a suboptimal solution is provided.

2.4 The control algorithm

The architecture of the proposed approximation of Problem (2.6) is organized over two
layers: the top layer takes charge of the choice of the network mode, whereas the bottom
layer handles the estimation and the real-time control tasks. At the bottom layer,
the control is decentralized into the coalitions arising from the optimal—according
to (2.6)—partition S∗P. With the term decentralized we designate the absence of com-
munication among different coalitions; agents within a coalition share their information
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at each sample time. Coalitions still communicate with the supervisor whenever re-
quired for the choice of a new topology. As a consequence, the term ωi in (2.6b), model-
ing the effect of neighboring coalitions, cannot be computed through (2.4c) and (2.4d),
and coalitions may need to use an estimate ω̂i. Issues related with such estimation
are case-related. For instance, as shown in the example in Section 2.5, inter-coalition
coupling can be viewed as a constant perturbation (so that suitable estimation tech-
niques can be used) if it shows relatively slow dynamics and transient phenomena can
be neglected. Next, details are given about the operation of the top layer.

The discrete part of Problem (2.6) regards the choice of the optimal controller
topology. This constitutes the most computationally demanding part of the problem.
For this reason it is handled at the top layer, and its solution can be computed on a
coarser time frame (w.r.t. the sample time Ts required for the low-level control of the
system), maintaining the resulting topology during the subsequent interval TE ≥ Ts. In
order to select the most appropriate global control structure, several network topologies
are compared. Let E+ = {E1, E2, . . . , ENE} be the set of candidate topologies. These
are evaluated through the function J : Rn × (N ×N ) 7→ R defined as follows [9]:

J(ξ, E) =
∑
i∈SP

ξᵀi Piξi + TEχi(Ci), (2.7)

for each E ∈ E+. Pi = Pᵀi > 0, derived as the solution of (2.8) described in the
following, and χi(coali) expresses the cost of coordinating the members of Ci, considered
over the interval TE . In the following, It is not pragmatic to see E+ as the set containing
every possible configuration of links. Because the number of all possible topologies
grows exponentially with the number of subsystems, the set E+ should be defined
as a reasonably sized set of relevant topologies for the system to be controlled. The
composition of E+ may either be static or evolving in relation with, e.g., the current
state of the system, the network constraints, or the willingness to cooperate among the
agents. Of all the configurations considered at a given moment, the one providing the
minimum value of (2.7), denoted as E∗ ∈ E+, is applied during the subsequent interval
TE .

According to any given topology E , the set of agents is partitioned into a given
set of coalitions P(N ,G(k)) = {C1, C2, . . . , CNc}. To attain the optimal performance
objective (2.5), a feedback gain K for the whole system is computed at the top layer. In
conformity with the partition P(N ,G(k)), K will be composed of a set of decentralized
feedback gains, each one associated to a coalition, i.e., K = diag(K1, . . . ,KNc).2 Given

2For the grand coalition, the feedback law K will coincide with the LQR gain.
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the block-diagonal matrix P = diag(P1, . . . ,PNc) > 0, consider the Lyapunov function
V (ξ) = ξᵀPξ, where ξ , (ξi)i∈SP is the global state vector, permuted according to the
partition P. V (ξ) will constitute an upper bound of the infinite-horizon performance
objective if the constraints of the following LMI problem are satisfied (see, e.g., [68]):

max
K,P

TrP−1 (2.8a)

s.t.
P = Pᵀ > 0, (2.8b)

(A + BK)ᵀP(A + BK)− P ≤ −Q−KᵀRK, (2.8c)

where A and B are respectively the global state and input matrices, rearranged to
match ξ and ν , (νi)i∈SP . Similarly, Q = diag(Qi)i∈SP ≥ 0 and R = diag(Ri)i∈SP > 0
are the global weighting matrices.

By the solution of (2.8), a set of feedback control laws νi = Kiξi that minimize
V (ξ) is obtained for all Ci ∈ P, along with the set of associated matrices {Pi}i∈SP .
These matrices are then used at the bottom layer in the formulation of the “local”
MPC controller associated to each coalition. The set of matrices {Pi}i∈SP is used to
determine the cost-to-go associated to a given topology in the computation of (2.7).

Remark 2.1. The evaluation of different network topologies is independent and can be
executed in parallel on a multi-processor platform. Also, the set of control laws associ-
ated with any network topology can be stored and reused whenever the same topology is
considered again, without the need of solving more than once the relative LMI problem.

Next, two study cases are used to illustrate the deployment of a top-down coalitional
architecture. The first one is an irrigation canal application (Section 2.5), where the
objective is to keep at a minimum the need for information exchange between sensors
and actuators located at different reaches. The second case study regards the formation
of coalitions among prosumers in a power microgrid (Section 2.6): there the objective
is to enable local energy transfers, allowing the grid users to access energy at more
competitive prices. From the grid operator’s standpoint, such a scheme allows to
prioritize the satisfaction of demand with locally available resources, thus reducing
long-distance transfer losses over the distribution lines.



30 Chapter 2. Supervised coalition structure generation

2.5 Illustrative case I: Coalitional MPC control of
an irrigation canal

This case study addresses water management in irrigation canals, a demanding task
which entails finding the right trade-off among different sectors in direct competition
(agricultural, municipal, and industrial) [10]. Since irrigated agriculture constitutes the
largest consumer of freshwater resources, the modernization of canal operation man-
agement can drastically improve water conservation efficiency and supply flexibility.
Moving in this direction, several advanced control strategies have been proposed over
the last decades (see, e.g., the survey [69] and references therein). In [70], an opti-
mal quadratic criteria is used to adjust the parameters of downstream level feedback
controllers. Different classes of controllers are considered, ranging from proportional-
integral (PI) controllers at each gate to centralized control. The improvement derived
from the communication of control actions among neighboring pools is also investi-
gated. In [71], the effectiveness of model predictive control in water systems is studied
and compared to classical feedback and feedforward strategies.

Among several challenging aspects regarding irrigation systems, geographical dis-
tance is one of the most interesting. Water networks are generally very disperse, and
often different parts of the system are owned by independent entities, expectedly unwill-
ing to coordinate their control actions unless strictly necessary. Moreover, permanent
communication between the various parts of the network can be impractical. Con-
sequently, the traditional centralized control approach is hampered, even when the
water network is owned and managed by a single entity. All these factors considered,
distributed control schemes can provide satisfactory solutions to the problem. Thus,
irrigation canals have become a popular benchmark to assess the performance of hier-
archical and distributed control schemes.

A survey of centralized and distributed MPC schemes for water systems is provided
in [72]. Moreover, the control of an irrigation canal by means of a distributed MPC
scheme based on an augmented Lagrangian formulation is investigated therein. The
work of [73] describes a receding-horizon optimal control problem for heterogeneous ir-
rigation systems, where the costs associated to water pumping and water losses and the
profits from power generation are considered. To reduce the computational complexity
and to conform to the system topology, the problem is decomposed following an aug-
mented Lagrangian formulation. A two-layer control scheme is proposed in [74], where
the top layer follows a risk management strategy to cope with unexpected changes in
the demand, failures or additional maintenance costs, and the bottom layer optimizes
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Figure 2.1: Longitudinal layout of the first 44 km of the west main canal of the Dez irrigation
network.

the values of water flows by means of a distributed MPC technique. A section of an
irrigation canal located in Spain is considered as case study.

Here we consider the control of water levels in a 44 km section (corresponding to 13
pools) of the west main Dez irrigation. Its longitudinal profile is shown in Figure 2.1.
Located in the south-west of Iran, near the city of Dezful, the Dez canal was designed
for the conveyance of irrigation water from a large dam on the Dez river to the irrigated
areas in the north of Khuzestan province. Constraints on both states and inputs are
considered, and local Kalman filters are used to estimate the dynamic coupling between
different coalitions, viewed as perturbations. The top-down coalitional control scheme
is tested on a detailed model of canal, implemented on the SOBEK hydrodynamic
simulator [75]. The results are compared to those obtained using a centralized MPC
controller.

2.5.1 Modeling the canal

Following the work of [71], where the implementation of model-based control tech-
niques on water systems has been examined, a discrete-time linear approximation of
the dynamics of the irrigation canal—namely the integrator-delay (ID) model [76]—is
considered here. The ID model [76] is commonly adopted in studies regarding the ap-
plication of advanced control strategies on water systems (e.g., [72, 77, 78, 79]) where a
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Figure 2.2: Simplified profile of a reach. The inflow qi(k) crosses the uniform flow section in
a time di. The flow qi(k−di) enters the backwater section inducing a change in the water level
hi(k). The water demand is qofftake,i(k), while qi+1(k) is the flow passing to the downstream
reach.

minimal order characterization of the response is critical for limiting the computational
complexity. According to this model, each canal reach is characterized as a transport
delay (uniform flow section) in series with an integrator (backwater section), where
the water accumulates maintaining an almost horizontal surface [80]. The scheme in
Figure 2.2 illustrates this idea. A change ∆qi of the inflow is regarded as a kinematic
wave traveling along the uniform flow section in downstream direction. The delay di
is the discretized time interval before ∆qi induces a variation in the water level hi in
the backwater section. This is considered as the reservoir of the reach, and constitutes
the integrator part of the model, characterized by its average storage area As,i. The
offtakes are usually scheduled in advance by the authorities in charge of the canal.
Nevertheless, in the controller formulation we consider the offtake flow as a measurable
disturbance qofftake,i(k). This allows us to show the effectiveness of the proposed control
scheme in an “on demand” operation, in which users can take water anytime without
any previous agreement with canal authorities.

The nonlinear dynamics of the system are not covered by this model. When reso-
nance waves play a dominant role—which is usual in short or flat pools at low discharge
rates—the closed loop system can become unstable. Common ways to deal with this is-
sue are, e.g., low-pass filtering, time-variant linear models, higher order models [81, 77].
For this study, the safety of operation regarding the amplification of resonance waves
has been studied beforehand. The considered canal section consists of long and steep
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pools; also, the two scenarios presented in the simulations feature high discharge rates.

Assumption 2.1. The gates are equipped with a local flow controller that manipulates
the opening of the gate in order to maintain the water flow at a reference value. If the
response of these local control loops is sufficiently fast, the only cause of unintended
coupling among adjacent reaches is the manipulation of the flow through a gate, that
will affect the water level in the upstream reach [76].

The most common technique used in primary irrigation canals, and considered in
this case study as well, is the distant downstream control. Following this technique,
the water level in the backwater section of a reach is controlled by manipulating the
opening of the upstream gate, physically located at the end of the upstream reach.
For example, in response to a decrease of the water level in reach i, the gate upstream
will open in order to restore it. From Assumption 2.1 it follows that this will produce
a direct unintended effect on the water level of reach i − 1. Notice that the water
discharge at the downstream gate in reach 13 (denoted as CR14 in Fig. 2.1) cannot be
manipulated by the controller.

For every reach, the following variables are considered:

• ei , hi − h̄i, the error w.r.t. the desired water level in the backwater section of
reach i;

• qi, the input flow to reach i.

In order to take into account the delay di along the uniform flow section, an augmented
state representation is used. From the ID model the following discrete linear time-
invariant model is obtained for each reach:

ei(k + 1) = ei(k) + Tc

As,i

[
qi(k − di)− qout,i(k)

]
,

qi(k) = qi(k − 1) + ∆qi(k),
(2.9)

with
qout,i(k) = qi+1(k − 1) + ∆qi+1(k) + qofftake,i(k),

where ∆qi is a component of the control action computed through (2.19), representing
the increment in the target flow of the local gate controller; As,i is the backwater surface
area, di is the discretized value of the transport delay and Tc is the sampling time.

The water levels are subject to an offset caused by the offtake flows and the dis-
turbance due to downstream reaches. The purpose of the proposed control scheme is
to maintain the water level of each reach around a fixed value (h̄i), that is, to regulate
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the level errors ei to zero, while minimizing the control effort and the number of active
network links.

For the description of the controller design, we restate the system model (2.9) as

xi(k + 1) = Aiixi(k) +Biiui(k) +Dw
i wi(k) +Dp

i pi(k), (2.10a)
wi(k) =

∑
j∈Mi

Aijxj(k) +Bijuj(k), (2.10b)

where xi ∈ Rni and ui ∈ Rqi are the state and input vectors respectively, pi ∈ Rli is a
measurable perturbation due to the offtake flow, and wi ∈ Rmi describes the influence
on xi of the neighbors’ states and inputs. In (2.10b), xj ∈ Rnj and uj ∈ Rqj are the
state and input vectors of each neighbor j ∈Mi of subsystem i. The augmented state
vector

xi(k) , [qi(k − 1), . . . , qi(k − di), ei(k)]ᵀ

is used in order to take into account the flow transport delay di. The measure of the
water level deviation ei(k) in the backwater section of the reach is available; the rest
of the state variables (water flow in different sections of the reach) are observable. The
variation of the flow entering the reach i, controlled at its upstream gate, is the input
ui(k) , ∆qi(k).

2.5.2 Coalition dynamics

The network topology reflecting the data links enabled between the control agents is
modeled by the graph G(k) = (N , E(k)). The coalition structure P(k) = {C1, . . . , CNc}
identifies the connected components—the coalitions—in G(k) (see Section 2.2.2). Fol-
lowing (2.3), the dynamics of each coalition Ci ∈ P are described as

ξi(k + 1) = Aiiξi(k) + Biiυi(k) + Dp
i ρi(k) + Dw

i ωi(k) (2.11)

where ξi and υi are composed by stacking the state and input vectors of all subsystems
in coalition Ci; similarly, ρi = (pj)j∈Ci

gathers all the offtakes relative to Ci. As in (2.4),
ωi expresses the coupling with subsystems external to the coalition. Matrices Aii, Aij,
Bii, Bij, Dp

i and Dw
i are composed accordingly.

2.5.3 Control objective

The control objective is to regulate the water level error of all the reaches to zero while
minimizing a cost that depends on the state and input trajectories. An additional term
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in the cost function will take into account the use of network resources.
In order to meet the objective, the offset caused by the offtake flows is canceled by

steering each coalition’s state to a suitable setpoint (ξ̄i, ῡi). By imposing the steady
state condition for all the coalitions, and setting the water level errors to zero, the
following system of equations is obtained: I −A −B

Γ 0

 ξ̄
ῡ

 =
 Dpρ(k)

0

 (2.12)

where ξ = (ξi)i∈SP and υ = (υi)i∈SP , i.e., the global state and input vectors permuted
according to the partition P(N ,G(k)). Similarly, A ∈ Rn×n and B ∈ Rn×q are the
permuted global state and input matrices. The offtake vector ρ = (ρi)i∈SP and Dp are
composed likewise. The matrix Γ ∈ RN×n is determined such that Γξ is the stacked
vector of the water level errors of all the coalitions, i.e.:

Γξ = (ej)j∈Ci
, ∀i ∈ SP.

For each coalition Ci, the cost function is divided into a term Ji, i ∈ SP, representing
the optimal performance objective and a term Jχi , expressing the network-related cost:

Ji =
Np−1∑
t=0

(ζᵀi (t|k)Qiζi(t|k) + νᵀi (t|k)Riνi(t|k)) + ζᵀi (Np|k)Piζi(Np|k), (2.13a)

Jχi =
∑
j∈Ci

Np
cl
2 nl,j (E) , (2.13b)

where ζi = ξi − ξ̄i and νi = υi − ῡi denote respectively the shifted state and input
of coalition Ci, and Qi , diag(Qj)j∈Ci

, Ri , diag(Rj)j∈Ci
and Pi = Pᵀi > 0 are

constant weighting matrices.3 In (2.13b), nl,j(E) is the number of active links directly
connecting agent j to other agents according to the network topology E . Note that
each agent shares the cost of a link with the agent located at the other side of that link.
Given the serial topology of the considered canal section, each agent is responsible of
two active links at most. The overall control problem can be posed as the following
receding-horizon optimization:

min
υ,E

∑
i∈SP

Ji(ξi(k), υi, E) + Jχi (E) (2.14a)

3In this example, the weighting matrix Qi only penalizes deviations of the water level.
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s.t.
ξi(t+ 1|k) = Aiiξi(t|k) + Biiυi(t|k) + Dp

i ρi(k) + Dw
i ω̂i(k), (2.14b)

and (2.6c)–(2.6g). Since coalition Ci has no knowledge of the states and inputs of
external subsystems, an estimate ω̂i of the perturbation they cause on ξi is performed
at each time step k, and its value is assumed constant along the prediction horizon
in (2.14b). Details are given in Section 2.5.4.

Remark 2.2. In typical canal operation, the offtake planning is typically made in ad-
vance, and the perturbation ρi(k+ t) can be known for the entire prediction horizon. In
this example, however, forecasts are not considered, so as to simulate an “on-demand”
operation. Therefore, a constant value of the offtake flow, corresponding to the current
measure, is maintained along the horizon.

2.5.4 The control algorithm

The hierarchical multi-agent architecture introduced in this chapter is proposed as an
approximation of problem (2.14), with the intent of reducing the computational and
communicational requirements of (2.14). Hence, problem (2.14) is split into two layers:
a top layer, taking charge of the choice of the network mode (see Section 2.4), and a
bottom layer handling the estimation and the real-time control tasks. A conceptual
diagram of the resulting coalitional MPC strategy is shown in Figure 2.3.

Figure 2.3: Functional diagram of the hierarchical coalitional MPC architecture applied to
the irrigation canal case.
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Top layer

The discrete part of Problem (2.14), namely the topology optimization, is computed
on a coarse time scale at the top layer. A set E+ = {E1, E2, . . . , ENE} of candidate
network topologies are compared, by defining their value as J : Rn×N ×N 7→ R (see
also [82]):

J(ξ, E) =
∑
i∈SP

ζᵀi Piζi + cl|E|TE , E ∈ E+, (2.15)

where Pi = Pᵀi > 0, |E| is the number of enabled links and cl is the cost of use of one
link, considered over the interval TE . In this particular case, at a given time k, the
set of topologies candidate for the interval [k + Ts, k + TE ] is formed by considering
the topologies derived by switching the current state of (at most) one of the links.4

To compute the value of (2.15), Problem (2.8) is solved and the block-diagonal ma-
trix P = diag(Pi)i∈SP , defining a global Lyapunov function V (ξ, E∗) = ξᵀPξ for the
(unconstrained) system is obtained. Of all the topologies considered, the one giving
the minimum value of (2.15), denoted as E∗ ∈ E+, will be applied during the next
interval TE . As a consequence of the chosen cooperation graph G(k) = (N , E∗), the set
of agents is partitioned into a specific set of coalitions P(E∗) = {C1, C2, . . . , C|Nc|}. To
each coalition is associated the feedback law υi = Kiξi, obtained as the minimizer of
V (ξ, E∗) by the solution of Problem (2.8).

Bottom layer

As schematized in Figure 2.3, the control is decentralized at the bottom layer into the
coalitions arising from the partition P(E∗), whose choice is carried out at the top layer.
Agents within the same coalition share their information at each sample time k. The
term ωi is related with the water demand in neighboring coalitions. Every coalition
gets an estimate ω̂i by a local Kalman filter, based on the available measures of water
level errors and current offtake flows. Given the slow dynamics of the system and the
steady nature of the offtake flows, transient dynamics can be neglected.

Remark 2.3. In general, inter-pool transient dynamics are not negligible. However, (i)
the system examined in the case study is inherently stable, and (ii) local flow controllers
are present at each gate. If the response of these local control loops is sufficiently fast,
the interaction between two adjacent pools reduces to a one-way perturbation [76].

Therefore, ω̂i is viewed as a constant integrating disturbance, included in the model
by an augmented state vector. Then, implementing a standard offset-free scheme for

4The new topology will be active starting from the next sample time.
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regulation [83], the agents steer their subsystems to an appropriate setpoint in order to
compensate for both the estimated disturbance and the offset caused by the measurable
offtake flows. Notice that any offset due to mismatches between the linear model and
the actual system will be also included in ω̂i. The Kalman filter also serves as an
observer for the values of water flows.

For any coalition Ci, the setpoint (ξ̄i, ῡi) is obtained by the solution of the linear
system:  I −Aii −Bii

Γi 0

 ξ̄i

ῡi

 =
 Dp

i ρi(k) + Dw
i ω̂i(k)

0

 (2.16)

where Γi is an output matrix defined such that Γiξi = (ej)j∈Ci
, i.e., the water level

deviations of all the subsystems in coalition Ci. Because of the estimation of ω̂i, the
setpoint computed through (2.16) is expected to change at each time step. Note that
when the topology is changed the Kalman filters structure changes as well, according
to the composition of the new set of coalitions. To avoid undesired drifts on the
computed value of the setpoint, a good initial guess of the state and the covariance
matrix is needed for each new coalition’s local filter. Past data, communicated by the
members of the coalition, can be used to initialize the Kalman filter.

The setpoint obtained by (2.16) may not satisfy the constraints. Therefore, Prob-
lem (2.17)—featuring the slack variable σi in the equality constraint—is solved to
obtain the nearest feasible setpoint (ξsi , υsi ) to (ξ̄i, ῡi)

min
ξs

i ,υ
s
i ,σi

(υsi − ῡi)ᵀRi(υsi − ῡi) + ξsi
ᵀQiξ

s
i + σᵀi Giσi (2.17a)

s.t.
(I −Aii)ξsi −Biiυ

s
i − σi = Dp

i ρi(k) + Dw
i ω̂i(k) (2.17b)

Hiξ
s
i > 0 (2.17c)

Ki(ξi(k)− ξsi ) + υsi ∈ Ui. (2.17d)

In (2.17), the input reference ῡi is the one obtained from (2.16); Qi and Ri are the
submatrices relative to coalition Ci (the same used for the optimal performance speci-
fication in the top layer); Gi > 0 is a constant weighting matrix, whose value has been
chosen such that the magnitude of the term σᵀi Giσi in (2.17) is comparable with the
rest of the cost function. Hard constraints are imposed on the water flows with (2.17c):
the product Hiξ

s
i is the vector composed of the flow values at each section of any reach

controlled by coalition Ci.
From the solution of Problem (2.8) (top layer) and Problem (2.17), the follow-
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ing controller is available for each coalition to regulate the subsystems to the desired
setpoint:

υi(k) = Kiζi(k) + υsi (k), (2.18)

where the shifted state is redefined as ζi = ξi − ξsi . However, feasibility cannot be
guaranteed with (2.18). Thus, the value given by (2.18) is “rectified” through the
solution of MPC problem (2.21), obtaining an additional input term:

υi(k) = Kiζi(k) + υsi (k) + υ′i(k). (2.19)

Possible issues related with the loss of feasibility are dealt with by considering physical
limits on the water flows as soft constraints. Restrictions on the input change rate are
formulated as hard constraints. By redefining the shifted input as νi = υi − υsi , the
cost function of the MPC problem solved at the bottom layer is derived from (2.13a)
as follows:

J′i =
Np−1∑
t=0

(
ζᵀi (t|k)Qiζi(t|k) + νᵀi (t|k)Riνi(t|k)

)

+ ζᵀi (Np|k)Piζi(Np|k) +
Np∑
t=1

εᵀi (t)Siεi(t) (2.20)

where Si > 0 is a constant weighting matrix for the slack variable εi, used to relax the
constraints on the flows. The optimization problem to be solved by coalition Ci at each
time step k is:

min
υ′i,εi

J′i(ζi(k), νi) (2.21a)

s.t.
ζi(t+ 1|k) = (Aii + BiiKi)ζi(t|k) + Biiυ

′
i(t|k) (2.21b)

Hi

(
ζi(t|k) + ξsi (k)

)
+ εi(t) > 0, ∀t ∈ [0, Np] (2.21c)

Kiζi(t|k) + υ′i(t|k) + υsi (k) ∈ Ui, ∀t ∈ [0, Np] (2.21d)
ζi(0|k) = ξi(k)− ξsi (k) (2.21e)

where the product Hi (ζi + ξsi ) = Hiξi gives the vector composed of the stacked water
flows at each section of any reach considered within coalition Ci.

A description of the proposed algorithm is provided below.

Algorithm 2.1. Coalitional MPC
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Step 1. Prepare a set E+ of suitable network topologies to be evaluated for their use
during the next interval TE , defined as a multiple of the sampling time at the
bottom layer.

Step 2. For each E ∈ E+ compute K(E) and P(E).

Step 3. For each E ∈ E+, estimate the steady-state effect due to neighbor coalitions as:

ω̂i(k) =
∑
j∈Mi

Aij ξ̂
s
j + Bij υ̂

s
j , ∀i ∈ SP,

where each pair (ξ̂sj , υ̂sj ) is the most updated setpoint available from coalition
Cj.

Step 4. For each E ∈ E+, solve (2.16) to obtain the setpoints (ξ̄i(k), ῡi(k)), ∀i ∈ SP,
using the value of ω̂i(k) computed at Step 3.

Step 5. Compute an estimate of the global cost with (2.7) and pick the network mode
E∗ that would give the minimum cost.

Step 6. Communicate each local feedback law Ki(E∗) and Pi(E∗) to the corresponding
coalition.

Step 7. Each coalition computes a setpoint (ξsi (k), υsi (k)) by solving (2.16) and (2.17).

Step 8. Each coalition solves (2.21) for υ′i(k), and the control action (2.19) is applied
to the subsystems in coalition Ci.

Step 9. By means of the local Kalman filter, each coalition obtains the estimate ω̂i(k+
1) ≡ ω̂i(k + 1|k) to be used during the following time step.

Step 10. Repeat Steps 7–9 during the interval TE , then go to Step 1.

2.5.5 Simulation model

A detailed simulation of the physics of the west main canal of the Dez irrigation network
has been performed using the SOBEK modeling suite for water systems. Based on
the WL|Delft Hydraulics implicit finite difference scheme [75], this software package
is currently developed at the Deltares research institute in the Netherlands. Design
parameters have been specified in order to accurately reproduce the canal dynamics:
path, cross-sections, layout of the canal network, type and width of gate, crest levels
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and discharge coefficients, upstream and downstream boundary conditions. All the
necessary information about the geometry of the canal and the hydraulic structures
has been obtained from the water authority of Khuzestan province. The boundary
condition at the head gate is a constant water level at its upstream side, while its
maximum discharge capacity is 157 m3/s. The model has been calibrated and validated
using real data relative to six months of operation [84], and has been further employed
in [79, 85].

2.5.6 Identification of the control model

The parameters of the ID model for the 13 reaches have been identified through sim-
ulations on the SOBEK validated model, and are given in Table 2.1. The transport
delay and the average storage area have been characterized while considering the canal
at steady state with an input amounting to 80% of the maximum inflow, and all the
offtakes at 80% of the maximum discharge capacity. The values in Table 2.1 refer
to the canal in this operational conditions. An additional identification of the model
parameters has been carried out for a medium discharge setting, namely 50% of the
maximum inflow and 50% of the maximum offtake. Since the parameters have demon-
strated little sensitivity to the change in the discharge regime, the dependence of the
parameters on the flow has been neglected. Furthermore, the implementation of an
offset-free method, together with the inherent robustness of the MPC, contributes to
the compensation of model-plant mismatches. The values in Table 2.1 have been used
throughout the scenarios presented in the next section.

2.5.7 Results

Two scenarios are analyzed in the following, reflecting the canal operation at medium–
high discharge regimes. In the first one, the water levels and flows are initially settled
for the supply of constant nonzero offtakes along the canal until four of the reaches
undergo a step decrease in their offtake flows, 360 minutes past the beginning of the
simulation (k = 72). The same situation is considered in the second scenario, with the
addition of a second step change—360 minutes after the first one (k = 144)—restoring
the offtakes to their former values. The variation of the offtake flows amounts to 10
m3/s at reaches 4 and 13, and to 5 m3/s at reaches 9 and 10, ranging from 20% to
100% of their initial magnitude. The simulation is meant to test the performance
of the proposed control scheme in rejecting the simultaneous changes in the offtakes,
keeping the water level at each reach around its corresponding reference. The exchange
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Reach Length
[m]

Width
(bottom)

[m]

Backwater
surface

(·105) [m2]

Delay
steps

1 6219 12 0.9318 3
2 1933 12 1.0952 1
3 3718 10 0.8554 2
4 3906 10 3.7060 2
5 2934 5 1.7095 2
6 4670 5 0.7786 3
7 3110 5 0.6661 2
8 2240 5 0.8904 1
9 3405 5 0.8671 2
10 3820 5 0.4897 2
11 2520 4 0.4032 2
12 2874 4 0.3820 2
13 2468 5 0.3884 2

Table 2.1: Parameters of the first 13 reaches of the west main Dez canal, identified at 80%
of the maximum discharge rate.

Symbol Description Value
Np Prediction horizon 10
Nc Control horizon 3
Qi Weight on the errors 250
Ri Weight on the flow increments 2800
Si Weight on flows < 0 (soft constr.) 104

c` Cost of an active link 0.6
Tc Sampling time [s] 300

Table 2.2: Parameters of the controller.

of information between different agents is enabled by the chosen network topology,
according to how the dynamic coupling between the reaches evolves with time (see
Section 2.5.4). In the simulations, the state of only one of the links is allowed to
change between any two subsequent choices of topology. Hard constraints are imposed
on the water flow increment at each gate, |∆qi(k)| ≤ 1 m3/s. Constraints on the
direction of the water flows, i.e., qi(k) > 0, are imposed as soft constraints. Table 2.2
lists the values of the controller’s parameters used for both scenarios. These values
have been tuned by trial and error, balancing the performance improvement with the
computational requirements (an initial guess for matrices Qi and Ri has been obtained
following the inverse-variance weighting method). The plots in Figure 2.4 refer to
Scenario 1. In the upper plot, the evolution of water level errors is shown. It can be
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seen how the sudden decrease in the offtake flows at time k = 72 causes the water
levels to rise above the desired setpoint, reaching in some pools a peak of 0.5 m.
In the bottom plot of Figure 2.4, bold segments indicate active links between the
corresponding agents. The agents in charge of the first four upstream reaches act jointly
when the disturbance occurs. This coordination allow to minimize the perturbation
on reach 3 (and consequently on reach 2 and 1) due to the recovery maneuver of the
agent in charge of reach 4.

During the transient response of the local flow controllers, the sudden variation of
the offtake flows produces an immediate perturbation in downstream direction. There-
fore, in order to improve the performance of the overall system, the agents are organized
into bigger coalitions while the effect of the offtakes’ variation is perceived. As the dis-
turbance is rejected, the data links are disabled and most of the agents continue to
control their reaches in a decentralized way. It can be seen that the coalition among
upstream agents is profitable and thus does not eventually disappear. One reason to
this might be the fact that, in the system under study, an accurate decentralized esti-
mation of neighbor’s state is not possible, and water levels at upstream reaches tend
to deviate from the setpoint as soon as their agents stop to communicate. This may
suggest that in an optimal partition of the overall system the upstream agents would be
part of the same coalition. Figure 2.5 shows the inflows qi(k) to the reaches. Starting
from time k = 72, the flows are reduced in response to the decreased offtakes in order
to bring the water levels back to their setpoints.

The results relative to Scenario 2 are shown in Figure 2.6. Before the offtakes
variation at time k = 72, the network topology changes to a decentralized configuration
while the water levels are kept at their setpoints. When the decrease in the offtakes
occurs, the system reacts by reducing the inflows (Fig. 2.7), while data links are enabled
in order to coordinate the operations along the canal. At time k = 144 the offtake flows
are restored, which is matched with an increase in the input flows. As the error in the
water levels is attenuated, downstream data links are disabled. Notice in the last part
of the simulation the persistence of the coalition among the upstream agents, and also
the coalition formed by agents 5 and 6, since the water level in reach 5 does not converge
to its setpoint. It can be seen in Figures 2.5 and 2.7 that the constraints on the water
flows are satisfied in both scenarios. Moreover, even without taking into account any
offtake forecast, the results achieved with the proposed distributed control scheme are
within the admitted range of canal operation.

For comparison, the performance of a centralized MPC controller in the same sce-
narios is shown in Figures 2.8 and 2.9. The centralized control law is computed as
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Coal. (·103) Centr. (·103)

Scn. 1 c` = 0 5.62 2.06
c` = 0.6 10.44 14.06

Scn. 2 c` = 0 9.36 3.89
c` = 0.6 14.80 15.89

Table 2.3: Comparison of the average costs of the proposed coalitional scheme and central-
ized MPC for the two scenarios.

n◦ dec. var. n◦ coal.
Scn. 1 5.6 8.2
Scn. 2 6.3 7.6

Centr. MPC 39 1

Table 2.4: Average number of decision variables for the decentralized MPC controllers at
the bottom layer, relative to both scenarios.

in (2.19), using the same parameters of Table 2.2 (except for the cost of active links,
which is null). The centralized controller can coordinate the response of the entire
canal to provide a faster reaction to the disturbance, which yields about 30% reduction
in the level error peaks.5 As expected, due to the absence of network topology switch-
ing with centralized control, a smoother response of the system is obtained. Table 2.3
displays a comparison of the average control costs of the coalitional and centralized
MPC schemes, for both scenarios. In Figure 2.10 the accumulated costs relative to
Scenario 1 are represented, evidencing the impact of communication-related costs in a
centralized framework. The average number of decision variables for the decentralized
MPC problems solved by the coalitions at the bottom layer is shown in Table 2.4, along
with the average number of coalitions.

5An exception to this is the water level in reach 13, as no further downstream reaches can be
employed to improve its response (the water discharge at the downstream gate in reach 13 cannot be
manipulated by the controller).



2.5. Illustrative case I: Coalitional MPC control of an irrigation canal 45

0 50 100 150 200 250
−0.2

0

0.2

0.4

0.6

W
at

er
 le

ve
l e

rr
or

s 
[m

]

Time steps

 

 Reach 1
Reach 2
Reach 3
Reach 4
Reach 5
Reach 6

 

 
Reach 7
Reach 8
Reach 9
Reach 10
Reach 11
Reach 12
Reach 13

0 50 100 150 200 250
1
2
3
4
5
6
7
8
9

10
11
12
13

Time steps

A
ge

nt
s

Figure 2.4: Scenario 1: At k = 72 reaches 4, 9, 10 and 13 undergo a step decrease in the
offtake flows. The upper plot shows how the controller regulates the water level errors along
the canal. Each bold segment in the bottom plot represents an active data link between two
control agents. Starting from a centralized configuration, links are deactivated one at a time
until the variation in the offtakes is sensed. Then links are enabled to form coalitions among
the most concerned control agents, until the disturbance is eventually rejected.
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Figure 2.5: Scenario 1: Water flows in input to each reach.
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Figure 2.6: Scenario 2: The offtake flows in reaches 4, 9, 10 and 13 undergo a step decrease
at k = 72, and are restored at k = 144. The upper plot shows the water level errors in all the
reaches. The use of data links between the control agents is represented by the bold segments
in the bottom plot. With the water levels at their setpoints, the network changes toward a
decentralized topology. In reaction to the offtake change, the control agents are organized
into coalitions to improve the overall response.
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Figure 2.7: Scenario 2: Water flows in input to each reach.
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Figure 2.8: Scenario 1: Water level errors with centralized MPC controller.
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Figure 2.9: Scenario 2: Water level errors with centralized MPC controller.
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Figure 2.10: Scenario 1: Accumulated costs comparison between the proposed coalitional
control strategy and a centralized MPC, w/ and w/o network costs.
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2.6 Illustrative case II: Microgrid

Smart grids constitute an exhaustive example of complex large-scale system. They
encompass advanced power, communication, control and computing technologies. In
such a heterogeneous domain the game theory finds natural applications, such as energy
markets and dynamic pricing. The potential of the integration of game theoretical tools
in the control of smart grids is discussed in [14].

In existing power systems, consumers are serviced by a main electricity grid that
delivers the power over the transmission lines to a substation which, in turn, delivers
the power over the low-voltage distribution network. One of the building blocks of
the smart grid is the microgrid, a network of distributed energy sources located at the
distribution side of the grid that can provide energy to a restricted geographical area.
It may operate either together with the main grid or in an autonomous fashion. Power
supply within microgrids is mainly based on small production from renewable sources
or combined heat and electricity generation. Microgrids can count storage facilities
(including electric vehicles’ batteries) and flexible demand among their resources as
well.

The service capacity of microgrids can be exploited to relieve the demand on the
main grid. However, the intermittent generation coupled with the unpredictable nature
of the demand implies that customers serviced by a microgrid may come to need extra
energy from other sources. Of course, this extra energy can be provided by the main
power grid. Nevertheless, the future smart grid is envisioned to encompass a large
number of microgrid elements. Whenever some microgrids have an excess of production
while others incur in a power shortage, a mutual exchange of energy can be beneficial for
both parties, instead of relying on the main grid. The advantage of a local exchange
is not limited to this: indeed, the energy transfer between nearby microgrids can
significantly reduce the amount of power wasted for long-distance transmission over
the distribution lines.

The aggregation of renewable-energy plants for their participation in the electricity
market is analyzed as a canonical coalitional game in [49]. The main objective is the
reduction of the variability in the production due to the unpredictability of renewable
energy sources, exploiting the decorrelation of wind speeds at separated geographic
locations. The focus is then on finding a fair mechanism for the allocation of the
benefit among the producers, which can alleviate the risk associated with market par-
ticipation. Intuitively, those individuals who contribute to a larger reduction in the
production’s variability should receive a greater share of the benefit achieved through
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the cooperation. The problem is solved in [49] through an approximated computation
of the nucleolus of the associated game, carried out as a single LP optimization that
minimizes the worst-case dissatisfaction for all possible coalitions.

In [86], a cooperative energy exchange game among micro-grids, with the objective
of minimizing line power losses, is formulated. The formulation involves the solution
of two subproblems: an auction matching game to find the pairs of suppliers and
consumers minimizing power losses, and a coalition formation game to establish the
coalitions. The rules proposed in [57], based on the Pareto order, are used to decide
whether to form or break coalitions. The results show that such cooperative energy
exchange mechanism has the advantage of improving the autonomy of microgrids with
respect to the main grid, as well as reducing the losses over the distribution lines by
promoting local energy trade among neighboring microgrids. The coalition structure
can be adjusted to meet variations in the demand/supply.

The coordination of demand and supply among communicating prosumers is ad-
dressed in [87] with the objective of alleviating the load on substations’ transformers.
The focus is on the routing of information about individual demand/supply availability
used for the estimation of the aggregate imbalance. The minimization of the energy
imbalance of the cooperating nodes—which translates in less energy required from
the main grid—is the objective of the control problem, whose distributed solution is
coordinated by means of Lagrangian multipliers.

2.6.1 Problem formulation: coalitions among prosumers in a
microgrid

Here we consider a set N = {1, . . . , N} of consumer nodes equipped with domestic
production systems such as solar panels and storage devices (see Figure 2.11). These
nodes, situated within a small area as shown in Figure 2.12, pertain to the distribution
layer of the grid, and are connected to the main grid through a substation. According
to the coalitional control algorithm described in the remainder, the nodes can aggregate
into coalitions. Inside each coalition, the power transfer is the result of an optimal
control problem, formulated such as to minimize the cost of buying energy from the
main grid for the entire coalition. Power losses over the distribution lines due to the
energy transfer between members of the coalition are added to the incurred costs (costs
of power losses from the main grid are not considered separately from the spot price).
It is interesting to see how, as a result of the application of the coalitional control
algorithm, the associations of nodes are reorganized according to the variations in the
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Figure 2.11: We consider a set of nodes connected to the main grid, equipped as well with
local generation and storage devices. These prosumers can establish a local energy market
by aggregating into coalitions, so as to minimize the cost of buying energy from the main
grid. Power losses over the distribution lines are added to the incurred costs. As a result of
the application of the coalitional control algorithm, nodes associate according to variations
in the local demand and supply, as well as to changes in the energy prices. The figure shows
the energy balance at each node.

Figure 2.12: Reciprocal location of the 8 prosumers considered in the example: the distance
between rows of houses is 0.5 km. This distance is taken into account for the losses in the
distribution lines resulting from the local energy transfer.
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Table 2.5: List of symbols employed in the description of the example.

Symbol Description Unit

d̄ Demand [kWh]
p̄ Generation output [kWh]
dgrid Energy bought from the grid [kWh]
pgrid Energy sold to the grid [kWh]
cgrid Grid spot price [CU]
vgrid Feed-in tariff [CU]
dcoal Energy bought from the coalition [kWh]
pcoal Energy sold to the coalition [kWh]
ccoal Coalition spot price [CU]
vcoal Coalition feed-in tariff [CU]
s State of charge of the storage [kWh]
∆s Increment in the storage level [kWh]

local demand and production, as well as to the changes in the energy prices.
Let us consider first the case in which the consumer nodes only rely on the main

grid. For any node i ∈ N , the energy exchange with the main grid is quantified by the
variable xgrid

i , representing the difference d̄i− p̄i between local demand and generation.
Whenever xgrid

i > 0, node i buys energy dgrid
i = xgrid

i from the grid—to fulfill the residual
demand that cannot be matched by its local production—at the spot price cgrid

i . In
case of local energy surplus instead, that is xgrid

i < 0, node i can sell energy pgrid
i to the

grid at the feed-in tariff vgrid
i . We assume that both generation and demand profiles

are deterministic, known beforehand within a 5-hour horizon. We also assume that the
tariff scheme implemented by utility companies is always such that cgrid

i (k) > vgrid
i (k).

The local availability of a storage device allows the agent some flexibility when facing
the spot prices imposed by the grid: the purchase and the sale of energy can be shifted
in order to benefit from more convenient prices. At this point, the control problem
individually addressed by each node would be (symbols are defined in Table 2.5)

min
ui

Np−1∑
t=0

cgrid
i (t|k)dgrid

i (t|k)− vgrid
i (t|k)pgrid

i (t|k), (2.22a)

s.t.
si(t+ 1|k) = si(t|k) + ∆si(t|k), (2.22b)
d̄i(t|k) + ∆si(t|k) + pgrid

i (t|k) = p̄i(t|k) + dgrid
i (t|k), (2.22c)

dgrid
i (t|k), pgrid

i (t|k) ≥ 0, (2.22d)
si(t|k) ∈ [0, si,max], t = 0, . . . , Np, (2.22e)
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si(0|k) = si(k). (2.22f)

The manipulable inputs are ui , [∆sᵀi ,d
ᵀ
i ,p

ᵀ
i ]ᵀ, where the bold notation indicates

a vector containing the values along the prediction horizon. The monetary amount
expressed by (2.22a) is the local balance of the energy exchange with the grid. Since
the problem is formulated as a minimization, a positive balance indicates the expense
required to buy energy from the grid, whereas a negative balance is the revenue from
feeding energy to the grid. Constraints (2.22b)–(2.22f) represent, respectively, the
dynamics of the storage, the energy balance at the node, the admitted values of inputs
and storage level, and the initial state of charge.

Problem (2.22) is now modified taking into account the possibility for two or more
nodes to agree over mutual exchange of energy, establishing a common pool of resources.
The local variable xcoal

i , dcoal
i − pcoal

i , whose components are the demand of energy to
the coalition and the energy transferred to its members, describes such exchange. The
objective function of the coalitional problem involves a component for the minimization
of the costs of energy exchange with the main grid, and an additional component
concerning the minimization of power losses due to transfers between members of the
coalition.

min
ν,C

ρcoal
∑
i,j∈C

Np−1∑
t=0

rij

(
xcoal
ij (t|k)

2

)2

+
∑
i∈C

Np−1∑
t=0

cgrid
i (t|k)dgrid

i (t|k)− vgrid
i (t|k)pgrid

i (t|k),

(2.23a)

s.t.
si(t+ 1|k) = si(t|k) + ∆si(t|k), i ∈ C (2.23b)
d̄i(t|k) + ∆si(t|k) + pgrid

i (t|k) + pcoal
i (t|k) = p̄i(t|k) + dgrid

i (t|k) + dcoal
i (t|k), i ∈ C,

(2.23c)∑
i∈C

pcoal
i (t|k) =

∑
i∈C

dcoal
i (t|k), (2.23d)

dgrid
i (t|k), pgrid

i (t|k) ≥ 0, i ∈ C, (2.23e)
si(t|k) ∈ [0, si,max], t = 0, . . . , Np, i ∈ C (2.23f)
si(0|k) = si(k), i ∈ C, (2.23g)
C ⊆ N , (2.23h)

where xcoal
ij is the interchange of energy among the pair of agents i, j ∈ C, and rij is

their relative Euclidean distance. The coalitional energy transfer dcoal
i − pcoal

i is taken
into account in the balance constraints (2.23c). Constraint (2.23d) expresses the zero
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sum energy balance of the coalition.

Given its complexity, problem (2.23) is approximated here by splitting it in two
subproblems, each one concerning one of the two components of the objective function.
So, for any C ⊆ N , the first subproblem is formulated as:

min
ν

J =
∑
i∈C

Np−1∑
t=0

cgrid
i (t|k)dgrid

i (t|k)− vgrid
i (t|k)pgrid

i (t|k), (2.24)

subject to (2.23b)–(2.23g). The resulting energy transfers are accompanied by energy
losses over the distribution lines. An approximation of their value is added to J as

Jχ = ρcoalr̂
∑
i∈C

(dcoal
i )2, (2.25)

where r̂ is a representative mean distance between every pair of coalition members,
and dcoal

i is the energy demanded to the coalition by agent i. Finally, the value v(C)
of any given coalition C ⊆ N (recall that v : 2N 7→ R is the function mapping any
possible coalition of agents into a real value) is defined as v(C) , J + Jχ, where (2.25)
represents the cost of forming the coalition.

Now, the second subproblem consists in finding the partition P = {C1, . . . , CNc} of
N such that the preference of every agent is satisfied according to the Pareto order.
In order to do this, individual payoffs within each possible subset of agents S ⊆ N
are first calculated as those defined by the Shapley value φS : R2|S| 7→ R|S|. Thus, for
i ∈ S:

φSi (v) =
∑

C⊆S\{i}

|C|!(|S| − |C| − 1)!
|S|! [v(C ∪ {i})− v(C)] . (2.26)

Note how the marginal contribution v(C∪{i})−v(C) is weighted by the probability for
any agent i of joining the coalition C ⊆ S \ {i}, in case the agents form the coalition S
in a random order: in this way, the value assigned by Shapley’s criterion corresponds
to the individual expected marginal contribution.

Once this step is accomplished, a mapping Φ : N ×2N 7→ R of the individual payoff
for each possible coalition the agent i ∈ N can participate in is available. At time step
k, Φ(i, C, k) defines the cost (or the benefit) incurred by agent i by participating in the
coalition C ⊆ N . Note that such payoff will coincide with the cost of energy exchange
with the main grid (Φ(i, {i}, k) ≡ cgrid

i (k)dgrid
i (k) − vgrid

i (k)pgrid
i (k)) in case the agent

does not participate in any coalition. On the other hand, if the agent is member of a
coalition, the equivalent price payed/earned on the coalition’s internal market can be
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Figure 2.13: Daily demand patterns considered in the simulations for the 8 nodes.

derived as:
ceq
i (k) , Φ(i, C, k)

xgrid
i (k) + xcoal

i (k)

[
CU

kWh

]
, (2.27)

where CU stands for currency unit. Such mapping provides each agent with a preference
order over the coalitions he wishes to join. Since any agent can be in one coalition at
a time (coalitions do not overlap), the agents will organize themselves into a partition
P∗ following the preference order dictated by Φ.

2.6.2 Results

The demand and generation patterns considered in the simulation are depicted in
Figures 2.13 and 2.14. Grid spot prices are shown in Figure 2.15, relative to the
purchase (top) and feed-in (bottom). The interval 7 a.m.–24 p.m. is considered in the
simulations. A time step of 1 h and a prediction horizon Np = 5 h are employed in
the optimization problem. We assume the possibility for each node to access the grid
with different prices, to emulate the presence of multiple utility companies. Notice
that this means that coalitions do not merely consist of a combination of nodes with a
surplus of power and nodes that are in need of additional power to meet their demand.
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Figure 2.14: Generation profiles considered in the simulations for the 8 nodes.
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Figure 2.15: Grid spot prices relative to the energy purchase (top) and excess of production
sale (bottom).
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Figure 2.16: Comparison of the accumulated costs incurred by each agent during the
entire simulated interval, over different scenarios: Grid only no coalitions, no storage; Grid
w/ storage local storage available; 10−5 ≤ ρcoal ≤ 5 · 10−3 coalitions with different costs for
power losses. The choice over which coalition to form is made on performances predicted over
an horizon Np of several time steps. In particular, the aggregate performance is evaluated,
and predictions are not required to be favorable at all time steps. However, nodes can change
their affiliation at each time step. This may lead to the accumulation of monetary losses.
This phenomenon becomes more visible as the penalty for energy losses ρcoal increases, since
it implies less stability of coalitions in time.

Indeed, nodes can make agreements to get access to the main grid through the more
advantageous tariff of another node. The evolution of the coalitions, under different
penalties ρcoal for energy losses, is shown in Figure 2.17. By recomputing the mapping
Φ(i, ·, k), agents can reconsider their affiliation at each time step. When costs for
local energy transfers are significant, coalitions typically involve a restricted number of
neighboring agents. On the other hand, big cooperating clusters form when penalties
for power losses are low. The costs incurred by the agents for the whole simulated
interval are shown in Figure 2.16. As expected, internal transfers’ power losses affects
the final result. The high costs for agents 6 and 8 with ρcoal = 10−5 can be ascribed
to the fact that they are mostly left out of coalitions, as can be seen in Figure 2.17d.
Furthermore, recall that the payoff mapping, and thus the decision whether to join a
coalition, is based on a forecast along the horizon Np = 5 h (see (2.24)). However,
since agents are allowed to join/leave coalitions every time step, possible monetary
losses taking place in the short term may accumulate (this issue is pointed out in [49]
as well). The realizations of the equivalent prices during the simulations are shown in
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Figure 2.17: Evolution of the coalitions among the nodes, under different penalties ρcoal for
energy losses. Nodes marked with the same color belong to the same coalition. Agents are
allowed to reevaluate their affiliation at each time step, by updating the preference mapping
Φ(i, ·, k). When costs for local energy transfers are significant, coalitions typically involve
a restricted number of neighboring agents. Conversely, big cooperating clusters form when
penalties for power losses are low.
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Table 2.6: Comparison of the average prices (in [CU/kWh]) paid by each agent. The figures
in the third column are the equivalent average prices relative to the coalitions’ internal market.
See how, in reference to the tariffs in Figure 2.15, both buyers and sellers are benefited by
the local energy market. Demand can be satisfied at prices lower than those offered by the
main grid, and supply gets better value on the local market.

Agent Grid only Grid only Coalitions
no storage w/ storage (ρ = 10−5)

1 0.0817 0.0787 0.0784
2 0.0813 0.0795 0.0603
3 0.0810 0.0782 0.0653
4 0.0812 0.0784 0.0620
5 0.0822 0.0797 0.0714
6 0.0805 0.0784 0.0745
7 0.0810 0.0776 0.0620
8 0.0810 0.0786 0.0798

Table 2.6. Comparing the average prices resulting by the coalitions’ internal market
with the grid tariffs in Figure 2.15, it is clear that the Shapley allocation benefits
both buyers and sellers. Buyers can access energy at prices more affordable than those
offered by the main grid, while sellers can achieve a higher profit on the local market.

In conclusion, local energy trade has been induced among consumers within a small
geographical areas through the implementation of a coalitional control scheme. Power
losses over the distribution lines can be taken into account in the coalition formation
mechanism. Naturally, the larger the number of agents participating in such scheme,
the higher the chance to match demand and supply among them, resulting in a higher
profitability of the coalitions.



Chapter 3

Autonomous coalition
formation

3.1 Introduction

Major challenges in control are in dealing with the increasing heterogeneity of net-
worked systems—possibly characterized by decentralized management, a certain de-
gree of autonomy of the parts and dynamic structure reconfiguration possibilities [88].
In such setting selfish interests may assume a dominant role, significantly influencing
the way systems are managed, and their resulting performance. This issue is especially
evident in public infrastructures, often co-owned by independent entities, and whose
management requires a trade-off among sectors in direct competition [2, 15].

This constitutes an impulse to new approaches to distributed control problems,
where the cooperation between networked controllers is actively fostered and adapted
in real-time to the state of the system, by characterizing the improvement provided by
a broader feedback information [89, 90].

Methods for the analysis of the relevance of the agents and data links involved
in the distributed control of a complex network system have been recently studied
by [91, 27, 26]. The structural information about the system provided by these meth-
ods allows the available control resources to be efficiently allocated, promoting spar-
sity in order to minimize computational and communicational requirements [92]. A
step further is the online identification of the optimal controller structure: besides ac-
commodating the controller requirements in real-time [93], such flexibility grants the
possibility of reconfiguring the system for improving robustness or fault-tolerance [94],
or even for featuring plug-and-play capabilities [95]. The notion of cooperating sets of

61
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controllers is employed in [33, 39]. At each time step, one controller locally computes
the optimal control actions for all the controllers belonging to the same cooperating
set. Although only the local input sequence is broadcast, the individual strategy is
optimized considering what others may be able to achieve, so cooperation is indirectly
promoted by favoring the best plans for everyone within the cooperating set. The com-
position of such sets is updated according to a graph representing the active coupling
constraints.

The work of [10] investigates the design of a hierarchical model predictive control
(MPC) scheme characterized by flexibility over the use of the data network through
which the local control agents exchange information. In particular, the sparsity pattern
of the overall MPC problem is dynamically adjusted so as to optimize the requirements
over the data link usage.

A cooperative distributed MPC scheme considering local objectives is presented
in [43]: the cost incurred by each local controller is dynamically adjusted to fulfill
minimum local requirements—through an online adaptation of the local objectives
priority along the Pareto front—on the basis of situational altruism criteria. In [44]
the hierarchy of the agents can be rearranged, adapting the order followed in the
optimization of the control actions to different operational conditions.

While in the aforementioned works the cooperation in the achievement of the global
objective is not questioned, we assume that the agents controlling the system base their
cooperation on the individual rationality criterion: they will be willing to cooperate
only if the expected individual benefit derived through cooperation exceeds the one
achieved by following a unilateral strategy (local control). To address such individual
rationality concerns we propose a new approach to coalitional control [61]. Coalitional
control extends the scope of advanced control methods (in particular model predictive
control) by drawing concepts from cooperative game theory that are suited for hetero-
geneous, competitive environments, also providing an economical interpretation useful
to explicitly take into account possible selfish interests.

In particular, a bottom-up approach to coalitional control is proposed here: coali-
tions are the outcome of an autonomous pairwise bargaining procedure, through which
the structure of each agent’s controller can be adapted to the time-variant coupling
conditions. This procedure follows ad-hoc criteria, formulated on the basis of both
cooperative control and game-theoretical fundamentals [8, 55]. We address the distri-
bution of the value of a given coalition among its components by means of a method
guaranteeing coalition-wise stability, provided that the core, i.e., the set of stable alloca-
tions, of the associated transferable-utility (TU) game is nonempty. More specifically,
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we formulate an iterative transfer scheme, local to each coalition, that redistributes
the benefit to compensate the dissatisfaction of subset of members over their assigned
payoff [96, 97]. If the value allocated in excess to the complementary subset of players
is not sufficient to compensate the demanded amount, the coalition divides.

Other recent works are contributing to bringing dynamical aspects into the coali-
tional TU games framework, conventionally developed for static decision environments.
A decentralized algorithm for benefit redistribution among cooperating agents is pro-
posed in [98]. The bargaining protocol is run on a time-varying communication graph,
and the resulting allocation is proven to converge to a stable one, that is, satisfying
all players. The work of [45] provides a cooperative MPC formulation where coopera-
tion is subject to bargaining. The satisfaction of a minimum individual performance
is imposed by a disagreement point, defined as the threshold of maximum allowed loss
of performance in case of cooperation.

The use of incentive mechanisms from game theory is being studied for traffic or
service demand reshaping [99], also in competing markets like electric vehicles (EVs)
recharge [50, 100]. In [53], self-organizing coalitions among EVs are considered as a
means to enhance the predictability of the vehicle-to-grid offer, by presenting a wider
energetic portfolio to the grid operator. Analogously, the work of [49] studies the
formation of coalitions among wind energy producers with the objective of reducing
the output variability in the aggregate offer, and so improve their expected profit. The
authors of [15] investigate how the equilibrium can be reached in an EV recharging
market whose actors are (coalitions of) charging stations and EV users.

The rest of this chapter is organized as follows: in Section 3.2.1 the control prob-
lem is stated, while the ingredients employed for autonomous coalition formation are
described in Section 3.3. Then, the bargaining protocol is presented in Section 3.4,
and its associated utility transfer scheme is discussed in 3.5. Finally, in Section 3.6,
this coalitional control architecture is demonstrated on a wide-area control application
for a power grid, with the objective of minimizing frequency deviations and undesired
inter-area power transfers.



64 Chapter 3. Autonomous coalition formation

3.2 Problem statement

3.2.1 System description

Consider a system that can be described as a set N of dynamically coupled linear
processes, each modeled by the following discrete-time state-space equation:

xi(k + 1) = Aiixi(k) +Biiui(k) + wi(k), (3.1a)
wi(k) =

∑
j∈Mi

Aijxj(k) +Bijuj(k), (3.1b)

where xi ∈ Rni and ui ∈ Rqi are respectively the state and input vectors of subsystem
i ∈ N , constrained in the sets Xi and Ui respectively. Indices j ∈ Mi designate
neighbor subsystems, i.e., those whose state and/or inputs influence the trajectory of
xi. The neighborhood set is defined as

Mi = {j ∈ N \ {i}|Aij 6= 0 ∨Bij 6= 0} . (3.2)

Models analogous to (3.1) have been employed for the control of real large-scale systems
such as drinking water networks composed of interconnected water tanks [67], irrigation
canals, modeled as integrator-delay cascades [76, 10, 72], supply chains [101, 38], traffic
networks and power grids [102].

Denoting the global state as x = (xi)i∈N ∈ Rn and the global input as u = (ui)i∈N ∈
Rq, the state evolution of the whole system of systems is governed by the following
equation

x(k + 1) = Ax(k) +Bu(k), (3.3)

where A = [Aij]i,j∈N ∈ Rn×n and B = [Bij]i,j∈N ∈ Rn×q.

3.2.2 Exchange of information

Each subsystem is governed by a control agent. Controllers can communicate through
a network infrastructure schematized by the graph G(k) = (N , E(k)), where E(k) ⊆
N × N is the set of links. The time dependence of E(k) reflects the possibility of
establishing cooperation links at any given time step k. From a global standpoint,
the description provided by G(k) delineates a partition P(N ,G(k)) = {C1, . . . , CNc}
of the set of controllers into Nc connected components, referred to as coalitions, such
that Ci ⊆ N , Ci ∩ Cj = ∅, ∀i, j ∈ {1, . . . , Nc}, i 6= j, and ⋃Nc

i=1 Ci = N [46, 103]. The
number of coalitions Nc pertains to the interval [1, |N |], whose extremes correspond to
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the centralized control case, and the case where each subsystem “forms a coalition” on
its own (| · | denotes the cardinality of a set). For the sake of readability, let us define
the set SP = {1, . . . , Nc} indexing the coalitions characterizing the current partition
of the system. The dynamics (3.1) of all subsystems relative to a given connected
component r ∈ SP can be aggregated as

ξr(k + 1) = Arrξr(k) + Brrνr(k) +$r(k), (3.4)

with ξr = (xi)i∈Cr the aggregate state vector, and Arr = [Aij]i,j∈Cr the relative state
transition matrix, describing the state coupling between members of the same coalition.
The vector νr and the matrix Brr are derived analogously. Finally, the vector

$r = {wi}i∈Cr (3.5e)

gathers the disturbances due to the coupling with subsystems external to Cr.1 Follow-
ing (3.1b) it holds that

wi =
∑
j

Aijxj(k) +Bijuj(k),with j ∈Mi \ Cr, (3.5f)

pointing out how, for each i ∈ Cr, the set of unknown coupling from neighboring
subsystems is reduced to the neighbors left out of the coalition. That is, from the
coalition standpoint, the uncertainty comes from subsystems j ∈ (⋃i∈Cr

Mi) \ Cr.

3.2.3 Control objective

A central point in this discussion is the assumption that the control agents act in
order to minimize their local stage cost (3.6) over a decentralized noncooperative MPC
architecture. In a game-theoretical perspective, this translates in considering rational
and selfish agents. The performance of each controller j ∈ N is measured through the
following stage cost:

`j(k) = (xj(k)− x̄j)ᵀQj(xj(k)− x̄j)
+ (uj(k)− ūj)ᵀRj(uj(k)− ūj), (3.6)

where the matrices Qj ≥ 0 and Rj > 0 weight the deviation of state and input from
their reference x̄j and ūj, respectively.

1In case of singleton coalition, i.e., C ≡ {i}, the description given by (3.4) coincides with (3.1).
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Cooperation is introduced within each connected component i ∈ SP through the
definition of the coalitional stage cost (3.7). The cooperation carried out by coalition
members j ∈ Ci may vary from a mere sum of local costs to a different cooperative
objective (as seen in the example in Section 3.6).

`i(k) = (ξi(k)− ξ̄i)ᵀQi(ξi(k)− ξ̄i) + (νi(k)− ν̄i)ᵀRi(νi(k)− ν̄i), (3.7)

where Qi and Ri are properly sized weighting positive (semi-)definite matrices.
At time k, a control sequence for Ci is derived from the (joint) solution of the MPC
problem2

min
νi

Ji =
Np−1∑
t=0

`i(t|k) + `f
i(Np|k) (3.8a)

s.t.
ξi(t+ 1|k) = Aiiξi(t|k) + Biiνi(t|k) +$i(t|k), (3.8b)

ξi(t|k) ∈ Ξi, t = 0, . . . , Np, (3.8c)
νi(t|k) ∈ Ψi, t = 0, . . . , Np − 1, (3.8d)
ξi(0|k) ≡ ξi(k), (3.8e)
$i(t|k) = $̂i(k + t), t = 0, . . . , Np − 1, (3.8f)

where `f
i(Np|k) denotes the terminal cost, and Ξi = X1 × X2 × . . .X|Ci| is the Carte-

sian product of the local state constraints relative to each member of the coalition (an
analogous definition holds for the input constraint set Ψi). The problem is solved inde-
pendently for each coalition Ci ∈ P(N ,G(k)): in case of absent/partial information ex-
change, the inputs and the state of neighboring agents are unknown and problem (1.9)
has to be solved over an estimated $̂i.

Remark 3.1. Notice that the estimation of $i may not be mandatory for local con-
trol purposes. However, our algorithm for autonomous coalition formation is based
on predicted outcomes. For this reason, an estimate of the influence of neighboring
subsystems is needed. In this work, in order to improve the reliability of the decisions
on coalition formation/split, the knowledge of the interaction model—exchanged by the
agents for the evaluation of a merger—is exploited in the algorithm. Details are given
in Section 3.3.2.

The minimizer of Ji over the prediction horizon of length Np in (3.8a) is the column

2Several algorithms are available for the distributed solution of (3.8), see e.g. [42].
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vector
νi , [νi(0|k) . . . νi(Np − 1|k)].

At time k the first element of the minimizing sequence is applied to every subsystem
involved in the coalition, i.e., νi(k) , ν∗i (0|k) ≡ (uj(0|k)∗)j∈Ci

, and (1.9) is solved again
at subsequent time instants in a receding horizon fashion [104, 105].

Assumption 3.1. The triple (Aii, Bii, Q
1/2
i ), ∀i ∈ N , is stabilizable and detectable.

Moreover, we assume that the dynamic interaction between subsystems is bounded such
as to allow the system to be globally stabilized through the solution of the decentralized
MPC problem defined by (1.9), with Ci ≡ {i}, ∀i ∈ N .

By means of the autonomous coalition generation framework considered in the
remainder, agents will be able to expand their knowledge of the rest of the system and
to jointly agree on the value assigned to the inputs.

3.3 Coalitional control

The scenario introduced in the previous section admits the establishment of a flexible
degree of cooperation over coalitions of agents. Cooperation within a controlled system
translates into better performances [8], at the expense of higher communicational and
computational requirements. In many cases, constraints on the use of such resources
have to be taken into account. For instance, the size of the control problem—also
related to the level of detail of the subsystems’ interactions model—may not be man-
ageable at some point because of, e.g., timing requirements imposed by the system
dynamics, constraints on the communication channel and/or on the available compu-
tation resources. It is expected that the effort required for the coordination increases
with the number of agents involved in a coalition. Costs incurred for cooperation
can be taken into account by means of ad-hoc indices related to, e.g., the size of the
coalition, the number of data links needed to establish communication between every
member [9, 10], their distance [61]. Whenever such costs are comparable with the stage
cost (3.7), the evolution of the overall controller architecture can be steered by trading
off control performance for savings on coordination costs.

The presence of an omniscient supervisor is not assumed here, and the cooperation
between two given parts is established autonomously, according to the dynamic behav-
ior of the system and to given agreements on the redistribution of the benefit achieved.
Two parties that commit to acting coordinately can at any time revert to the previous
state or extend the cooperation to other agents, allowing for a dynamically evolving
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coalitional structure.
From now on, the term player may refer to either a single control agent or a group

of agents that, as a consequence of their participation in the same coalition, act as
a single entity. In order to keep the notation simple, indices {1, 2} will be used to
designate the parties of the bargaining process for the formation of a (bigger) coalition;3

furthermore, the notation {1∪2} will refer to their merger. The subsystems involved
in either part of a given bargaining process are identified by the sets P1 ∈ P(N ,G(k))
and P2 ∈ P(N ,G(k)) \ P1. The set of merging subsystems will be designated as
P1∪2 , P1 ∪ P2.

Following the notation introduced in Section 3.2.2, the states and inputs of every
subsystem taking part in the bargaining process are gathered into the player’s state
and input vectors, defined as ξi , (xi)j∈Pi

, νi , (uj)j∈Pi
, where ξi ∈ Rni , ni = ∑

j∈Pi
nj

and υi ∈ Rqi , qi = ∑
j∈Pi

qj, i ∈ {1, 2}. Finally, the merger state and input vectors are
composed as ξ1∪2 = (ξ1, ξ2), ν1∪2 = (ν1, ν2).

Next, the objective is to establish a possible criterion for endogenous coalition
formation, oriented at dynamically-coupled networks of systems, featuring the redis-
tribution of the benefits derived from cooperation. Starting from a discussion of the
performance improvement offered by cooperative control, viewed as coalitional bene-
fit, we point out the issues of the absence of redistribution of such benefit from the
individual control agent’s standpoint. Then, we propose a solution based on the equal
division of the benefit between the players.

3.3.1 Evaluation of coalitional benefit

As mentioned earlier, the structure of each agent’s MPC controller is allowed to evolve
according to the time-variant coupling conditions of the system. Such evolution is the
outcome of a bargaining procedure over the formation of a coalition between any two
players. The bargaining is based on an index accounting for both control performance
and cooperation-related costs:

Ji =
Nb∑
t=0
`i(t|k) +Nbχi(k), i ∈ {1, 2, 1∪2}. (3.9)

The first term evaluates the stage cost (3.7) associated with either the merger or the
individual players’ over a bargaining horizon of length Nb. Since we assume the agents
free to switch their membership between coalitions at any given time step (coalition is

3The case of split will be considered later in this document.
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not binding for the entire horizon length Np), the possible outcomes of the bargaining
procedure can be evaluated over a shorter time slot, i.e., Nb ≤ Np. In the second
term, χi(k) = f(|Pi|, |Ei(k)|) expresses the cooperation costs for coalition Pi—assumed
comparable with the stage cost (3.7)—where Ei(k) ⊆ E(k) is the subset of edges of
the graph G(N , E(k)) connecting the nodes in Pi. Notice that for i ∈ {1, 2} the costs
expressed by χi involve only player i internal connections.

The predicted state and input sequences used in the computation of (3.9) are ob-
tained as solution of the MPC problem (1.9) for the three possible cost functions as-
sociated to i ∈ {1, 2, 1∪2}, where `i(t|k) is the stage cost (see Section 3.2.3) predicted
on the basis of the knowledge available within either set of agents Pi if i ∈ {1, 2} or,
in case of merger, the joint knowledge provided by P1 ∪ P2.

3.3.2 Joint benefit through cooperation

A necessary condition for the coalition P1 ∪ P2 to form is that its predicted cost (3.9)
outperforms the aggregate cost resulting from unilateral strategies:

J1∪2 ≤ J1 + J2. (3.10)

Remark 3.2. Any new coalition will be product of the union of two players, and thus of
all agents they involve. The present approach is based on the performance of the player
as a whole and not on that of its individual components. This approximation avoids
the combinatorial explosion of the possible configurations that would arise otherwise.
Local performance concerns are addressed later in this document.

Example 3.1. The procedure presented so far is illustrated on a simple example, which
will be utilized to set the point for further discussion as well. Consider a pair of agents
controlling two input-coupled unidimensional linear systems whose dynamics conform
to (3.1). In particular, the state trajectory xi ∈ R of the ith system responds to

xi(k + 1) = Aiixi(k) +Biiui(k) +Bijuj(k), (3.11)

for i, j ∈ {1, 2}, i 6= j. A11 = A22 = 0.99, B11 = 0.2, B12 = 0.4, B21 = 0.15
and B22 = 0.3; weights are chosen as Qi = 1 and Ri = 10, i ∈ {1, 2}. Inputs
are constrained to the interval Ui = [−0.2, 0.2]. The matrices relative to the merger
correspond to A1∪2 = diag(A11, A22), B1∪2 = [Bij]i,j∈{1,2}, and Q1∪2 = diag({Qi}),
R1∪2 = diag({Ri}), i ∈ {1, 2}. Cooperation costs are considered null.

We assume that both agents base their decisions over the unilateral strategies on
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Table 3.1: Example 3.1. Expected and actual costs.

J1 J2 J1 + J2 J1∪2

ûj ← min max 25.200 24.579 49.779 48.975
ûj = 0 24.405 24.284 48.689 48.975
actual 24 .992 24 .432 49 .424 48.975

the worst-case MPC cost, with prediction horizon Np = 1. Hence, the performance of
the merger (i = 1∪2) is evaluated through the solution of (1.9), whereas the following
problem is solved for i ∈ {1, 2} in order to evaluate the expected performance of the
unilateral strategies.

min
ui

max
uj

Np−1∑
t=0

`i(t|k) + `f
i(Np|k), j ∈ {1, 2} \ {i}, (3.12a)

s.t.
xi(t+ 1|k) = Aiixi(t|k) +Biiui(t|k) +Bijuj(t|k), (3.12b)

ui(t|k) ∈ Ui, t = 0, . . . , Np − 1, (3.12c)
uj(t|k) ∈ Uj, t = 0, . . . , Np − 1, (3.12d)
xi(0|k) = xi(k). (3.12e)

The figures in Table 3.1 are obtained from an initial condition x0 = (5,−5). The
first row reports the expected values, whereas the last row the costs actually achieved
by implementing the control inputs relative to each strategy. Since condition (3.10) is
fulfilled for the values in the first row of Table 3.1, the merger is formed.

Neglecting other players’ actions is generally not a reasonable option in such coupled
systems, since it means completely ignoring their effect—either beneficial or detrimental—
on the actual performance of the unilateral strategies. This may lead to mistakenly
considering these as the most profitable to implement. For instance, the second row of
Table 3.1 shows that condition (3.10) is not verified and the merger is rejected.�

At this point, it is clear that useful predictions can only be achieved if some knowl-
edge about the unilateral strategies is available to both parties. Different techniques
can be applied for their estimation (e.g., worst-case predictions, as in the example
above): this point, however, goes beyond the scope of the present work. Here, we pro-
pose exploiting the knowledge of the interaction model—communicated by the players
in order to perform the evaluation of their merger—in the optimization of unilateral
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strategies.4 Thus, unilateral strategies (νi, i ∈ {1, 2}) are evaluated by assuming that
the tails of previously obtained input sequences will be applied by the other player.
This means solving (1.9) over νi, for i ∈ {1, 2}, by replacing constraints (3.8b) with

ξ̂1∪2(t+ 1|k) = A1∪2ξ̂1∪2(t|k) + B1∪2,iνi(t|k)
+ B1∪2,j ν̃j(t|k) +$1∪2(t|k), (3.13a)

ν̃j(t|k) , ν∗j (t+ 1|k − 1), (3.13b)
ν̃j(Np − 1|k) , 0, (3.13c)

with j ∈ {1, 2} \ {i}. Then, recalling that ξ1∪2 , (ξ1, ξ2), the predicted evolution can
be separated into the components corresponding to either player.

3.3.3 Individual rationality

So far we have assumed that if an agreement is beneficial for the coalition then it is
beneficial for its members too. However, the premise here is that agents are rational
and selfish. Let

J
(j)
1∪2 ,

k+Nb∑
t=k

`
(j)
1∪2(t) +Nbχ

(j)
1∪2, j ∈ {1, 2}, (3.14)

be the quota relative to player j in the merger cost J1∪2. The stage cost `(j)
1∪2(t) in (3.14)

is the component of (3.7) relative to player j within the merger (i.e., relative to the state
and input trajectories obtained by solving the MPC problem (1.9) for i = 1∪2). The
value of χ(j)

1∪2 is a proper share of the cooperation costs. Notice that J1∪2 = J
(1)
1∪2 + J

(2)
1∪2.

It can be verified (by assuming, for simplicity, χ = 0) that

J1∪2 ≤ J1 + J2 6=⇒ J
(j)
1∪2 ≤ Jj, ∀j ∈ {1, 2}, (3.15)

which can be shown by referring again to the same couple of systems considered in
Example 3.1. The components of the merger costs therein are:

J
(1)
1∪2 = 24.271 < J1, J

(2)
1∪2 = 24.704 � J2.

Indeed, condition (3.10) is not sufficient to guarantee lower individual costs to both
players. On the grounds of individual rationality, a new coalition is formed if and
only if a secure benefit can be granted to their future members. In other words, the

4An analogous problem has to be addressed for the correct evaluation of the performance derived
from leaving a coalition. This issue is further discussed in Section 3.4.2.
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individual player’s payoff in the merger has to be at least equal to the one obtained
through a unilateral strategy. In particular, player j will accept participating in the
merger P1∪P2 if and only if the following individual rationality requirement is fulfilled:

J
(j)
1∪2 ≤ Jj, j ∈ {1, 2}. (3.16)

Notice that (3.15) can be extended to the individual members of any coalition.
Thus, even if cooperation allows the aggregate cost to be decreased, it can indeed
be unfavorable for some agents from the point of view of the locally incurred costs.
Hence, there is not a straightforward relationship between cooperation and individual
rationality—unless some means of transferring the value between (sets of) agents is
provided. In Section 3.3.4, starting from the assumption of transferable utility (TU),
specific criteria for the bargaining are given to provide the possibility of coalition for-
mation whenever individual rationality does not directly follow condition (3.10) for
both players. In Sections 3.4 and 3.5 we get at the individual agent’s level, addressing
the redistribution of the value of a coalition among its members.

3.3.4 Transferable utility

In the remainder we assume that (3.9) is defined so as to express an economic index.
Then, we consider the possibilities opened whenever a value equivalent to the surplus
achieved through the merger, i.e.,

Π = J1 + J2 − J1∪2, (3.17)

can be transferred between the players. The surplus expressed by (3.17) is defined as
a positive quantity, representing savings on control-associated costs. Essentially, the
recompense has to be valuable for the players, so its nature may vary. For example, it
may consist of a monetary amount, or a flow of (shared) resources across the system.
In such a scenario it is possible to fulfill condition (3.16) for both players by means of
a proper a posteriori redistribution of the utility between the players. We refer to this
as a transferable utility (TU) scenario.

Here we take a more abstract approach, and aim at reallocating the individual
control costs. It is worth emphasizing that such compensation is an a posteriori proce-
dure: first, the bargaining players agree on a given reallocation—based on the expected
performance—before incurring the actual control-associated costs; then, these actual
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costs are balanced out on the basis of the prior agreement.5

Remark 3.3. Only a prediction of the quantity expressed by (3.17) can be computed in
practice: following the outcome of the bargaining, either the realization of the merger
performance or that of the unilateral strategies can be measured. Value transfers cal-
culated over expected costs will be eventually converted into feasible ones, based on the
actual merger performance.

Let pj ∈ R designate the payoff assigned to agent j ∈ Pi, i ∈ {1, 2}, and pi =∑
j∈Pi

pj denote the aggregate payoff for a given player. If rational players come to an
agreement, they will agree on achieving the largest possible payoff, subject to ∑i pi =
J1∪2. Such joint agreement—referred to as cooperative strategy—will belong to the
Pareto front (where no allocation can make a player better off without making another
player worse off) [51, 106]. The values achieved with unilateral strategies, i.e., (J1, J2),
constitute the disagreement point: players would not accept an aggregate payoff pi =∑
j∈Pi

pj worse than their own disagreement point. It is worth to point out that the
following discussion addresses the problem at the level of the pair of bargaining players.
The final problem is to find a vector p ∈ R|P1∪P2| , (pj)j∈P1∪P2 ,

∑
j pj = J1∪2, i.e., a

reallocation of the control costs such that all agents in the merger are satisfied w.r.t.
individual and group (i.e., taking into account the outcome of possible subcoalitions)
rationalities.

A natural and straightforward solution for the allocation of the surplus between two
cooperating entities is the egalitarian redistribution. In particular, we assign to each
player an equal share of the surplus Π obtained by the merger, w.r.t. the disagreement
point, i.e.,

pi = Ji −
1
2Π. (3.18)

Geometrically, the allocation (p∗1,p∗2) corresponds to the midpoint of the line segment
connecting (J1, J1∪2 − J1) and (J1∪2 − J2, J2):

pi = 1
2 (J1∪2 + Ji − Jj) , (3.19)

for i ∈ {1, 2} and j ∈ {1, 2}\{i}.6 Since the formation of any coalition is conditional on
the subadditivity requirement (3.10), an efficient and individually rational allocation
is guaranteed to exist for the two-player case: Π > 0 if (3.10) is strictly satisfied, and

5Analogous to an a priori compensation can be considered, e.g., the distributed MPC scheme
proposed in [43] where, on the basis of situational altruism criteria, the cost incurred by each controller
is dynamically adjusted so as to fulfill minimum local requirements.

6Notice that (3.19) coincides with the Shapley value formula for a two-player game.
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the allocation computed through (3.19) always fulfills the following condition

p∗i < J∗i , ∀i ∈ {1, 2}, (3.20)

which corresponds to the individual rationality property for the player.7 It is easy
to see that the cost allocated over each player depends on the difference between the
expected performances of unilateral strategies (centered about a half of the merger
cost), and

Ji > Jj =⇒ pi > pj, i, j ∈ {1, 2}, j 6= i.

Finally, consider the situation prior to the utility transfer. Let J̌ (i)
1∪2 be the cost actually

incurred by player i ∈ {1, 2} within the merger. Note that ∑i J̌
(i)
1∪2 = J̌1∪2. The

expected payoff (4.6) is used to derive the quota of each player in the realization of
the compound cost J1∪2: once the merger performance is measured, feasible payoffs are
defined by assigning to each player a share pi/J1∪2 of J̌1∪2

pi = pi
J1∪2

J̌1∪2, i ∈ {1, 2}. (3.21)

Now consider the quantity pi− J̌ (i)
1∪2, i.e., the gap between the feasible payoff (3.21) and

the cost the player actually incurs. Recall that by efficiency of the allocation, we have∑pi = J1∪2. Also, by definition ∑i J̌
(i)
1∪2 = J̌1∪2. By subtracting these two equalities

we have
pi − J̌ (i)

1∪2 = −
[
pj − J̌ (j)

1∪2

]
, i, j ∈ {1, 2}, j 6= i (3.22)

revealing that one of the players is excessively benefited—according to the surplus
distribution dictated by (4.6)—following its participation in the coalition, whereas the
other player experiences the opposite situation. Thus, we can define a unique value for
the gap ε , |pi − J̌ (i)

1∪2|.
By the transferable utility assumption, we aim at compensating this gap in order

to incentivize the formation of a coalition between individually rational players. The
cost distribution dictated by (3.21) can be established by transferring a value τTU = ε

from one player to the other, i.e., J (1)
1∪2 ± τTU = p1 and J (2)

1∪2 ∓ τTU = p2.

Example 3.2. Consider the system defined in Example 3.1. The payoffs obtained by
applying (4.6) are displayed in Table 3.2. The costs incurred by the players are shown in
the first column of Table 3.2. The gap amounts to ε = 0.496 (predicted 0.527), meaning
that player 2 is penalized—prior to any value transfer—by participating in the coalition

7Recall that here we refer the term individual to the entire player coalition.
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Table 3.2: Example 3.2. Individual costs with merging and unilateral strategies.

J
(i)
1∪2 pi Ji

P1
predicted 24.271 24.798 25.200
actual 24 .271 24 .767 24 .992

P2
predicted 24.704 24.177 24.579
actual 24 .704 24 .208 24 .432

with player 1. Therefore, player 1 compensates player 2 by a transfer τTU = ε. Final
perceived costs are shown in the second column of Table 3.2. Costs incurred through
unilateral strategies are shown for comparison in the last column.�

So far, we have presented the TU framework for two-player bargaining, without
explicitly dealing with the case |Pi| > 1, i.e., with the redistribution of a player’s payoff
over the multiple agents composing its corresponding coalition. Next, we address the
coalition structure evolution due to the autonomous coalition formation within the
whole set of agents whenever |N | > 2.

3.4 Bargaining procedure

All players in pairs will perform, at given time intervals, a one-shot bargaining whose
outcome will decide the generation of new coalitions. At each round, all players avail-
able for bargaining have to be paired. It is worth to remark that the way the pairs are
selected may influence the final outcome of the coalition formation process [107].

3.4.1 Coalition formation

At time k, let the global set of agents N = {1, . . . , N} be partitioned into Nc ∈
{2, . . . , N} coalitions as defined by P(N ,G(k)) = {C1, . . . , CNc}. A pair of coalitions
P1,P2 ∈ P(N ,G(k)) is randomly selected. This procedure is performed over the re-
maining coalitions until all possible pairs of players are selected.8 It may occur that
the total number of coalitions Nc available for bargaining is not even: in this case, the
unpaired coalition will not participate in the bargaining (i.e., it will skip the round).

Assumption 3.2. The bargaining is carried on simultaneously by all players. Each
pair of bargaining players assumes that no further coalitions are being formed or dis-
rupted among the rest of players.

8Different methods can be employed, e.g., favoring big (or small) coalitions.
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Therefore, when evaluating the possible formation of coalition P1 ∪ P2, each pair
assumes that the rest of agents remain organized as they were at the previous time
step. Each pair of players verifies (3.10) before stipulating the agreement, following
Assumption 3.2 in the computation of (1.9). This means that potential changes of
configuration concerning subsystems external to P1 ∪P2 are not taken into account on
the estimate of the unknown coupling ω̂i. As pointed out at the end of Section 3.3.2,
in order to correctly ponder the outcome of unilateral strategies, tails of previous input
sequence are used in the bargaining.

In case the merger yielding (p1,p2) is approved, an initial payoff is assigned to each
agent j ∈ Pi, i ∈ {1, 2}, by equally splitting pj:

pj = 1
|Pi|

J1∪2, j ∈ Pi, (3.23)

Notice that the payoff allocation given by (3.23) is not necessarily stable in the coali-
tional sense: some agents may estimate more profitable to leave (or modify) the current
agreement. Requests for utility transfer within P1 ∪ P2 are checked over a number Ns

of randomly sampled subsets Cr ⊂ P1∪P2, r ∈ {1, . . . , Ns}. If some subset Cr of agents
is dissatisfied with the initial allocation, the iterative utility transfer scheme described
in Section 3.5 is performed in order to adjust (if possible) the allocation according to
their request.

3.4.2 Coalition disruption

While any coalition is formed through a bilateral agreement, an agent can leave it
unilaterally. If for a given pair the bargaining does not result into a merger, the
possibility of some subset of agents wanting to leave coalition Pi, i = {1, 2}, is checked.
The same is done when the current configuration corresponds to the grand coalition as
well, in that case the only (unpaired) player available.

Remark 3.4. In cooperative game theory, the coalition is viewed as a binding agree-
ment. In this work, the agreement is not binding over the prediction horizon. In order
to adapt to the time-varying system state, agents are free to change their affiliation at
any time step.

More specifically, over each one of the selected players, (i) a subset of agents C ⊂ Pi
is randomly chosen and (ii) the conditions for the unilateral exit of either C or its
complementary subset Pi \ C are checked. Keeping the same notation as before, we
refer to the above subsets of Pi by the indices {1, 2}. In particular, we define S1 = C,
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and S2 = Pi \ C. The whole coalition Pi will be designated by {1∪2}.
Either of the above subsets will want to leave the coalition if condition (3.20) is not

fulfilled. Consider, for instance, the case where J1 < p1: in order to reestablish the
individual rationality of p1, it may be possible to reallocate part of the benefit from S2.
However, since the agents in S2 have the option of leaving the coalition and achieve an
expected payoff p2 = J2, they will not accept to get past this value (the disagreement
point, as defined in Section 3.3.4). Hence, if J (1)

1∪2 − J1 > −(J (2)
1∪2 − J2), Pi will split

into two coalitions S1 and S2. As with merging, the process is simultaneous over all
players, so it is assumed that the exit of one or more members of a coalition does not
affect the decisions of other agents.

The split of Pi would result in a modification of the coalition structure (and of the
associated communication graph) such that Pi is replaced in P(N ,G(k+ 1)) by S1and
S2. Once the new coalitions are formed, the payoff allocation among the members of
Si, i ∈ {1, 2} is updated so that ∑j∈Si

pj = pi = Ji. This is done as in (3.23). After
the initial allocation is set, requests for utility transfer within Si, i ∈ {1, 2} are checked
over a random sample of subsets Cr ⊂ Si, r ∈ {1, . . . , Ns}. If some subset Cr is found
dissatisfied with the initial allocation, the iterative utility transfer scheme described in
Section 3.5 is performed on the player Si ⊃ Cr.

In contrast, if
J

(1)
1∪2 − J1 ≤ −(J (2)

1∪2 − J2), (3.24)

it is possible for S2 to compensate the dissatisfaction while maintaining some benefit
in participating in the coalition Pi = S1 ∪ S2. The utility transfer protocol aimed
at achieving a stable allocation of the coalitional benefit is discussed in the following
section.

Remark 3.5. Notice that either the randomly chosen C or Pi \C might not be included
among the allowed coalitions (for instance, they might not be significant due to the
topology of the system9). Given a feasible C, then the complementary subset may consist
of several feasible coalitions. If this is the case, the procedure described in this section
does not change, except the above conditions are verified for each of these coalitions.

Remark 3.6. As for coalition formation, the veracity of the unilateral strategies used
to evaluate the possible exit from a coalition is critically important. However, in this
case previous input sequence result from a joint optimization. For this reason, they
are not useful for correctly pondering the outcome of coalition split as done in (3.13).
Therefore, problem (1.9) is solved over several iterations—with constraints (3.13) re-

9One such example is considered in Section 3.6.
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placing (3.8b)—using the solution from the previous iteration as unilateral strategy
for the other player. In this way, the optimized inputs converge to realistic unilateral
actions.

3.5 Coalitional stability

For presentation simplicity, we refer in the remainder to the case where agents aim
at their individual payoff maximization. On grounds of rationality, any agent i ∈ N
will choose an allocation pi (associated to a coalition C ⊆ N ) over p′i (associated to
a different coalition C ′ ⊆ N ) if pi > p′i. As introduced in Section 3.4, a subset of
agents S ⊂ Ci ∈ P(N ,G(k)) may estimate that the benefit allocation ∑

j∈S pj they
are achieving while being part of Ci is worse than the overall value ∑j∈S p

′
j they could

achieve by playing as a standalone coalition. In this case, the agents in S will claim a
better individual payoff. If the required improvement can be provided by the rest of
the coalition Ci \S, i.e., if condition (3.24) is fulfilled, then a proper utility transfer can
be computed.

The joint benefit of coalition Ci has to be redistributed in order to satisfy such
claims: all agents external to the claiming subset, i.e., all j ∈ Ci \ S, must support
the demanded amount. After such an amount is transferred and the claim is satisfied,
a new demand may arise by a different subset S ′ ⊂ Ci of agents, giving rise to an
iterative process, that may be finite or not. We want the outcome of such a process
to be a stable allocation of the value of coalition Ci, i.e., an allocation such that all
agents j ∈ Ci have no incentive to leave the coalition. The set of such stable allocations
is designated as the core of the associated cooperative game. We begin by defining
a cooperative TU game restricted to the members of the coalition Ci, defined by the
pair (Ci, v), where v(·) is a characteristic function v : 2Ci 7→ R mapping each coalition
S ⊆ Ci to a real value. This value can be derived through the procedure described in
Section 3.3.

Remark 3.7. The reason for restricting the game to the members of Ci is the imprac-
ticability of computing values for the whole set N of agents, since that would require a
substantial exchange of information in order to compute the values of all 2N possible
coalitions through (1.9). For similar reasons, the value v(S) of any coalition S ⊂ Ci is
not computed unless the corresponding subset is selected as a player (see description of
the algorithm in Section 3.4).

The value of a coalition Ci ∈ P is divided among its members through a set of vector
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payoffs such that:

Vi ,
{
πi = (pj)j∈Ci

∈ R|Ci||
∑
j∈Ci

pj = v(Ci)
}
, (3.25)

satisfying the efficiency property w.r.t. the game (Ci, v). Now, a formal statement
of (3.22) is provided. Given a payoff πi ∈ Vi, the excess for any subset of agents S ⊆ Ci
is defined as

e(S, πi) = v(S)−
∑
j∈S

pj, (3.26)

with e(∅, πi) = 0. That is to say, the excess represents the difference between the value
the members of S ⊆ Ci can obtain by playing as the coalition S and the aggregate payoff
they achieve by participating in Ci, characterized by the allocation πi.

The set of allocations able to guarantee that no agent has an incentive to leave Ci
to form a coalition S ⊂ Ci is called the core. It can be defined with reference to the
excess as:

Oi = {πi ∈ Vi| e(S, πi) ≤ 0,∀S ⊆ Ci} . (3.27)

In other words, the core represents the set of allocations that cannot be improved
by any coalition S ⊂ Ci. Notice that all πi ∈ Oi fulfill individual rationality, i.e.,
pj ≥ v({j}), ∀j ∈ Ci, as well as group rationality, i.e., ∑j∈S pj ≥ v(S), ∀S ⊆ Ci. For
the purpose of the transfer scheme that will be presented next, we restate (3.27) in
terms of the demand made by the set of players S against an allocation πi [97].

Definition 3.1 (Demand). A demand against πi ∈ Vi is a pair (S, δi) where ∅ 6= S ⊂
Ci,10 and δi , (dj)j∈S is a vector satisfying

dj > 0, ∀j ∈ S, (3.28a)∑
j∈S

dj = e(S, πi). (3.28b)

A satisfaction to a demand (S, δi) against πi ∈ Vi is an allocation σi = (sj)j∈Ci

such that the agents in S ⊂ Ci get the same value v(S) that they expect to achieve
as a standalone coalition.11 The satisfaction of such demand requires an equivalent
amount—drawn from the rest of agents in Ci \ S—to be transferred.

Remark 3.8. Such utility transfer can be made by the rest of agents while keeping
e(Ci \ S, πi) ≤ 0 if the game is superadditive, i.e., v(S) + v(Ci \ S) ≤ v(Ci) for any

10Note that the demand for the grand coalition Ci is null by definition (since the excess is null).
11v(S) can be computed as described in Section 3.3.1.
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S ⊆ Ci ( subadditive if referred to (3.24)).

We consider here that the value of the demand is equally shared over the demanding
set of agents, and that such demand is equally supported by the rest of the agents.
More formally, for every agent j ∈ Ci,

sj =

 pj + e(S,πi)
|S| , if j ∈ S,

pj − e(S,πi)
|Ci\S| , if j ∈ Ci \ S,

(3.29)

where pj is the payoff assigned to agent j within coalition Ci by the allocation πi.

A transfer scheme is a sequence of allocation proposals π(t)
i , k ∈ N, such that

π
(t+1)
i , σ

(t)
i is a satisfaction to a demand against π(t)

i . Moreover, if there exists a t̂
such that for all t ≥ t̂ we have π(t)

i = π
(t̂)
i , the transfer scheme is finite, i.e., e(S, π(t)

i ) ≤ 0
for all t ≥ t̂ and all S ⊆ Ci. As discussed in [97], a transfer sequence based on (3.29)
guarantees convergence to Oi, provided it is not empty. Different transfer schemes are
possible [96].

Remark 3.9. Allocations produced in any intermediate iteration of the transfer scheme
may not satisfy individual rationality for the agents in the supporting set Ci \ S. We
assume that this is not an issue, as this constitutes a base for a new demand. Nonethe-
less, the distance to the core of any vector payoff σi produced by a transfer is bounded
and, under given circumstances detailed in the following, decreasing.

In order to clarify the convergence properties of a given transfer sequence, notice
that (3.29) can be stated in vector form as

σi = πi + e(S, πi)ζ(S, Ci), (3.30)

where ζ(S, Ci) ∈ R|Ci| is defined as

ζj =


1
|S| , if j ∈ S,

− 1
|Ci\S| , if j ∈ Ci \ S.

(3.31)

Then, for any Ci ⊆ N and S ⊆ Ci, there exists ζ(|Ci|), ζ(|Ci|) ∈ R such that ζ(|Ci|) ≤
‖ζ(S, Ci)‖2 ≤ ζ(|Ci|). Let S(t) ⊂ Ci be a subset demanding towards the allocation π(t)

i

at iteration t. According to the transfer scheme described above, v(Ci) is reallocated
as π(t+1)

i = π
(t)
i + e(S(t), π

(t)
i )ζ(S(t), Ci). Then, there exists ε > 0 such that

e(S(t), π
(t)
i )‖ζ(S(t), Ci)‖ = ‖π(t+1)

i − π(t)
i ‖ ≤ ε, (3.32)
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since any allocation obtained along the transfer sequence belongs to Vi, which is a
closed set. Taking into account the boundedness of ‖ζ(S, Ci)‖2,

e(S(t), π
(t)
i ) ≤ ε

ζ(|Ci|)
. (3.33)

At this point, if at all steps

e(S(t), π
(t)
i ) = max

S⊂Ci

e(S, π(t)
i ), (3.34)

there exists t̂ such that, for all t ≥ t̂, (3.32) holds. By making ε arbitrarily small, it
can be concluded that e(S, πi) ≤ 0, i.e., πi ∈ Oi. However, due to the reasons detailed
in Remark 3.7, it is not viable to look for the S ⊂ Ci characterized by the maximum
excess in the considered framework.

So far we have shown the boundedness of the allocations computed in order to
satisfy demands from a given subset. A result from [108] allows us to demonstrate
that, if the core of the game is not empty, the distance of the allocations obtained by
the transfer scheme gets smaller at each iteration, relaxing (3.34) as

0 ≤ e(S(t), π
(t)
i ) ≤ max

S⊂Ci

e(S, π(t)
i ), (3.35)

which is always the case in the procedure described in Section 3.4. More formally, let
Oi 6= ∅, πi ∈ Vi and S ⊂ Ci a coalition such that e(S, πi) > 0. After one iteration of the
transfer scheme, π(t+1)

i = π
(t)
i + e(S, πi)ζ(S, Ci). Then, for all π∗i ∈ Oi, ‖π

(t+1)
i −π∗i ‖2 <

‖π(t)
i − π∗i ‖2.
As a final note for this section, it is worth pointing out that nonemptiness of the

core can be checked in polynomial time if the values of all possible coalitions are
available [54]. Since this is not possible here (see Remark 3.7), convergence properties
of the transfer scheme are relevant. An interesting property is that, if the core is empty,
a procedure analogous to that presented in this section can be used to show that the
transfer sequence converges to the least-core, i.e.,

Oi(ε) = {πi ∈ Vi| e(S, πi) ≤ ε,∀S ⊆ Ci} , (3.36)

and ε ≥ 0 is the minimum such that Oi(ε) is nonempty.

Remark 3.10. Since we are dealing with dynamical systems, the value of any possible
coalition S ⊆ N is expected to vary at each time step. While the results in this section
are relevant for the system in steady state, transient dynamics may degrade the outcome
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of the algorithm. Even if a coalitional structure P(N ,G) = {C1, . . . , CNc} is maintained
during a given time interval, it is possible that, for any Ci ∈ P, the value of subcoalitions
S ⊂ Ci evolves according to the state of the system. This means that the core is not a
static set, and an allocation that is stable at time k may not show the same property
at time k + 1. In this case, the efficacy of the transfer scheme heavily relies on the
available computation time between sampling times (notice that each iteration requires
the computation of coalition values as described in Section 3.3.1). If it gives room for
a limited number of iterations, we can still assume that at each time step the allocation
provided to the members of any coalition in P is the best approximation toward a stable
one.

3.6 Illustrative case III: wide-area control of power
grid

In order to test the proposed algorithm, we address the problem of wide-area control
(WAC) of power networks. The objective of WAC is to control inter-area oscillations,
involving mutual oscillation arising among a set of connected generators, causing un-
desired power transfers. Such oscillations are poorly controllable by means of local
(decentralized) control. Exploiting the recent availability of phasor measurement units
(PMUs) and flexible AC transmission systems (FACTS), along with a reliable real-time
data network infrastructure, research has been focused on the development of WAC
strategies based on inter-area communication [90, 95].

3.6.1 System description

The power network consists of several areas coupled by transmission lines (see Fig. 3.1).
Local generation is available within each area. The goal is to provide automatic gener-
ation control (AGC) to (i) maintain the frequency around the nominal value, and (ii)
reduce power transfers between areas.

The energy supply in each area is provided by a power station equipped with single-
stage turbines. Let each area be identified by an index in the set N = {1, . . . , 5}. The
linearized dynamics of synchronous generators in area i ∈ N result in the following
continuous-time model [109]:

ẋi = Aiixi +Biiui +Di∆di +
∑
j∈M

Aijxj, (3.37)
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Figure 3.1: Power network composed of 5 areas with local supply [109]. The objective is
to control inter-area oscillations—cause of undesired power transfers—and to minimize the
deviation from the nominal frequency. Power transfers are possible between areas connected
by transmission lines. Two cases are considered: (i) local production capacity is sufficient
for locally matching the demand, (ii) the capacity of local generation is impaired, making
energy transfers from neighboring areas necessary for demand satisfaction.

Table 3.3: Symbols employed in the power network example.

Symbol Description Unit
∆d Deviation of the load from the nominal value (p.u.) [-]
∆θ Variation in the rotor angle w.r.t. stator reference axis [rad]
∆ω Deviation from the nominal frequency [rad/s]

∆Pm Deviation from the nominal mechanical power (p.u.) [-]
∆Pv Deviation from the nominal steam valve position (p.u.) [-]
∆P̄ Deviation of the power setpoint from the nominal value

(p.u.)
[-]

H Machine inertia constant [s]
rv Rotor velocity regulation [rad/s]
ρf Load change / frequency variation (%) [-]
τt Prime mover time constant [s]
τg Governor time constant [s]
P 0
ij Slope of the power-angle curve at the initial angle between

areas i and j
[rad−1]
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where xi , [∆θi,∆ωi,∆Pmi
,∆Pvi

] ∈ R4, ui = ∆P̄i ∈ R, and ∆di ∈ R is the variation
in the demand (symbols are defined in Table 3.3).12 The last term in (3.37) describes
the influence of coupled areas, identified in the set Mi = {j ∈ N \ {i}|Aij 6= 0}.
Matrices are composed as

Aii =



0 1 0 0

−
∑

j∈Mi
P 0

ij

2Hi
− ρfi

2Hi

1
2Hi

0
0 0 − 1

τti

1
τti

0 − 1
rviτgi

0 − 1
τgi

 Bi =



0
0
0
1
τgi



Aij =



0 0 0 0
P 0

ij

2Hi
0 0 0

0 0 0 0
0 0 0 0

 Di =


0
− 1

2Hi

0
0

 .
(3.38)

For reasons of space, the values of the parameters are not reported here (the reader is
referred to [109]). The coupling of the generation frequency between areas connected
through transmission lines appears in the second row of Aii and Aij. Inter-area power
transfers are modeled as

∆Pij = P 0
ij(∆θi −∆θj), i, j ∈ N , (3.39)

where positive values indicate a transfer from area i to area j.

Classic discretization yields non-sparse structures, unless very small sampling steps
are employed [1]. In order to preserve the topology of the system in the discrete-time
model’s structure, avoiding the dependence on the sampling time, the continuous-
time model (3.37) is discretized following the method of [110], with Ts = 1 s. More
specifically, by treating ui as an exogenous input along with ∆di and xj, the input-
decoupled structure of the continuous-time model is replicated in discrete time. Notice
that the use of such a method is reasonable in this kind of framework, where one basic
assumption is that system-wide knowledge of the model is not likely to be achieved
(besides communication constraints, one further reason is the dependence of the time
constants characterizing the linear model on the current setpoints [90]). From now on,
any mention of the above matrices will refer to the discrete-time model.

12The load is assumed not sensitive to frequency variation.
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Figure 3.2: Scenario 2: the capacity of local generation is impaired, making energy transfers
from neighboring areas necessary for demand satisfaction. Variation of the demand (dashed
lines) and local power generation in the 5 areas. In the left plot, relative to ccoal = 10−3, the
lack of supply in Area 3 due to a 10% capacity drop w.r.t the demand value, is supplemented
with energy transfers from Areas 4 and 5. Similarly, the right plot, corresponding to ccoal =
5 · 10−4, shows that Area 3 receives additional supply from Areas 2 and 5 (see Fig. 3.4).
Power setpoints are computed with the RTO (3.41).

3.6.2 Controller design

It can be inferred from (3.39) that large energy transfers are caused by large differ-
ences in the angle deviation. The minimization of the energy transferred between
connected areas can be implicitly addressed by penalizing large values of ∆θi; addi-
tionally, measures available from cooperating nodes can be exploited by penalizing
the angle difference between the members of a given coalition. Therefore, the state
weighting matrices in the objective function are chosen as

Qii = diag(qθii +
∑
j∈Mi

qθij + qθji, q
ω
ii, q

Pm
ii , q

Pv
ii ),

Qij = diag(−
∑
j∈Mi

qθij + qθji, 0, 0, 0),
(3.40)

where Qij ∈ Rni×nj is the submatrix of Q ∈ Rn×n relative to the coupling between
nodes i and j. For noncooperative control, qij = qji = 0; the rest of the values are
defined as in [109], i.e., Qii = diag(500, 0.01, 0.01, 10) and Ri = 10, ∀i ∈ N . In case of
cooperation, we set qij = qji = 1000.
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Table 3.4: Constraints on local generation.

‖u1‖∞ ≤ ‖u2‖∞ ≤ ‖u3‖∞ ≤ ‖u4‖∞ ≤ ‖u5‖∞ ≤
S1 0.2310 0.1680 0.1050 0.0840 0.1050
S2 0.3465 0.1512 0.0945 0.1260 0.0945

We test the capability of the coalitional controller based on autonomous coalition
formation in achieving ∆ωi → 0, ∀i ∈ N in presence of step variations in the load ∆di
at any i ∈ N . Two scenarios are considered: in the first, local production capacity is
sufficient for locally matching any demand, and the objective is to track the reference
(x̄, ū), computed as a function of the change in the grid load. Since each area’s load
must be matched with the local production, the components of the setpoint vector are
defined as x̄i = [0, 0,∆di,∆di], ūi = ∆di, corresponding to the increment in the energy
generation required to balance an increase in the demand. In the second scenario
the capacity of local generation is impaired, making energy transfers from neighboring
areas necessary for demand satisfaction (see Table 3.4). These transfers are described
by the coalitional setpoints optimized by an RTO layer

min
νr

i ,ξ
r
i

Np−1∑
t=0
‖νri (t|k)− ν̄i(t|k)‖2

Ri

+
∥∥∥ξri (t+ 1|k)− ξ̄i(t+ 1|k)

∥∥∥2

Qi

(3.41a)

s.t.
ξi(t+ 1|k)(I −Aii)−Biiνi(t|k) = Diδi(t|k), (3.41b)
1ᵀνi(t|k) = 1ᵀδi(t|k), (3.41c)
νi(t|k) ∈ Ψi, t = 0, . . . , Np − 1, (3.41d)∑
r

Prj(∆θr −∆θj) = (∆dj − umax
j )+,

j ∈ Ci, ∀r ∈Mj ∩ Ci, (3.41e)
δ(t|k) = δ̂i(k + t), t = 0, . . . , Np − 1, (3.41f)

where νri , [νri (k), . . . , νri (k + Np − 1)] is the input setpoint along the horizon Np for
Ci, and ξri , [ξri (k+ 1), . . . , ξri (k+Np)] is the associated state reference. In the steady-
state condition (3.41b), δi , (∆dj)j∈Ci

is the demand vector relative to all members
of the coalition; (3.41c) defines the demand-supply equilibrium within a coalition, i.e.,
it is equivalent to ∑j∈Ci

∆P̄j = ∑
j∈Ci

∆dj. Weighting matrices in (3.41a) are defined
as Qi = diag(Qii) and Ri = diag(Rii), with Qii = (10, 0, 100, 100) and Rii = 100.
The setpoint (νri , ξri ) ≡ (x̄i, ūi) is assigned to singleton coalitions, since power transfers
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cannot be arranged for them.
At each time step, the procedure described in Section 3.4 is followed to evaluate

the possible formation of coalitions, and then Problem (1.9) is solved independently by
each resulting coalition to derive the control inputs ν∗i (k) allowing the generation side of
the grid to follow the reference (ur, xr). Cooperation costs are assumed increasing with
the coalition size, χ = ccoal|C|2, for |C| ≥ 2. The prediction and bargaining (see (3.9))
horizons length is set to Np = Nb = 5. Following [111], the terminal cost in (3.8a) is
chosen as

`f
i(Np|k) = (ξi(k)− ξ̄i)ᵀQf

i(ξi(k)− ξ̄i), (3.42)

where Qf
i = 20Qi.

3.6.3 Results

In order to evaluate the variation of the controller performance over different degrees
of cooperation, two indices are defined. The first is the average overall frequency
deviation,

η(ω) = 1
Tsim

Tsim∑
t=1

∑
i∈N

∆ω2
i , (3.43)

and the second reflects the energy transferred between areas,

ψ(θ) =
Tsim∑
t=1

∑
i∈N

∑
j∈Mi

‖∆Pij(t)Ts‖2 , (3.44)

where ∆Pij is defined in (3.39), and Ts is the sampling time. These indices provide
a measure of the global performance not dependent of the particular evolution of the
coalition structure.

One instance of the evolving coalitional structure in Scenario 1 is represented in
Fig. 3.3: notice that following the grid topology, coalitions are allowed only between
interconnected areas. Similarly, results with the second scenario are shown in Fig. 3.4.
One example of the energy supply provided by coalitional control in the second scenario
is shown in Fig. 3.2. In this case, the supply capacity in Area 3 is not always sufficient
to fulfill the local demand; meanwhile, generators in Area 5 cannot decrease their
production to match the lowest local demand level, so the excess of production is
transferred to other areas. As can be seen in Figure 3.2, the lack of supply capacity is
covered by neighboring generators.

Figures 3.5 and 3.6 gather the results of a set of 200 simulations for the two sce-
narios, showing the performance for different values of ccoal. Coalition formation is
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Figure 3.3: Scenario 1: production capacity is sufficient for locally matching any demand.
Formation of coalitions for different values of ccoal. Costs of cooperation are increasing with
the coalition size, i.e., χ = ccoal|C|2, for |C| ≥ 2.
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Figure 3.4: Scenario 2: the capacity of local generation is impaired, making energy transfers
from neighboring areas necessary for demand satisfaction (see Fig. 3.2). The plots show the
evolution of coalitions for different values of ccoal. Costs of cooperation increase with the
coalition size, i.e., χ = ccoal|C|2, for |C| ≥ 2. The cooperation in this case follows a more
stable pattern.
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Figure 3.5: Performance index η(ω) (left) and ψ(θ) (right), respectively regarding the
minimization of the frequency deviation and of inter-area energy transfers, for increasing
values of ccoal. Plots marked with S1 are relative to Scenario 1, while S2 refers to the case
in which areas 2, 3 and 5 experience limitations in their power generation. The dotted line
marks the performance of the strictly cooperative strategy (centralized MPC), whereas the
dashed-dotted line refers to the strictly noncooperative one. See Fig. 3.7 for details on the box
representation. Even with scarce cooperation (ccoal = 10−3), the performance improvement
over noncooperative control is sensible: indices η(ω) and ψ(θ) are enhanced in Scenario 1 by
about 18% and 31%, respectively. In Scenario 2, η(ω) is improved by about 18%; however,
power transfers cannot be avoided in this scenario, and the low coordination between areas
results in an increase of ψ(θ) by 5%.
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Figure 3.6: Average size of coalitions (left) and coalition lifetimes (right), for different values
of ccoal (costs of cooperation are increasing with the coalition size, i.e., χ = ccoal|C|2). Plots
marked with S1 are relative to Scenario 1, while S2 refers to the case in which areas 2, 3 and 5
experience limits on the power generation. See Fig. 3.7 for details on the box representation.
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Table 3.5: TU scheme allocation for the grand coalition.

Dec. MPC Centr. MPC TU alg. Shapley
Area 1 0.424 0.433 0.359 0.353
Area 2 0.365 0.268 0.329 0.333
Area 3 0.136 0.080 0.085 0.085
Area 4 0.057 0.052 0.054 0.052
Area 5 0.143 0.101 0.110 0.112

disincentivized as ccoal is increased, deteriorating the achievable performance. Roughly
speaking, the performances of coalitional control fall between those obtained through
fully-cooperative (centralized) and noncooperative MPC control. It is interesting to
see how, even with a reduced cooperation effort, the performance improvement over
the noncooperative control is sensible: with ccoal = 10−3 (see top plot in Fig. 3.3),
yielding an average coalition size of 1.2, indices η(ω) and ψ(θ) are enhanced by about
18% and 31%, respectively. In Scenario 2, η(ω) is improved by about 18%; however,
power transfers cannot be avoided in this scenario, and the low coordination between
areas results in an increase of ψ(θ) by 5%.

Table 3.5 shows the accumulated control costs for each area, in Scenario 1 (cooper-
ation costs are not included). The allocation produced by the proposed iterative utility
transfer algorithm is compared to the Shapley value. In order to better evaluate these
two outputs, the agents were not allowed to leave the grand coalition in the simula-
tions relative to Table 3.5. The first two columns show the control costs associated to
centralized (fully cooperative) and noncooperative MPC: notice how for Area 1 coop-
eration implies an increase of the local cost. Individual rationality is achieved for all
areas with both allocation methods. The results relative to the iterative transfer algo-
rithm have been obtained with 10 iterations, i.e., the dissatisfaction w.r.t. the assigned
allocation has been checked for 10 randomly selected subcoalitions (see Sections 3.4
and 3.5). Instead, the Shapley value required at each time step the evaluation of all
possible subcoalitions, in this case 25 = 32. These calculations are carried out by the
procedure described in Sections 3.3.1 and 3.3.2.

Figures 3.7 and 3.8 show the accumulated control costs for the 5 areas, and their
corresponding online reallocation, resulting over 200 simulations for the two scenarios.
Notice how—particularly in Scenario 1—individual rationality is not always fulfilled
when cooperation costs become appreciable. Online reallocation mitigates this issue
and provides an incentive for the cooperation (see especially the case of Area 1).
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Figure 3.7: Scenario 1: production capacity is sufficient for locally matching any demand.
Cost—involving both control and cooperation—locally incurred by agents, accumulated along
the simulated interval. Plots marked with TU show the result of the online reallocation with
the proposed algorithm. Box plots gather the results of 200 simulations, for different values of
ccoal (costs of cooperation are increasing with the coalition size, i.e., χ = ccoal|C|2, for |C| ≥ 2).
As a reference, the costs corresponding to the fully cooperative strategy are denoted by the
dotted line, showing the influence of cooperation costs. These—initially equally supported
by the agents—are reallocated online with the proposed algorithm, as shown by the dotted
line in ‘TU’ plots. The dashed-dotted line refers to the local cost with the noncooperative
strategy. Boxes cover the range between the 25th and the 75th percentiles (the central mark
is the median), and outliers (data exceeding a distance from the box extremes of 1.5 times
the difference between the 25th and the 75th percentiles) are plotted separately.
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Figure 3.8: Scenario 2: the capacity of local generation is impaired, making energy trans-
fers from neighboring areas necessary for demand satisfaction. Control cost locally incurred
by agents, accumulated along the simulated interval. Plots marked with TU show the re-
sult of the online cost reallocation with the proposed algorithm. As a reference, the costs
corresponding to the fully cooperative strategy are denoted by the dotted line, showing the
influence of cooperation costs. These—initially equally supported by the agents—are reallo-
cated online with the proposed algorithm, as shown by the dotted line in ‘TU’ plots. The
dashed-dotted line refers to the local cost with the noncooperative strategy. See Fig. 3.7 for
details on the box representation.





Chapter 4

Coalition formation of fast
EV charging stations

The growing popularity of EVs induces the need of a novel infrastructure capable of
efficiently supplying the associated energy demanded. It is expected that a significant
portion of EV users’ daily trip will exceed the range of the fully charged battery, thus
requiring a recharge during daytime operation of the vehicle [112, 113, 114]. EV drivers
will likely be uneasy with specific characteristics of EVs such as monitoring the state of
charge (SoC) and best locating one of the available charging stations (CS). A recharging
infrastructure whose service capability is as close as possible to the current gas station
network is foreseen [115]. EV charger specifications are classified into three levels: level
1 (residential and commercial buildings), level 2 (specific charging facilities) and level 3
(fast charging). A 10 kWh battery would require about 5.5 hours with level 1 chargers,
a couple of hours with a level 2 charger and about 15 minutes for level 3 [116].

Such novel infrastructure will likely encompass advanced power, communication,
and control technologies. Information technologies applied to the transportation in-
dustry (intelligent transportation systems, ITS) strongly support this development, as
vehicles and infrastructures are capable of exchanging traffic data in real-time. The
advantages of the use of the ITS information for EV routing are shown in [115]. The
focus is on minimal routing and queueing at fast CSs, comparing different scenarios
characterized by an increasing level of knowledge—by EV drivers—about the real-time
state of nearby CSs, allowing for an enhanced estimation of the waiting time. Results
show that updated information about the estimated waiting time at each CS can be
effectively employed for rerouting (choice is assumed unrelated to prices), providing
significant improvement in the quality of service experienced by the users.

95
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The problem of CS selection is also studied in [116], according to the distance to
the station and the spot price. Knowledge about reciprocal location is assumed to be
available, and the CS owners act such as to maximize their revenue. The setting is
modeled as a noncooperative oligopoly game, providing a Nash equilibrium for prices
and energy supply. A specific assumption made in [116] is that the same utility com-
panies are the owners of CS facilities. As such, they can adjust the power generators
setpoint to the CS demand in real-time, using updated information about all charging
operations. Although it may seem a strong assumption at first, the availability of lo-
cal generation devices (e.g., PV panels, small wind generators) makes this a plausible
scenario.

CSs equipped with renewable power generators are considered in [117]. The study
focuses on the pricing policy resulting by the competitive market interactions of CSs,
modeled as a supermodular game. Constraints such as capacity of transmission lines
and distance of the demanding EVs from the stations are taken into account.

The work of [100] addresses the pricing problem and the consequent selection of the
best station by EV drivers. Besides the energy price, waiting times and travel distances
are taken into account by drivers.1 Due to the complexity of the problem, the analysis
is carried out on a one-dimensional model (i.e., EVs moving along a line), with two
competing charging stations and demand of recharges by EV approximated as a Poisson
distribution. The market equilibrium is derived through the solution of a Stackelberg
game model, where the stations announce their prices—based on predictions of the
demand—upon which the EV drivers optimize their choice.

To estimate the average waiting time at charging stations, the authors of [100]
assume a small penetration of EVs, in order to exploit the theory of M/G/k queues.
On the other hand, a sufficient number of EVs is assumed to allow modeling the CS
selection as a population game, where a single player’s decision has a negligible effect
on the global equilibrium (and moreover, it will not affect the waiting time at a given
station).

The EV charging station load is complicated and mutable, closely related to the
user’s schedule, driving and travel patterns, besides the CS availability [118]. Issues
related to economical factors of CSs such as energy markets and dynamic pricing have
already been considered in several works, involving as well the use of game theoretical
tools [119, 14]. So far, most attention has been directed on the stress that uncontrolled
daytime EV charging peaks may produce on the power system, which may even result

1However, just the instantaneous distance value, relative to the time when the decision is made,
is considered. The influence of the driver’s predefined route in the final decision is not taken into
account in the model.
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in grid outages. Concerned with the coordination of the demand, in order to avoid
overloads of the existing electric grid, several works make use of pricing schemes and
employ game theory concepts for the problem analysis [120, 121].

However, the mobility of EVs is hardly taken into account, since the most common
scenario analyzed in the literature is household recharging [112]. On the distribution
layer perspective, electric vehicle charging demand will constitute a unidentified quan-
tity which may vary by space and time. The work of [122] formulates a mathematical
model of the EV charging demand for a fast charging station. The arrival rate of
vehicles is predicted by a fluid dynamic traffic model, whereas the charging demand
forecast is based on multi-server queueing theory. Such model can allow the grid distri-
bution planners to anticipate a charging profile for a specific CS. It is worth to remark
that since the traffic flow is modeled by means of the fluid dynamic model, the work
in [122] is specifically meant for CSs located on a highway, and not in urban environ-
ment. Furthermore, the model only considers EVs whose batteries are almost drained,
thus requiring charging at the closest charging station.

The work of [112] brings out the concept of quality of service for charging stations,
involving minimal waiting time for customers. In order to address the long delays
caused by the fairly large charging time (compared with that of conventional gasoline
vehicles), the authors of [112] propose a price admission mechanism at each CS. To
achieve an efficient load across the grid, drivers are incentivized through price signals
to recharge at less busy stations.

Although the above mentioned studies typically assume that vehicles follow a rigid
(often monodimensional) trajectory, a number of methods have been proposed for the
prediction of the EV load based on driving patterns, possibly obtained from data of
real commuting habits [123]. Nevertheless, if on one hand the information available
for light duty vehicles is limited, on the other hand it is arguable to expect that such
data can be directly translated on EVs. The microsimulation environment employed
in the present work was developed in cooperation with AYESA [124], which provided
insights on the problem and data from the real benchmark Zem2All [125].

It is widely acknowledged that dynamic pricing policies offer the best performance
in terms of efficient use of the infrastructures, since price variations allow to adjust
the demand in real-time according to the system capacity. However, implementation
of such pricing mechanisms is not straightforward, as it requires expensive real time
monitoring. For this reason, static (e.g., flat rates) or myopic mechanisms (e.g., con-
gestion pricing [112]) are eligible candidates for the application. The main goals of this
case study are (i) to develop a model of the variation of the energy demand for EVs
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recharge operations in a urban setting, according to the spot prices, and (ii) to design a
control strategy—based on such a model—to let each CS maximize its own economical
benefit by either operating on its own or according to a joint planning derived through
strategic coalitions.

4.1 Problem formulation of the case study

4.1.1 Scenario Description

The case study considers the interplay between several fast charging stations (CS) and
the users of such public charging facilities. Since the primary recharging option will
likely be constituted by (slow) charging posts located in house garages and parking lots,
it is expected that the users of fast CS will be a subset of the whole EV population. The
study by [126] estimates the portion of EV users demanding fast charging operations
to be about 30% of the total EV population.

The choice of the charging station by EV drivers is a highly complex problem.
Besides the natural dependence of the demand from the energy prices, the long time
required for battery recharge (even with fast DC chargers) produces a significant cou-
pling between the decisions of different drivers, unlike gas stations.

In order to facilitate the analysis, the problem has been so far approached in the
literature through essential schemes, characterized by restrictions on the action space
of both parties: simplifications may range from a unique price applied by all charging
stations to neglecting the coupling between EV drivers’ decisions (see [100] and ref-
erences therein). Here, a price optimization problem is formulated from the charging
manager (CM) standpoint, i.e., the owner of charging facilities. Demand at each CS
is strongly correlated with its location as well as the location of the other CSs, and
with the dominant traffic pattern. Motivated by this, we identified the sensitivity of
the aggregate demand to recharge price variations on a microscopic traffic simulator.
The open microsimulator SUMO [127] has been employed as the base engine for the
simulation platform.

The possibility for any CM of cooperating with other CMs for a joint planning
of the pricing strategy is considered to enhance the efficiency in the use of available
charging infrastructures.
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Behavior of EV drivers

The microsimulated urban scenario assumes that EV drivers looking for a recharge can
access traffic data such as vehicle positions, velocities, etc. Indeed, such information can
be accessed thanks to modern intelligent traffic infrastructures (ITS) and localization
systems embedded in mobile phones (floating car data). Then, EV drivers rationally
select a CS according to a function expressing their individual utility, expressed by (4.1),
defined by a trade-off between charging cost minimization and getting the service as
soon as possible. This function takes into account the state of charge (SoC) at the
time of the decision, the desired final battery level, the time and energy required to
reach the station and their equivalent monetary cost. In particular, the latter is a cost
associated to the time required for the whole operation, converted into currency units
(CU) for compatibility with energy prices.

JEVi = EEV
max,i(SoCf + SoC(i,j) − SoCo)pj + (t(i,j) + twj − ttol

i )ψi, (4.1)

where EEV
max,i is the battery capacity of EV i, SoCf is the target SoC, SoCo is the SoC

at the time of the decision, SoC(i,j) is the energy (in terms of SoC) required for EV i

to get to CS j, and pj is the price per kWh applied by CS j. The last term expresses
the time cost, being t(i,j) the (estimated) time needed to reach the station, and ψi the
price of user i’s time, in CU per hour. The waiting time tw,j at CS j is estimated as
in (4.2) for the station under consideration, on the basis of the number of vehicles in
the line nEVj , of the mean individual demand ĒEV , and finally of the number of plugs
nplug
j and the power Pmax,j available at CS j. An additional term in (4.1), designated

as ttol
i , expresses the tolerable queue time for user i.

tw,j = max
{

0, nEVj − nplug
j + 1

}
ĒEV /Pmax,j. (4.2)

CS management

The demand at any given charging station is naturally related to the spatial and tem-
poral distribution of EV traffic. Indeed, in real life the distribution of vehicles is far
from being uniform: people tend to drive between points of interest, such as their
home, school, workplace, and their typical routes may depend, e.g., on the day of the
week. Such a stochastic behavior creates uneven customer demand among the charging
facilities. Hence, the utility company on one hand, and managers of charging stations
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Table 4.1: Table of symbols

EEV
max,i EV i battery capacity [kWh]

SoCf SoC after the recharge %
SoCo current SoC %

SoC(i,j) drop in EV i SoC for reaching CS j %
pj price of recharge at CS j [CU/kWh]
t(i,j) time for reaching CS j [h]
twj waiting time at CS j [h]
ttol
i tolerable waiting time for EV i [h]
ψi cost of time for user i [CU/h]
nEVj vehicles in line at CS j -
nplug
j plugs available at CS j -

Pmax,j power at CS j plugs [kWh]
ĒEV average recharge [kWh]

on the other, both want to properly allocate the EVs to charging stations according to
their interests.

The first scenario presented in this study considers four charging stations located
in the urban area of Seville, Spain, each owned by a different charging manager. The
objective is to study how different pricing strategies affect the economic benefit that
each CS can achieve, and how coalitions between CMs influence their performance. The
strategy of each CM is optimized on the basis of a simplified model of the behavior of
EV drivers looking for fast recharging facilities in response to spot price variations:

Ei(k + 1) = Ei(k) +B∆p(k + 1) +D
p̄(k + 1)− palt

palt
Ei(k), (4.3)

where ∆p ∈ R|NCS |×1 is defined as

∆p(k + 1) , [pi(k + 1)− pi(k)]i∈NCS
,

Ei is the total recharged energy supplied at CS i, pi is the price per kWh applied for the
recharge, palt is the alternative price taken as reference. The parameters of the model
are identified over different simulations on the developed microsimulation platform.
Two terms compose the model: the first, taking into account the price differences
between stations, evaluates the redistribution of the energy over the different CSs; the
second expresses the tendency of the demand at decreasing when facing an overall rise
of the perceived price, in presence of more competitive alternatives (the opposite holds
when perceived price decrease). The manipulated variables are the daily prices (in
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CU/kWh) applied at the stations for battery recharge, simultaneously made available
by all charging managers.

The utility of the charging stations owner consists in maximizing its profit, which
broadly speaking translates in serving as much EVs as possible while fulfilling the most
restrictive constraint between the maximum power deliverable by the stations and the
eventual limitations imposed by the grid operator. The next sections describe the
formulation of the optimization problem.

4.1.2 Control objective

The objective of the control consists in maximizing the station’s revenue derived by the
recharging service. The revenue is formulated as Eipi, where Ei is the overall energy
supplied by CS i, and pi is the applied price per kWh. Notice that not all the revenue
will constitute benefits for the CS. In this work, we model general costs for the use
of infrastructures—that can be addressed to different aspects related with the energy
provision and recharging operations—as a quadratic term depending on the delivered
energy volume. Also, recall that each CS has a limited number of available charging
plugs: as a byproduct of the optimization, such term will avoid to attract with low
prices an excessive number of customers, since the station will not be able to satisfy
the demand within a reasonable time slot. Hence, the CS utility is expressed by

Ui = Eipi − ciE2
i , (4.4)

where ci is a constant parameter associated with the infrastructural availability and
supply-associated costs of CS i. Then the objective to maximize for CS i is defined as:

Ji(k) =
k+Np∑
t=k

Ei(t)pi(t)− ciE2
i (t), (4.5)

over the prediction horizon Np. For each station, the value of ci is assumed to be in the
order of 10−5 CU/kWh2. Prices are considered in the range 0.275 – 0.325 CU/kWh.
The steady-state demand distribution across the stations, when all four CSs apply the
same price of 0.300 CU/kWh, is

E0 = (296.63, 323.25, 264.75, 289.88) kWh.

Predictions employed for the solution of the problem of profit maximizing are based
on the model (4.3), identified over a microsimulated traffic scenario.
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4.2 Description of the applied management strate-
gies

4.2.1 Coalition formation

The above setting is expanded by considering the possibility of coalition formation
among CMs. The problem consists in deciding with whom to cooperate and under
which conditions (namely, the allocation of the payoffs among the members of a coali-
tion). We model such situation as a coalitional game in characteristic form. A coali-
tional game is uniquely defined by the pair (N , v), where N is the set of players and
v is the value of a given coalition.

More specifically, a value is assigned to any possible coalition through a function
v : 2N → R. The real value v(C) associated with coalition C can be divided and
transferred among its members (e.g., side-payments used to attract other players).
The payoff φi is defined as the utility received by each agent i ∈ C by the division of
v(C). The vector of payoffs assigned to all the agents is referred to as the allocation.

Notice that such model cannot accurately reproduce the vast majority of real life
scenarios. It is natural in engineering applications to encounter problems in which the
value of a given coalition cannot be determined regardless of how the rest of the agents
are organized. Games in partition form better fit to such type of problems: given a
partition of the set of agents N , i.e., a set of disjoint coalitions C = {C1, . . . , Cl}, the
value of a coalition Ci ∈ C is expressed as v(Ci,C) [54]. Since it is not possible to
derive a closed-form allocation in such setting, we approximate the partition function
game with a characteristic function game by assigning values to coalitions following a
minmax approach. The value of a given coalition will thus take into account the most
unfavorable externalities given by any coalitional setup of the rest of agents.

Shapley Value

In order to compute a division of the coalition value across the coalition members,
we consider here the closed-form expression provided by the Shapley value. Shapley
defined the conditions to obtain a unique payoff mapping of the game (N , v) [29]. The
Shapley value φ(v) satisfies the following three axioms:2

2Further axioms characterize the Shapley value. We mention here the ones related with our
purpose.
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1. Efficiency: ∑
i∈N

φi(v) = v(N ).

2. Symmetry: given two players i and j, if

v(C ∪ {i}) = v(C ∪ {j}), ∀C|C ∩ {i, j} = ∅,

then φi(v) = φj(v).

3. Dummy: if, for any player i, it holds that

v(C) = v(C ∪ {i}), ∀C|C ∩ {i} = ∅,

then φi(v) = 0.

The symmetry axiom assigns the same payoff to players that equally improve a given
coalition, while the dummy axiom assigns a null payoff to a player which does not
contribute when joining a coalition. The formulation of the individual payoff assigned
to player i according to the Shapley value’s mapping is:

φi(v) =
∑

C⊆N\{i}

|C|!(|N | − |C| − 1)!
|N |! [v(C ∪ {i})− v(C)] (4.6)

In words, the Shapley value expresses the individual expected marginal contribution of
agent i to the coalition.

Despite the advantage of its closed form, the computational complexity of (4.6)
increases significantly with the number of agents: some efficient techniques for its com-
putation can be found in the literature (see, e.g., [128]). The sampling time of 12 h
employed in this scenario leaves enough room for the computation; nevertheless, com-
binatorial explosion needs to be addressed when the number of independent charging
stations grows.

4.2.2 Coalitional approach to the EV case study

The aim here is to explore the benefit brought in by the cooperative management of
the set of CMs. Such benefit can be directly translated into economic units, and then
possibly transferred (as recompense) from one agent to another in order to overcome
what constrained the emergence of cooperation in the first place. This type of situations
is designated in the game theory literature as transferable utility (TU) [51].
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The following mechanism is implemented here for coalition formation. At each
round (every 12 h in the simulations), all possible coalitions among CMs are evaluated,
and the organization into a given coalitional structure will be decided as the outcome
of a best matching algorithm. This operation is carried out on the basis of an increase
of individual economic benefit for each agent, derived from the Shapley allocation of
the value of the coalition the agent is affiliate with.

Remark 4.1. For simplicity of presentation, we assume in the remainder that every
CS belonging to a given CM will be involved in the coalition in which the CM partic-
ipates. Nonetheless, a CM may in general choose to consider within a given coalition
the management of only a subset of the CSs he owns.

Given the above assumption, any set of CMs C ⊆ NCM straightforwardly maps into
a set of CSs C ′ ⊆ NCS, where C ′ contains all the CSs belonging to the CMs in C.

The value of a coalition C ⊆ NCS are computed as the aggregate estimated revenue
of the members

v(C) =
∑
i∈C

Eipi − ciE2
i , (4.7)

where the second term models usage and maintenance costs (see (4.4)). As mentioned
in Section 4.2.1, the problem is approximated to a characteristic form game by assigning
the value resulting by the worst-case scenario for any given coalition. Let pi , (pj)j∈C,
and p−i , (pj)j∈NCS\Ci

. Both vectors are formed by subsets of components of the global
vector p , (pj)j∈NCS

. The revenue prediction for CS i results by the solution of the
minmax problem

max
pi

min
p−i

Ji (4.8a)

s.t.

E(t+ 1) = E(t) +B(p(t+ 1)− p(t)) +D
p̄(t+ 1)− palt

palt
E(t), (4.8b)

E(0) = E(k), (4.8c)∑
t

Ei(t) ≤ 12PCS
max,i, (4.8d)

p(t+ 1) ∈ U , (4.8e)
t = {0, . . . , Np− 1},

where (4.8b) is the global energy prediction model relating all CS. Note that no limi-
tations by the grid operator are considered in this problem. Once the 2|NCM |−1 values
for the possible coalitions among the CMs are available, the corresponding members’
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payoffs can be computed by means of the Shapley value. Notice that for the grand
coalition, i.e., C ≡ NCS, p−i is not defined, and the problem reverts to mere minimiza-
tion.

At this point, payoffs are used as input to a best matching algorithm in order to
derive the best coalition(s) according to individually rational preference order. Since
CMs will accept to form a coalition if and only if it implies a rise in their individual
payoff, the algorithm matches CMs such that no player is left unsatisfied. However
(due to the nonconvexity of this specific game) a conflict may arise between a pair of
CMs when the respective preference orders are misaligned. This conflict are solved
by assigning players to coalitions according to the lexicographical order. Let CM 1
and CM 2 be two players of the game, and {C(i)

A , C
(i)
B }, with i = {1, 2}, the possible

coalitions that can be joined by CM i. Consider the case where the formation of C(i)
A

and C(i)
B is mutually exclusive. Then, the following order reflects the preference of CMs

{C(1)
A , C(2)

A } � {C
(1)
B , C(2)

B } iff

 φ1(C(1)
A ) > φ1(C(1)

B ) or
φ1(C(1)

A ) = φ1(C(1)
B ) and φ2(C(2)

A ) ≥ φ2(C(2)
B ),

(4.9)

where φi(C) is the payoff defined by the Shapley value for the participation of player i
in coalition C, and � is the lexicographical preference operator.

Finally, the prices relative to the chosen coalitional structure are applied to the
system. The profits derived by the energy sale at CS facilities are shared among all
members of the corresponding coalition, according to the Shapley values previously
computed. Note that since the Shapley values are based on estimated values, they
cannot be directly applied to the realization of the profits. Instead, the ratios dictated
by the Shapley’s payoffs over the predicted coalition value are used for the division of
the actual profits.

4.3 Technical description of the implementation

4.3.1 Microsimulations

The microsimulation platform employed for the macroscopic model identification and
validation of coalitional strategies among CMs consists of two interdependent lay-
ers): the first layer is implemented on the open source microscopic traffic simulator
SUMO [127], the second is implemented in Matlab. The two layers communicate via
socket, employing the library TraCI4MATLAB [129] (Figure 4.1). The characteriza-
tion of urban traffic (vehicle displacements, traffic congestion, velocities in each lane,
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Figure 4.1: Implementation of the EV microsimulation platform over two software layers.
Vehicle displacement, traffic congestion is modeled in SUMO. Energy management operations
and CS choice is performed in the Matlab layer.

etc.) is performed in the first layer. Detailed street maps of the urban areas of Seville
and Malaga (Spain) have been prepared for the purpose. A population of nv = 10000
vehicles has been considered, including both electrical and conventional automobiles,
of which nEV = 400 (Seville) and nEV = 1000 (Malaga) are possible customers of fast
charging facilities.

The second layer is responsible for the specific management of electric vehicles.
Each driver’s decision of when, where and how much energy to recharge is defined
at this layer. Other tasks are the modeling of the charging process and the battery
discharge along each vehicle’s route. For this, information extracted from the historical
data (available from project Zem2All) about battery consumption as a function of the
velocity has been employed. The data are relative to a specific brand and model,
the Mitsubishi i-MiEV, featuring a 16 kWh battery. A charging curve has also been
extracted from the database. Four independent CMs are considered, each characterized
by different maintenance/usage cost factors ci. For the Seville scenario, each CM owns
one CS equipped with one charging post, capable of providing 50 kW output power.
The Malaga scenario contemplates the availability of 60 CSs across the whole urban
area, also equipped with a single 50 kW charging post.

Remark 4.2. Although 50 kW can be viewed as the “entry level” power capacity for a
level 3 charging post, the i-MiEV battery capacity of 16 kWh is fairly small if compared
with the capacity of newer EV models. Therefore, the results of the microsimulation
presented in the remainder also scale to higher CS power and larger battery capacities.

The CS distribution for the two maps is shown in Figures 4.2 and 4.3.
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Figure 4.2: Location of CSs in Seville urban area. Colors show the different CM affiliation.

4.4 Validation of the management strategies for the
case study

4.4.1 Scenario parameters

Values for the initial battery levels of the vehicles, the discharge rates as a function of
the velocity as well as the locations of CSs are provided as initial data for the simulation.
Any demand for recharge is triggered when the EV battery reaches a given (low)
battery threshold. This threshold is expected to vary from one user to another: in this
study, trigger values have been extracted from a probability distribution obtained over
the Zem2All benchmark database. Similarly, the final battery level of each charging
operation is inferred by real usage data. The first vehicle in line is served at the
maximum power of the station Pmax,j = 50 kW. No limits are imposed on the size of
the waiting queue.

In contrast with common non-electric or hybrid vehicles, the route length is limited
by the autonomy of the batteries. Indeed, it is possible for an EV to run a distance
greater than that allowed by its autonomy—without long charging stops—if a fast
recharge is performed along the route. This is the usage pattern that we aim to
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Figure 4.3: Location of the 60 CSs in Malaga urban area. Colors show their affiliation to
the four CMs.
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Figure 4.4: Malaga scenario: charging demand at five CSs sampled at different prices
applied at CS 1 (all x axes refer to CS 1 price).

simulate in this study. Studies such as [126] estimate that about 30% of the EV routes
will generate fast charging demand (see also [130]). To model this aspect, routes of
proper length (25 km in average, according to [130], see deliverable D5.3 for further
details) have been defined over the two urban areas, such that most of the nEV drivers
need to stop and recharge at least once along their route.3

4.4.2 Macroscopic model identification

The sensitivity matrices B and D have been identified through a series of simulations
capturing the change in the aggregate daily demand to variation of the spot prices
applied at CSs. In this particular study, a linearized response has been adjusted over
the sampled space by least-square approach. Figure 4.4, relative to the Malaga scenario,
shows an example of how the charging demand at five CSs is affected by the variation
of the price applied at CS 1 (all x axes refer to CS 1 price). Notice that the coupling
between demands at different CSs is a function of the routes followed by EVs and of
the (relative) location of CSs, besides the prices and waiting times.

4.5 Results

4.5.1 Seville

Two scenarios are studied for the urban area of Seville, characterized by different
maintenance/use costs. We have for scenario (i)

c = [20 25 26 2] · 10−5 CU/kWh2; (4.10)

scenario (ii) is identical except the coefficients for CS1 and CS2 are swapped.

3Since the synthesis of the routes and the initial battery level are extracted from a probability
distribution, some EVs can travel their entire route without having to stop.
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Figure 4.5: Redistribution of recharges (%) resulting by the grand coalition of CSs for
scenarios (i) and (ii).

When coalition formation is not restrained, the four CMs reach a grand coalition
agreement. The redistribution of the demand resulting by the coalitional strategy is
accounted for by the difference maintenance costs (4.10) of CSs. The result for the
two scenarios are shown in Figure 4.5. In particular, demand is redirected over CS1
due to its low maintenance costs (scenario (i)), while decreasing the demand at CS2,
characterized by high usage costs. The opposite trends can be observed for scenario
(ii). Figure 4.6 depicts the case where CS2 is left out from the grand coalition. As
it can be seen, it is free to apply the most competitive prices when experiencing low
usage costs (scenario (ii)). However, since the pricing strategy is not cooperative, it
is not able to redirect the the demand towards other CSs in scenario (i). The cases
in Figures 4.5 and 4.6 can be compared with the case where no coalition is formed.
It can be seen in Figure 4.7 that CS 3—the best located among the CSs, but also
characterized by the highest usage costs—is not able to reroute demand over other
stations, and experiences significantly higher maintenance costs in both scenarios.

The effects of coalition formation on the spot prices are shown in Figure 4.8. It is
clear how the grand coalition easily takes advantage of the monopoly to raise prices as
most as possible. In such situation, users experience very short waiting times due to
lower demand and even rerouting over CSs. When the formation of coalitions is forbid-
den instead, competitive strategies allow to keep prices as low as possible. Measures
as limitations on the allowed market share of a single coalition (antitrust) demonstrate
to be a means for keeping prices under control. An alternative means against the for-
mation of monopoly is to impose an access costs to coalitions depending on the energy



4.5. Results 111

Figure 4.6: Redistribution of recharges (%) over CSs when CS 2 is left out of the grand
coalition. Notice how it is free to apply the most competitive prices when experiencing low
usage costs (scenario (ii)). However, it is not able to redirect the the demand to other CSs
in scenario (i).

Figure 4.7: Redistribution of recharges (%) over CSs when no coalition is formed. CS 3
is characterized by high usage costs, but it is also the best located w.r.t. to the EV routes.
For this reason it is not able to reroute demand over other CSs, and experiences significantly
higher maintenance costs in both scenarios.
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Figure 4.8: Effect of coalition formation on pricing strategies (short prediction horizon).
The grand coalition translates into a monopoly management: prices are raised as most as
possible. The only advantage for users is to experience the shortest waiting times. On the
contrary, when the formation of coalitions is forbidden, competitive strategies allow to keep
prices as low as possible. Measures as limitations on the allowed market share of a single
coalition (antitrust) demonstrate to be a means for keeping prices under control. Access
costs to coalitions depending on the energy volume are also useful against the formation of
monopoly. In the above scenarios, CS 2 cannot access any coalition because of its high initial
demand.
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Figure 4.9: Effect of coalition formation on pricing strategies (extended prediction horizon).
Employing a longer prediction horizon w.r.t. Figure 4.8, the trend is inverted. Due to
uncertainty, smaller coalitions incur more risk on the market, and apply myopic strategies to
save in the short run. Instead, the grand coalition can afford to offer the lowest prices on the
market, in absence of any competition and uncertainty: the strategy is to keep the demand
high through attractive prices and invest in the long run.

volume. In the above scenarios, CS 2 is characterized by a high initial demand, and as
such its access to any coalition is forbidden.

Nonetheless, the monopoly issue is smoothened by employing a longer prediction
horizon, as pointed out in Figure 4.9. Due to uncertainty, smaller coalitions incur more
risk on the market, and apply myopic strategies to save in the short run. Instead, the
grand coalition can afford to offer the lowest prices on the market, in absence of any
competition and uncertainty: interestingly, the strategy is to keep the demand high
through attractive prices and invest in the long run.

Concerning the estimate error on the predicted revenue, Figure 4.10 illustrates
how, over the members of the same coalition the prediction error is reduced, whereas
it increases significantly for the CSs which are left out. It is worth to notice that
prediction error is low when no coalitions are formed, due to the strong competition of
the CSs, which makes worst-case approach fit.

Finally, Figures 4.11 and 4.12 show how the Shapley value allocation defines a re-
distribution of the revenue over the members of a coalition. In particular, the case
described in Figure 4.11 shows how CS 3—the most influential station due to its ad-
vantageous location—is compensated a posteriori for jointly planning a pricing strategy
capable of redirecting the demand to the other CSs. The result depicted in Figure 4.12
refer to the coalition structure {{1, 3, 4}, {2}}. In the second scenario, CS 1 has the
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Figure 4.10: Error (%) on the estimate revenue. Prediction error is low when no coalitions
are formed, due to the strong competition of the CSs, which makes worst-case approach fit.
However, when coalitions form, the prediction error increases significantly for the CSs which
are left out.

(a) Scenario (i) (b) Scenario (ii)

Figure 4.11: Benefit redistribution (Shapley value) for the grand coalition. CS 3 is the
most influential CS. Through the jointly planned pricing strategies, the demand is redirected
to other CSs. However, CS 3 is compensated a posteriori by adjusting the payoff on the basis
of the Shapley value.
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(a) Scenario (i) (b) Scenario (ii)

Figure 4.12: Benefit redistribution (Shapley value) for the coalition structure
{{1, 3, 4}, {2}}. In the second scenario, CS 1 has the highest cost-of-use along with CS
3. CS 4 has the lowest costs, and its gain is redistributed across the other members of the
coalition. Revenue for CS 2 is high because of its high initial demand, and also because of
the strongly competitive prices it can apply in scenario (ii), due to its low costs of use (see
Fig. 4.6).

highest cost of use along with CS 3. CS 4 has the lowest cost instead, and its revenue
is redistributed across the other members of the coalition.

4.5.2 Malaga

The following results are relative to the Malaga scenario, involving 60 CSs owned by 4
CMs (see Figure 4.3). The maintenance cost factors relative to each CM’s infrastruc-
tures have been defined as

c = [30 47 56 66] · 10−6 CU/kWh2;

Figures 4.13–4.15 show the aggregate demands over a ten-day time frame. More specif-
ically, Figure 4.13 shows a comparison between the demand resulting by maintaining a
fixed price of 0.3 CU/kWh at all CSs (designated as the reference case), and the strategy
resulting by the grand coalition. Prices are slightly raised in order to take advantage
of the monopoly, and to reduce demand in stations characterized by high cost-of-use.
Although it may seem that the outcome is not consistent with CM 4 incurred costs, the
plot in Figure 4.18 shows how the grand coalition’s pricing strategy actually provides
a uniform distribution of the costs of use (COU) w.r.t. the energy supplied. Moreover,
the grand coalition achieves sensible overall reduction of the COU/revenue ratio: 31%
in average, versus 38% resulting from the competitive strategies. Moreover, revenue
redistribution through the Shapley value covers the bigger costs sustained by CM 4,
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Figure 4.13: Redistribution of recharges ([MWh]) resulting by the grand coalition of CMs.
The values in the y axis refer to the aggregate demand at all CSs owned by a given CM,
over a timespan of 10 days. The plot shows a comparison between the demand resulting by
maintaining a fixed price of 0.3 CU/kWh at all CSs (ref. case), and the strategy resulting by
the grand coalition. Prices are slightly raised in order to take advantage of the monopoly, so
demand is reduced in CSs characterized by high cost-of-use. The outcome is not consistent
with CM 4 incurred costs, mainly due to prediction errors resulting by the linearized model:
however, revenue redistribution through the Shapley value covers this issue, as shown in
Figure 4.16.

as shown in Figure 4.16. For the case where no coalition is formed (Figure 4.14) and
the case relative to the coalition structure {{1, 4}, {2, 3}} (Figure 4.15), worst-case ap-
proach implemented to derive prices leads to competitive strategies, resulting in the
same minimal price sequence applied over the considered timespan. Overall demand
increases due to the low prices, while the distribution over the CMs facilities remains
constant. Interestingly, over the same pricing strategy, the Shapley value provides a
reallocation of the revenues towards the CM incurring the highest cost (here CM 4, see
Figure 4.16).

Finally, Figure 4.17 shows the average profit (total revenue − cost-of-use) over 9
simulated days. The grand coalition provides a net improvement of the profit of CMs,
whereas strictly competitive strategies yield a poor economic performance. In average,
a daily average profit of 1947.55 CU is achieved with the grand coalition, versus the
1542.46 CU of the strictly competitive strategy. As can be seen in Figure 4.18, this is
due to the poor efficiency of the strategy in adapting to the different infrastructural
limitations of the CMs.
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Figure 4.14: Redistribution of recharges ([MWh]) resulting by the grand coalition of CMs.
The values in the y axis refer to the aggregate demand at all CSs owned by a given CM, over
a timespan of 10 days. The worst-case approach implemented yields competitive strategies,
resulting in the minimal price sequence possible. Overall demand increases due to the low
prices, while the distribution over CMs facilities remains constant.

Figure 4.15: Redistribution of recharges ([MWh]) relative to the CM coalition structure
{{1, 4}, {2, 3}}. The values in the y axis refer to the aggregate demand at all CSs owned
by a given CM, over a timespan of 10 days. The worst-case approach leads to competitive
strategies, resulting in the same minimal price sequence of the no coalition case. Interestingly
here, over this same pricing strategy, the Shapley value provides a reallocation of the revenues
towards the CM incurring the highest cost (CM 4), as can be seen in Figure 4.16.
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(a) Grand coalition (b) {{1, 4}, {2, 3}}

Figure 4.16: Benefit redistribution (Shapley value) for the grand coalition and the coalition
structure {{1, 4}, {2, 3}}, relative to the Malaga scenario. The plot shows how the revenue is
reallocated towards the owners of facilities characterized by the highest costs.

Figure 4.17: Average profit over 9 days of simulation (total revenue − cost-of-use). The
grand coalition (GC) provides a net improvement of the profit of CMs, whereas strictly
competitive strategies (“No GC”) yield a poor economic performance. In average, 1947.55
CU are earned in average with the GC, versus the 1542.46 CU of the strictly competitive
strategy. As can be seen in Figure 4.18, this is due to the poor efficiency of the strategy,
associated with high costs-of-use w.r.t. the achievable revenue. Notice that the reference case
should be viewed just as an initial condition, since the competition between CMs would not
allow to keep its associated prices.
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Figure 4.18: Ratio of the costs of use over the total revenue. The pricing strategy optimized
by the grand coalition (GC) provides a uniform distribution of the costs of use w.r.t. the
energy supplied. Moreover, the GC achieves sensible overall reduction of the ratio: 31% in
average, versus 38% resulting from the competitive strategies.

4.6 Conclusion

The work presented in this chapter is a study of a near future scenario regarding plug-
in electric vehicles population. Considering the standpoint of the owners of battery
recharge infrastructures, the problem of the energy refill pricing is analyzed, involving
possible cooperative strategies. The price sensitivity of EV fast charging facilities users
has been modeled over a microsimulated scenario representing a finite population of
EVs and four independent and selfish CMs. Then, following an approach to incentive
coalition formation based on the Shapley value’s allocation, the possibilities offered by
the coalitional management of CSs are studied. Results from simulations have shown
that a joint planning of pricing strategies allows to increase the profit (about 25%)
and the quality of service for the users. Interestingly, the increase in the profit can be
mainly attributed to a better management of the charging infrastructure, allowed by
the possibility of demand reshaping offered by coalitional strategies. Naturally, for such
a framework to be feasible, a more transparent management of charging infrastructures
is required.

In this work, only on-the-fly recharge operations have been considered. Ongo-
ing work is concerned with the possibility of booking recharge slots in advance. The
case study admits further analysis of competition issues (oligopoly), that need to be
specifically addressed through computationally-viable tools. Finally, as an important
byproduct of this work, the prediction model object of this study could be employed
for decentralized routing mechanism that can enhance the quality of service provided
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to EV drivers, fulfill grid capacity constraints, or optimize some other specific charging
facility’s owner objective function. This currently constitutes a large body of research
in the intelligent transportation systems field.
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Chapter 5

Conclusion and outlook

As the architecture of multiagent systems becomes more complex—featuring recon-
figurable topologies [10, 9, 94, 11], misaligned individual interests [12, 131, 132, 15],
human-in-the-loop control [133], plug and play capabilities [58]—the relationship be-
tween possible restrictions on the global availability of information and the system
performance is increasingly unclear [134]. Some of the challenges and open issues for
coalitional control are summarized in the remainder.

Criteria for coalition formation How to determine the most appropriate coali-
tional structure for the overall system is a problem that shows fundamental analogies
with model partitioning. Two different perspectives on coalition formation can be con-
sidered. The first is a top-down approach, where the global coalitional structure is
optimized at a supervisory layer. Of fundamental importance is the criterion used to
break the overall system into coalitions. Some possibilities have been already explored,
such as the minimization of an index that combines optimal control performance and
communication costs [10], or an H∞ robustness index—reflecting model-plant mis-
matches due to nonlinearities or inaccurate identification—as proposed in [21]. To
address individual rationality as well, the second consists of a bottom-up approach:
here the formation of coalitions is produced as the outcome of an autonomous bar-
gaining procedure. While the first approach may offer some advantages in view of
global system stability guarantees, the second appeals as a more appropriate scheme
for real-world (plug and play) applications.

Information exchange Information plays a fundamental role in the coordination
of multiagent systems. Either attained through direct sensing or communication, in-
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formation is the basis for the local decisions of agents and, as such, decisive to the
emergent global behavior [134]. Despite the huge effort dedicated to the development
of distributed controllers for large-scale systems, communication has been mainly stud-
ied from a transmission perspective, covering issues such as bandwith limitations, data
loss, or the effects of noisy channels [135]. The very nature of the information ex-
change has received little attention. Indeed, in order to allow fundamental properties
of centralized control, such as system-wide optimality and stability, the majority of the
literature about distributed control overlooked privacy-related issues in order to focus
on the overall system performance.
Does providing agents with additional information always lead to improvements in the
performance? On the other hand, can the excess of information be detrimental under
some given system-wide perspectives? These questions have been partially addressed in
works such as [134, 34]. In [134], a graph-coloring problem is used as a simple platform
for studying the effect of information on multiagent collaboration. Results demon-
strate that an increased amount of information is able to improve the efficiency of the
Nash equilibria; on the other hand, it degrades the convergence rate of the distributed
algorithm, where the agents seek to maximize their utility.

Constraints on coalition formation Bigger coalitions provide better control per-
formance at the cost of increasing cooperation requirements. The enforcement of limi-
tations on the composition of coalitions may be necessary. Some limitations can be of
direct application (as for example size constraints), whereas others can implicitly derive
by the penalization of specific metrics (use of the network infrastructure, identity of
the participants, optimization variables, time expected to solve the control problem).
In either case, this is a problem that requires attention. See [136] for a detailed analysis
about constraints in the coalition formation process.

Partial cooperation and information When dealing with systems characterized
by a strong heterogeneity, selfish interests may hinder the sharing of knowledge relevant
for control purposes and cooperation as well. It is possible that only a subset of the
control agents is willing to exchange information about their subsystems. It is therefore
necessary to explore the performance bounds of the control loop possibly achievable
with partial system information. Similar issues have been already studied in the field
of Economics, using tools provided by the game theory. The authors of [34] extend
a performance metric introduced by [137]—the competitive ratio—for the purpose of
quantifying the distance from the optimum of the distributed solution of an LP problem
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when the information is locally segmented. From the coalitional control standpoint, it
is arguably critical to characterize the improvement provided by a broader knowledge
of the system, and promote the formation of coalitions accordingly. Notice that the
previous question can be reversed: what is the minimal partition of the system model
information necessary to guarantee some performance goal? In order to address this
question, the authors of [34] point out that additional metrics need to be formulated
in order to allow the characterization of the different partitioning possibilities and
the relative minimality notion. Again, possible candidate for such task are already
available in the game theory literature about multi-agent decision making under partial
information.

Performance metrics The development of the coalitional control field requires the
definition of key performance indicators, especially those capable of capturing the trade-
off between the information exchanged by the control agents and the performance of the
system. For example, in [34] the connection between closed-loop performance and the
amount of exchanged information is characterized for distributed linear quadratic con-
trollers. Bounds are provided on the minimal information exchange needed to achieve
an improvement over the performance of the best decentralized (communication-less)
scheme.
By addressing a networked resource allocation problem, the work of [138] identifies
how a measure of locality in the individual control laws can be translated into a bound
on the overall achievable efficiency. The relationship between the redundancy of infor-
mation in the control laws implemented by agents and the achievable efficiency of the
overall behavior is then characterized, providing bounds on the efficiency of the stable
solutions. When full information regarding the mission space is available to the agents,
the efficiency of the resulting stable solutions is guaranteed to lie within 50% of the
optimal. However, as the reach of the information becomes more limited, the efficiency
of the stable solutions may be as low as 1/N of the optimal, where N designates the
number of agents.

Commitment between cooperating agents Depending on the type of informa-
tion exchanged and its purpose, it is possible to classify the cooperation in decreasing
degrees of subsystems’ integration, ranging from full information (the coalition is for-
mally equivalent to a unique subsystem) to binding to a prearranged output interval,
or sharing planned trajectories, interaction models, objectives. Data for different de-
grees of cooperation can be computed offline and retrieved during system operation,
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in order to implement control schemes with varying requirements (from completely
decentralized to centralized) on top of the same control infrastructure [8, 10]. This in-
cludes the possibility of reserving some backup strategies for the case of communication
failure [94].

Theoretical guarantees Classical theoretical properties such as stability or robust-
ness for the closed-loop system are more challenging in this context, specially in the
case of bottom-up approaches, where little global information may be available at the
individual subsystem level.

Coalitional guarantees Research on the novel properties specific of this type of
control systems is needed. An example would be the degree of robustness of the
coalitions with respect to the external incentives that their members may have for
leaving.

Combinatorial explosion Another issue is linked with the number of possible struc-
tures of the controller under a given data network. Approaching the problem of finding
the optimal coalitional structure with exhaustive search can become unviable even for
relatively small number of agents, due to the exponential growth of the number of pos-
sible coalitions. Constraints on the communication topology and the number of agents
in a coalition might help to relieve this issue, since the realization of some configura-
tions would be denied. Alternatively, limitations on the number of links that can be
switched during a certain period would reduce the search space and ease the on-line
implementation of coalitional control schemes.

At this point, the coalitional control framework reveals itself as a wide open field
for novel and diverse investigation. In the complex networked systems falling within
its scope, information about the relevance of the agents and data links involved in the
distributed control problem is of critical importance [27, 26]. Game theory can be useful
in this sense. The role of cooperation costs on the outcome of the coalition formation,
as well as its relation with control optimality, constitutes an interesting topic for future
research. Allocation criteria from game theory may be employed to redistribute the
control effort over the agents participating in cooperative tasks [139], or for dynamic
model partitioning in a distributed control architecture. Reconfiguration capabilities
provided to the controlled system through the evolving coalitional structure are suited
for fault-tolerance needs or plug-and-play settings [140].

When only a subset of the control agents is able/willing to exchange information
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about their subsystems, it might be interesting to investigate the performance bounds
of the overall control loop. These questions have been already addressed in fields such
as economics and computer science, but remain an open challenge in the framework of
dynamical systems control. Privacy-related issues—inherent in SoS—have been gener-
ally overlooked in order to focus on the overall system performance or on specific data
transmission problems (e.g., limited bandwith, channel noise, data loss). The impact
of (partially) restricted knowledge of the global system by local control agents has
received relatively little attention [141]. Conversely, by exploiting available real-time
data exchange infrastructures, it can be interesting to characterize the improvement
provided by a broader knowledge of the system [90], and promote the formation of
coalitions accordingly.

Incentive mechanisms from game theory can be applied in intelligent transportation
systems, for traffic or service demand reshaping [99], also in competing markets like
EV charging [119, 100].

Finally, there is still room for the analysis of the coalitions stability (average coali-
tion lifetime), and the associated conditions on benefit redistribution among cooper-
ating controllers [98] (especially if the objective function has an economical meaning),
as well as the sufficient conditions for the stability of the system in control theoretic
sense, i.e., guarantees of reaching the desired setpoint.





Appendix A

Coalitional control and game
theory

The formation of coalitions among the control agents in a distributed control framework
is the foundation of coalitional control. This section presents the notions of game
theory most related with coalitional control and, in general, with distributed control.
For its wide application in the design and the analysis of distributed control strategies,
the concept of Nash equilibrium is first introduced. The remainder of the section is
dedicated to the basic tools for the analysis of coalitional stability. Finally, the dynamic
coalition formation problem is briefly introduced.

A.1 Introduction

Game theory aims at mathematically characterizing the behavior of independent agents
interacting within a complex environment, in the presence of conflicting interests. Two
main branches can be identified in this field, addressing noncooperative and cooperative
games, respectively. Noncooperative games model situations in which a number of
independent agents, that have (partially) conflicting interests, optimize their individual
strategy on the basis of a utility index affected by other agents’ actions, without any
coordination between them. Notice that this does not preclude cooperation: indeed,
cooperation can arise from the specific architecture of the game, without any agreement
among the agents. A particular class of games is related to incentive system design.
Here, the top level of an organization chooses a reward scheme and the lower levels
make decisions trying to maximize their individual reward. The problem consists in
choosing a reward scheme so that the lower-level decision makers end up minimizing
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a global cost function [13]. A typical example of application is distributed resource
allocation [48]. Cooperative games are appropriate to model situations in which some
commonalities are found among the agents [142]. As a consequence, the individual
benefit can be improved through the joint operation of the players. Especially related
with the work of this thesis are the dynamic coalition formation games. These games
contemplate the evolution of the cooperative structure implemented by the players in
order to operate jointly. Such evolution can be ascribed, e.g., to variations in the degree
of coupling among different parts of the system, or to players that enter or leave the
game in a plug & play setting.

In game theory, the term strategy designates a well-defined sequence of actions (also
moves) performed by an agent, generally resulting from a particular response algorithm
reflecting the behavior of the agent. Games contemplate a set of actions available for
each agent to pick at each turn, which can be translated into the control engineering
terminology as the input constraint set. An action is intended as an input applied to
the system.

A basic distinction is made between actions applied in a sequential or simultaneous
fashion. The first category allows to consider the case where the players are aware of
the strategy implemented by others: the outcome of sequential games (also known as
dynamic games, or games in extensive form) can be represented by trees. The second
category, known as games in strategic (or normal) form, is considered for modeling
scenarios in which the players act simultaneously or, in general, are not aware of the
actions taken by others. The outcome of such games is generally represented on a
table [142].

Games can also be classified depending on the quality of information available to
the players: a complete information game is characterized by the knowledge of the
strategies and payoffs available to the other players (this does not necessarily include
information of the strategy actually implemented by the others). The designation per-
fect information identifies the complete knowledge of actions taken by all players [142]
(although in simultaneous games the players can only be aware of past actions). To give
an example, in a game with complete and imperfect information players are aware of
the actions available to everyone, and of the corresponding payoffs, but their decisions
cannot be based on the knowledge of the decisions of the others.

Static games model situations in which the agents apply a one-shot strategy, as
opposed to repeated game models. The scenarios encountered in control engineering
show, in general, analogies with both dynamic games—in which time has a fundamen-
tal role in the decision making (the strategy can be based on the knowledge of past
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Figure A.1: Noncooperative vs. cooperative game theory

implemented actions)—and repeated games, since the agents can act more than once.
One class of games is dedicated to the analysis of infinitely repeated games, where the
horizon is not known a priori (in this class of games, the focus is on the existence of a
winning strategy) [142].

One of the foundations of game theory is the assumption that the agents are ra-
tional, i.e., all the actions taken are meant to improve utility. However, due to the
suboptimality of the control strategy, or to other factors such as failures or delays,
this assumption does not always hold in practice. In general, the notion of rationality
may be better interpreted as each player’s knowledge of its objectives, evaluated on
the basis of its own value system to synthesize the strategy to be implemented [142].
It is important to design algorithms capable of preventing the system to deviate from
the desired equilibrium due to possible nonrational decisions. Game theory provides
proper frameworks to deal with such errors, e.g., the concept of perturbed equilibrium,
games with imperfect information or imperfect observability. The study of games with
bounded rationality is an emerging field that addresses situations where nonrational
decisions may be taken [14].

A.2 Noncooperative games

A game is defined through three elements: a set N of agents (players), a set of allowed
actions Ai and a utility function ui for each agent i ∈ N . In a noncooperative game,
each agent i chooses the action ai ∈ Ai that maximizes its utility ui(ai, a−i), which
depends as well on the actions a−i of the rest of the agents. When the game is dynamic,
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additional elements are also reflected in the utility function, such as time, past actions,
information sets [14]. Sequences of actions applied in a deterministic manner are de-
fined as pure strategies; sequences of actions picked according to a given probability
distribution are defined as mixed strategies.

A.2.1 Dominant and dominated strategies

From the point of view of each player, strategies may be characterized as dominant and
dominated. A strategy is referred to as dominant if the player has the incentive to play
it regardless of the strategies played by other players. On the other hand, a strategy
is dominated if the player always has better alternatives regardless of the strategies
played by the others.

A.2.2 Equilibria in noncooperative games

The solution of a strategic game (i.e., where the players are not aware of the actions
taken by others) is represented by possible equilibria of the strategies applied by the
agents. The Nash equilibrium corresponds to a stable state in which no agent can
improve its utility by changing its strategy, once the other agents’ choices are fixed. It
can be reached with little or absent coordination in decentralized settings, and may be
not unique. In particular, the Nash equilibrium of a static noncooperative game with
pure strategy is the set of actions a∗ ∈ A1×A2× . . .×A|N | such that for all the agents
i ∈ N holds

ui(a∗i , a∗−i) ≥ ui(ai, a∗−i), ∀ai ∈ Ai. (A.1)

For mixed strategies a similar definition is given, based on the probability distribution
of the actions to take. A Nash equilibrium is guaranteed to exist in mixed strategy
games. A Nash equilibrium cannot involve any dominated strategy.

In presence of multiple Nash equilibria, several metrics can be used to study the
efficiency of each one of them, such as the price of anarchy and the price of stability [143,
14].

For sequential games, a different concept—known as subgame perfect equilibrium—
is used. In such games, agents synthesize their strategies according to the actions
already taken by others, and the consequent range of future outcomes. Thus, each
agent will focus on the subtree showing the possible evolution of the game (and whose
root represents the current state).



A.3. Bargaining theory 131

A.3 Bargaining theory

Bargaining theory studies situations in which two or more agents have a common
interest to cooperate, but at the same time they have conflicting interests about the
conditions of such cooperation (e.g., two or more agents have a common interest to
trade, but conflicting interests on the price at which to trade). In other words, agents
would like to reach an agreement rather than disagree; however, each agent would like
to reach an agreement that is as advantageous as possible for itself [142]. Truthfulness
of the participants is an essential element in bargaining. For this reason, a consistent
branch of game theory is dedicated to the development of pricing mechanisms aimed
at discouraging cheating among the players.

A.3.1 Nash bargaining

The Nash bargaining model applies to situations in which two individuals bargain over
the partition of a fixed payoff: the set of possible agreement is the set of partitions
whose sum is the total payoff. In case of disagreement, each player is assigned a penalty
referred to as the disagreement point of the game. The useful payoff for each player
is thus defined as the difference between the payoff received in case of agreement and
the disagreement point. The partition that maximizes the product of the agents’ useful
payoffs is referred to as the Nash bargaining solution or the Nash product [142].

A.3.2 Rubinstein bargaining

The Rubinstein bargaining game models a sequential bargaining where offers and coun-
teroffers are made by turns. In order to preclude an infinite negotiation, a cost is in-
curred in case the agreement is delayed. In other words, at each additional round the
size of the available payoff becomes smaller. Thus, at any given round of the bargain-
ing, the power of a player is determined by the magnitude of this cost. The factor by
which the payoff is decreased can be different for each player, and it is referred to as the
player’s discount factor. The Rubinstein bargaining shows a unique subgame perfect
equilibrium: any offer made by a player should be at least equal to the discounted
value that the opponent is able to get in the next round.
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A.4 Bayesian games

The Bayesian games framework can be used to model scenarios in which the set of
agents may be characterized by several behavior profiles (e.g., some agents might favor
cooperation, while others may want to cheat). In particular, an agent does not know
in advance the exact behavior that the other agents will apply to a certain situation,
although it may know the whole set of possible behaviors. The uncertainty about the
characteristics of other players is modeled by introducing a set of possible states, called
player’s types, with their associated (guessed) probability of occurrence.

Example A.1. In a bargaining situation for the allocation of a given payoff, the in-
formation disclosed by the agents (e.g., about the costs of operating their systems) may
or may not be truthful, in order to take advantage and receive a greater share of the
payoff; in such a case, Bayesian game model can be used to extract a profile of the other
agents’ actions. �

When choosing the strategy to be implemented next, a player should take into
account the probability of occurrence of each of the other players’ types, and thus their
possible actions.

A.5 Multi-agent learning

An important line of research related with game theory is the development of learning
algorithms in order to achieve a desired cooperative equilibrium. A learning algorithm
is typically composed of three steps: (i) observation of the state of the environment;
(ii) estimation of the prospective utility; (iii) update of the strategy [14].

The best response represents the simplest form of such algorithms: at each iteration,
every agent applies the strategy which maximizes its utility. However, the outcome of
such a scheme is very sensitive to the initial condition. Convergence to an equilibrium
is only guaranteed with particular types of utility functions, and the convergence to an
efficient equilibrium cannot be ensured [14].

In [14] some relevant categories of advanced learning algorithms are introduced:

• Fictitious play: algorithms in this category are based on the estimation of the
frequency with which other agents implement a given strategy. On the basis of
its estimate, each agent can choose the best strategy. For some type of games
(e.g., zero-sum games) this scheme converges to a Nash equilibrium.

• Regret matching: this class of algorithms is based on the minimization of the
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regret from applying a certain strategy, i.e., the difference between the utility
of always applying that strategy and the utility achieved by implementing the
current strategy.

• Reinforcement learning.

• Stochastic learning.

In order to overcome instability issues due to possible errors (i.e., nonrational strate-
gies) during the learning procedure, these algorithms are commonly designed so that
the agents are allowed to choose unintended strategies, so as to perturb the reached
equilibrium and seek for any opportunity of improvement. This kind of approach,
called learning by experimentation, is receiving significant attention in game theory
and multiagent learning, and has shown good performances in communication appli-
cations [14].

A.6 Coalitional game theory

Cooperative game theory provides means of analyzing the behavior of self-organizing
agents that can communicate and decide to cooperate in order to achieve some benefit.
Also, cooperative game theory focuses on the design of mechanisms for the cooperation
so to guarantee fairness and efficiency. However, since most research has been focused
on noncooperative games so far, specialized tools are still needed for the design of
such mechanisms, in particular those suited for the dynamical environments naturally
encountered in engineering applications.

Under cooperative game theory, coalitional games and Nash bargaining provide
tools for the analysis of situations in which the agents have to decide with whom to
cooperate and under which conditions [14]. Nash bargaining focuses on the negotiation
of the conditions for the cooperation within a given coalition (e.g., allocation of the
payoffs among the members of a coalition). A coalitional game is uniquely defined by
the pair (N , v), where N is the set of players, and v(C) is the value of a given coalition
C ⊆ N in the game. The definition of this value determines the form and the type of
the game [48].

The basic category of coalitional games is represented by games in characteristic
form, where the value of C depends only on the members that compose it, with no
regard to how the rest of the agents are organized. In games with transferable utility
(TU), a value is assigned to any possible coalition through a function v : 2N → R. The
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real value v(C) associated with coalition C can be divided and transferred among its
members (e.g., side-payments used to attract other players). The payoff pi is defined
as the utility received by each agent i ∈ C after the division of v(C). The vector of
payoffs assigned to all the agents is referred to as the allocation.

For the members of any given coalition, an allocation is said to be efficient when
it is obtained by splitting the entire value of the coalition, i.e., when the following
condition holds:

Definition A.1 (Efficiency). ∑
i∈C

pi = v(C) (A.2)

Furthermore, an allocation is said to be individually rational when it satisfies:

Definition A.2 (Individual rationality).

pi ≥ v({i}), ∀i ∈ C (A.3)

In other words, individual rationality implies that the payoff offered to any member
of a coalition has to be at least equivalent to the payoff that can be achieved by
playing independently. An allocation satisfying both (A.2) and (A.3) is designated as
imputation [49].

In different cases, the payoff is assigned directly to the members of a coalition,
according to given rules (or possible constraints on the division of the utility). The
individual payoffs cannot be redistributed (transferred) among the players. Such sit-
uations are modeled by coalitional games with nontransferable utility (NTU). Hence,
the value of a coalition C is not expressed by a single real value; instead, v(C) ⊆ R|C| is
a set of allocations, each one relative to a given coalition’s strategy.1

Games in characteristic form allow to model a wide spectrum of scenarios. In
engineering applications, however, it is natural to encounter problems in which the
value of a given coalition cannot be determined regardless of how the rest of the agents
are organized. Games in partition form model such type of problems. Given a partition
of the set of agents N , i.e., a set of disjoint coalitions C = {C1, . . . , Cl}, the value of a
coalition Ci ∈ C is expressed as v(Ci,C) (this value can be either TU or NTU).

The two game forms introduced so far do not consider any underlying communi-
cation infrastructure among the agents. Indeed, either in characteristic or in partition
form, the value of a coalition does not depend on how the agents are connected. Coali-
tional games in graph form have been introduced to model situations in which the

1The notation | · | denotes the cardinality of a set.
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connections between the agents influence the utility that they can achieve. As the
name suggests, these connections are modeled by means of a graph (either directed
or undirected) whose nodes represent the agents. The value of a coalition v(GC) is
thus expressed on the basis of the topology of the edges connecting the agents of C;
depending on the scenario, the value v(GC,GN\C) can be a function of how the rest of
the agents are connected [48].

A.7 Canonical coalitional games

Canonical coalitional games are in characteristic form (TU or NTU). The main feature
of games belonging to this category is that cooperation is always beneficial. More
specifically, the superadditivity property always holds:

v(C1 ∪ C2) ≥ v(C1) + v(C2) (A.4)

which implies that the members of two disjoint coalitions C1 and C2 are able to achieve
at least the same payoff allocation if participating in the coalition produced by the
union C1 ∪ C2. This, in turn, leads to the formation of the grand coalition, since the
payoff allocation that can be obtained from v(N ) is at least as good as those obtained
through the coalition of any possible subset of agents. Hence, the theory on canonical
coalitional games focuses on two main problems:

• stability: how to find a payoff allocation guaranteeing that no agent would prefer
to leave the grand coalition;

• fairness: it can be interpreted as a notion allowing to model the influence of
“global goals” on the agents’ behavior. The members of a coalition may care
about receiving a payoff that is balanced with the individual contributions (thus,
each agent care about both its own payoff and the payoff assigned to the oth-
ers) [144].

A.8 The core

The set of payoff allocations able to guarantee that no agent has an incentive to leave the
grand coalition N to form a coalition C ⊂ N is called the core. In particular, a payoff
allocation p ≡ {pi}i∈N belonging to the core satisfies the following two conditions2:

2The examples refer to a TU game. For NTU games the definition of the core is similar, although
based on the individual payoff instead of their sum.
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• Efficiency (budget rationality): ∑
i∈N

pi = v(N ), i.e., the entire value of the grand
coalition has to be shared among its members.

• Group rationality: ∑
i∈C

pi ≥ v(C), ∀C ⊆ N , i.e., the payoff pi obtained by each
member of the grand coalition has to be greater (or equal) to the one obtained
by acting alone or within a smaller coalition.

A payoff allocation p belonging to the core is said to be stabilizing [49]. The core is
not guaranteed to exist for all canonical games. When the core is empty, the grand
coalition cannot be stabilized. The existence of the core in a TU game is related to
the feasibility of the following LP problem:

min
p

∑
i∈N

pi

s.t.
∑
i∈C

pi ≥ v(C), ∀C ⊆ N
(A.5)

Since the growth of the number of constraints in (A.5) is exponential in the number
of agents, finding the existence of the core is an NP-complete problem. In practice,
however, the search of imputations can be narrowed by considering those of most
interest (possibly already known to be fair) in a given scenario.

Nonemptiness of the core is assured in convex games.

Definition A.3 (Convex game). A TU canonical game is convex if the following con-
dition holds:3

v(C1) + v(C2) ≤ v(C1 ∪ C2) + v(C1 ∩ C2), ∀C1, C2 ⊆ N (A.6)

or alternatively, for all i ∈ N and any pair of coalitions C1 ⊆ C2 ⊆ N such that
C1 ∩ {i} = C2 ∩ {i} = ∅,

v(C1 ∪ {i})− v(C1) ≤ v(C2 ∪ {i})− v(C2) (A.7)

Definition (A.7) relates the convexity of the game to the marginal contribution of each
agent i: in a convex game, the marginal contribution of any agent i is nondecreasing
w.r.t. set inclusion (i.e., the size of the coalition it joins). In other words, a game is
convex if an agent’s marginal contribution increases if it joins a larger coalition [145].
However, convexity is a strong condition, hard to find in real-world scenarios. Balanced-

3The definition can be extended to NTU games as well.
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ness of a game is a weaker condition—which holds for a wide class of problems—that
also guarantees a nonempty core, as stated by the Bondareva-Shapley theorem [49].

Definition A.4 (Balanced map). Let α : 2N → [0, 1] be a function that assigns a
weight to each possible coalition in a set N of agents. The function α is said to be a
balanced map if ∑

C∈2N
α(C)1{i ∈ C} = 1, ∀i ∈ N (A.8)

i.e., α is a balanced map if, for any agent i, the sum of the weights assigned by α
to every coalition containing i equals 1.4

Definition A.5 (Balanced game). A game (N , v) is said to be balanced if for any
balanced map α it holds that

∑
C∈2N

α(C)v(C) ≤ v(N )

Theorem A.1 (Bondareva-Shapley). A coalitional game has a nonempty core iff it is
balanced.

A.9 Shapley Value

As mentioned in Section A.7, it is not uncommon to find the core to be an empty
set or, vice versa, to be so large to make the choice of a suitable imputation a hard
task. Furthermore, an allocation belonging to the core does not necessarily guarantee
fairness to every agent (e.g., Bird’s allocation rule).

Shapley tackled these issues by defining the conditions to obtain a unique payoff
mapping, i.e., the Shapley value of the game (N , v). Any Shapley allocation φ must
satisfy the following four axioms:5

1. Efficiency: ∑i∈N φi(v) = v(N ).

2. Symmetry: given two players i and j, if v(C∪{i}) = v(C∪{j}), ∀C|C∩{i, j} = ∅,
then φi(v) = φj(v).

3. Dummy: if, for any player i, v(C) = v(C ∪ {i}) holds ∀C|C ∩ {i} = ∅, then
φi(v) = 0.

4The notation 1{·} : N → {0, 1} designates the indicator function, which takes the value 1 if
i ∈ C, or 0 if i /∈ C [146].

5The definition is given here for TU games. Definitions of the Shapley value for NTU games are
also available.
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4. Additivity: let u and v be characteristic functions. Then φ(u+ v) = φ(u) + φ(v).

The symmetry axiom assigns the same payoff to players that equally improve a given
coalition, while the dummy axiom assigns a null payoff to a player which does not
contribute when joining a coalition. The additivity axiom states the uniqueness of the
mapping φ over the space of all coalitional games, relating the Shapley values of two
different games characterized by u and v [48]. The formulation of the individual payoff
assigned to player i according to the Shapley value’s mapping is:

φi(v) =
∑

C⊆N\{i}

|C|!(|N | − |C| − 1)!
|N |! [v(C ∪ {i})− v(C)] (A.9)

The weight factor of the marginal contribution v(C∪{i})−v(C) expresses the probability
—for any agent i— of joining a given coalition C ⊆ N \ {i}, assuming that the agents
form the grand coalition in a random order. Thus, the value assigned by Shapley’s
criterion corresponds to the individual expected marginal contribution.

A Shapley allocation that also belongs to the core of a game combines the fairness
properties of the Shapley value with the stability of the core. Note that for convex
games, the Shapley value provides a closed-form expression of an imputation belonging
to the core. However, in nonconvex games the Shapley value is generally not related
to the core [49].

Despite the advantage of its closed form, the computational complexity of (A.9)
increases significantly with the number of agents: alternative techniques for its com-
putation can be found in the literature (the interested reader is referred to [48] and
references therein).

A.10 The nucleolus

Another important allocation criterion for canonical games is the nucleolus. It consists
in the allocation p = (pi)i∈N (for the grand coalition) able to minimize the dissatisfac-
tion of all the agents for all the possible coalitions in N . The dissatisfaction is defined
for each coalition C ⊆ N as the excess

e(p, C) = v(C)−
∑
i∈C

pi (A.10)

Consider the vector θ(p) ∈ R2N containing the excess values for every coalition in the
set of agents, arranged in nonincreasing order, relative to an imputation p. Then, the
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nucleolus is the imputation p∗ providing the minimum dissatisfaction according to the
lexicographic order, i.e.:

θ(p∗) <lex θ(p)

where the <lex operator designates the lexicographic order, defined as:

(e1, . . . , e2|N|) <lex (e′1, . . . , e′2|N|)

iff
∃i ≤ 2|N | | ei < e′i ∧ ej = e′j, ∀j < i

Definition A.6 (Nucleolus [49]). The nucleolus of a game (N , v) is the lexicographi-
cally minimal imputation.

As a consequence of the efficiency and group rationality conditions, only imputa-
tions with negative or null dissatisfaction belong to the core. If the core of a game is
not empty then the nucleolus is in the core; following Theorem A.1 this condition is
surely verified in balanced games (which include convex games).

The nucleolus of a canonical coalitional game always exists and is unique. It is group
and individually rational, and satisfies the symmetry and dummy Shapley’s axioms.
Moreover, it always belongs to the kernel of a game.6 The nucleolus has so far been
defined only for TU games, and its computation requires the solution of O(2N ) linear
programs, each with |N |+ 1 decision variables [49].7

A.11 Power indices

Power indices express the influence of players on the formation of coalitions and on the
outcome of the game [142]. A fair allocation rule can be based on (normalized) power
indices. Widely used power indices are the one proposed by Shapley and Shubik (also
known as Shapley value, see Section A.9), the Banzhaf index, and the Holler-Packel
index.

The Shapley value assumes an equal distribution of the probability of the order in
which any agent joins all possible coalition. The Banzhaf power index assumes instead
that all possible coalitions containing agent i are equally probable. The measure of the

6Given two players i and j, the kernel of a game is the set of allocations such that the maximum
dissatisfaction of a player i belonging to any coalition not including player j is equal to the maximum
dissatisfaction of player j belonging to any coalition without i.

7One decision variables corresponding to the payoff of each agent, plus an additional slack variable
representing the excess for that coalition.
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power of agent i according to the Banzhaf index is defined as:

BPIi = 1
2|N |−1

∑
S⊆N|i∈S

(v(S)− v(S \ {i})).

The Holler-Packel index is based as well on the marginal contribution of agent i, but
it focuses on the coalitions whose allocations are in the core:8

HPIi =
∑

S∈C(N ,v)
(v(S)− v(S \ {i})),

where C(N , v) denotes the set of coalitions whose payoff allocations constitute the core
of the game (i.e., the best that can be achieved by the members of these coalitions,
such that no one of them has an incentive to leave in search of a greater payoff).

Depending on the situation, some indices may be more suited than others. In
particular, the Shapley value is based on the assumption that the agent commits to
stay in the coalition it joins. On the other hand, the Banzhaf value is based on the
idea that agents are free to join and leave any coalition.

A.12 Dynamic coalition formation

In this class of games the focus is directed on the evolution of the coalitional structure
due to variations in the nature of the game (e.g., variations in the degree of coupling
among different parts of the system, players that enter or leave the game in a plug &
play setting). The purpose of the coalition formation process is to maximize the total
utility (social welfare) in TU games, or to achieve a Pareto optimal payoff allocation
in NTU games.

In general, the optimization of the composition of coalitions is an NP-complete
problem, since it requires the evaluation of all the possible partitions of the set N
of agents, whose number—known as the Bell number—grows exponentially with the
number of agents. Let Ks denote the set of possible coalitional structures (that is,
partitions of N ) composed by s coalitions. The cardinality of this set is expressed by
the Stirling number of the second kind [147]:

|Ks| =
1
s!

s−1∑
j=0

(−1)j
(
s

j

)
(s− j)n (A.11)

8See Section A.8 for a definition of the core.
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Then |K| = ∑|N |
s=1 |Ks| is the number of possible coalitional structures given a set N of

agents [103]. For example, a set of 10 agents originates 115975 possible partitions.

As a consequence, a centralized approach for the optimization of the coalitional
structure is impractical. In many cases the properties of the game (e.g., the way its
value v is defined) can be used as a guide for reducing the computational complexity.
Nevertheless, since coalition formation naturally involves several autonomous agents,
a distributed approach is generally desired for the solution of such problem. Several
techniques have been proposed so far, based on heuristic methods, Markov chains, set
theory, bargaining and other negotiation algorithms from economics (the interested
reader is referred to [48] and references therein).

The work of Apt and Witzel [57] focuses on the outcome of a coalition formation
process resulting from the application of two rules, namely merge and split. The aim is
to identify the conditions under which the outcome of the process is a unique coalitional
structure, irrespective of the initial condition. The rules proposed in [57] are based on
the comparison of different partitions of the set of players involved in a given merge
or split operation, according to preference criteria such as Nash, utilitarian or leximin
order (these ordering criteria provide advantageous properties, namely irreflexivity,
transitivity, and monotonicity).

Definition A.7 (Merge [57]).

{C1, . . . , Ck} ∪ P → {
k⋃
i=1
Ci} ∪ P iff {

k⋃
i=1
Ci} . {C1, . . . , Ck}

Definition A.8 (Split [57]).

{
k⋃
i=1
Ci} ∪ P → {C1, . . . , Ck} ∪ P iff {C1, . . . , Ck} . {

k⋃
i=1
Ci}

In definitions A.7 and A.8, the symbol . denotes the local preference operator. The
rest of the agents not concerned with the transformation is denoted as P ≡ N \⋃ki=1 Ci.

The application of supplementary basic rules can be studied to improve the conver-
gence of the coalition formation process. For example, transfers (moving a subset of
agents from one coalition to another) and swaps (exchanging subsets of agents between
two coalitions) are considered in [148].
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A.12.1 Preferences for TU games

Consider a coalitional TU game (N , v), where the value v maps a given coalition to a
nonnegative real value, such that v(∅) = 0. Then consider two different partitions of a
given set of agents, i.e., two sets of coalitions A ≡ {C1, . . . , Cl} and B ≡ {C ′1, . . . , C ′m}.
For a TU game, the preference operator can be based on the value of the coalitions:

A .B iff v(A) . v(B) (A.12)

where v(A) ≡ {v(C1), . . . , v(Cl)}.
Several criteria can be used for the comparison of two given coalitional structures.

Let a = (a1, . . . , al) and b = (b1, . . . , bm). The following ordering criteria fulfill the
properties desired for the preference operator, namely irreflexivity, transitivity, and
monotonicity [57]:9

• Utilitarian order :
a �ut b iff

l∑
i=1

ai >
m∑
i=1

bi

• Nash order :
a �Nash b iff

l∏
i=1

ai >
m∏
i=1

bi

• Leximin order :
a �lex b iff ǎ >lex b̌

where ǎ is the sequence of the components of a arranged in nonincreasing order, and
the >lex operator designates the lexicographic order, defined as:

(a1, . . . , al) >lex (b1, . . . , bm)

iff
∃i ≤ min(l,m) | ai > bi ∧ aj = bj, ∀j < i

or
∀i ≤ min(l,m), ai = bi ∧ l > m.

Notice that the Nash order implicitly promotes an equal distribution, since for a fixed∑l
i=1 ai,

∏l
i=1 ai is maximum when all ai are equal [57].

9Examples of different ordering criteria that does not satisfy such properties are also shown in [57],
such as the elitist or the egalitarian order.
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A.12.2 Individual payoffs

The preference criteria presented in Section A.12.1 are based on the entire coalition’s
value. However, in practice each agent may base its preference on the individual payoff
that it achieves by joining a certain coalition. In [57], the notion of individual value
function is used in order to map the value v(C) of a given coalition C to each agent’s
payoff. The individual value function φi(C) is assumed to be efficient, i.e.:

∑
i∈C

φi(C) = v(C)

Let A ≡ {C1, . . . , Cl} and A′ ≡ {C ′1, . . . , C ′m} be two different partitions of the same
(sub)set S of agents, i.e., ⋃

i∈A
Ci =

⋃
i∈A′
C ′i = S ⊆ N (A.13)

Furthermore, let Φ(A) be the vector of the allocations of the coalitions in the partition
A. According to [57], no general relation can be found between orderings based on
v(C) and orderings based on φ(C). An exception to this is represented by the utilitarian
order, since by definition (see Section A.12.1) it compares the sum of the payoffs, that in
turn, following the efficiency assumption (A.13) on φ(C), coincides with the coalitional
value v(C).

The Pareto order can be used as a preference criterion for two different set of
allocations Φ(A) and Φ(A′). Notice that in this case the comparison is on the payoff
achieved by each agent in the set S:

(φ1, . . . , φn) �P (φ′1, . . . , φ′n) iff ∀i ∈ {1, . . . , n}, φi ≥ φ′i ∧ ∃j |φj > φ′j (A.14)

where �P designates the Pareto order, and n is the number of agents in S. The Pareto
order satisfies the transitivity, irreflexivity and monotonicity properties desired for the
preference operator [57].
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