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Abstrat

We present new lower bounds on the number of straight-edge triangulations that every set of n points in plane

must have. These bounds are better than previous bounds in ase of sets with either many or few extreme points.

1. Introdution

For a �nite set S of points in the plane let T (S)

denote the number of straight-edge triangulations

of S. Let t(h;m) and T (h;m) denote the minimum

and the maximum of T (S) with S ranging over

all sets with h extreme and m non-extreme (\inte-

rior") points. It is known that [4℄

T (h;m) �

59

m

� 7

h

�

m+h+6

6

�

and [1℄ that for h+m � 1212

t(h;m) � 0:092 � 2:33

h+m

= 
(2:33

h+m

) :

We prove the following new bounds for t(h;m):

Theorem 1 For onstant  = 4829=116640 >

0:0414 we have for all h+m � 11

t(h;m) � 

�

30

11

�

h

�

�

11

5

�

m

=  � 2:7272

h

� 2:2

m

:

Theorem 2 For every �xed h we have

t(h;m) � 
(2:63

m

) :
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Part of this researh was done while the �rst author

was with the International-Max-Plank-Researh-Shool in

Saarbr�uken.

2. Proof Outline for Theorem 1

Let S be a �nite planar set (in non-degenerate

position), let p be an extreme point of S, and let

S

p

= S n fpg. We all p of type (k; ) if the follow-

ing holds: 1) The hain C

p

of onvex hull edges of

S

p

that are visible from p onsists of exatly k+1

edges. 2) The hain C

p

admits at most  simulta-

neous non-interseting hords.

What is a hord? This is an edge e onneting

verties of C

p

so that the polygon bounded by e

and the relevant portion of C

p

ontains no point of

S

p

in its interior.

Note that if p is of type (k; ) then the di�erene

of the number of extreme points of S � p and the

number of extreme points of S is k � 1.

Theorem 1 is a onsequene of the following two

Lemmas:

Lemma 3 Assume p is of type (k; ) and let I

p

be

the k interior verties of the hainC

p

. The following

an be done  times, starting with U = S

p

:

Find a vertex u 2 I

p

\U that is of type (0; 0) with

respet to U and remove it from U .

Lemma 4 Let p be an extreme point of S of type

(k; ) so that S

p

n C

p

ontains at least 4 points:

T (S) � �(k; ) � T (S

p

) ;

where �(0; 0) = 3,�(1; 0) = 11=5, and for all other

pairs  � k

�(k; ) =

�

2



2

+1

� 1

�

�(k; ) + 1
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�(k; ) =

8

>

<

>

:

2C

k+1

� 1

2C

k+1

� 2

if  = k

2C

k+2

� 1

2C

k+2

� 2

if  < k,

and C

j

=

�

2j

j

�

=(j+1) is the j-the Catalan number.

Chasing through the de�nitions in Lemma 4 one

�nds that extreme points of type (k; 0) yield a nie

inrease in triangulation ount from S

p

to S, with

the worst being type (1; 0). If on the other hand

p has type (k; ) with  > 0, whih does not lead

to suh a large triangulation ount inrease, then

Lemma 3 guarantees the existene of  other nie

verties of type (0; 0) that provide suÆient in-

rease if S is built up by adding extreme points.

3. Proof Outline for Theorem 2

This proofs expands an initial idea of Franiso

Santos [3℄. It suÆes to onsider the ase of t(3;m),

in other words the ase ofm points inside a triangle

�.

Consider eah of the m interior points in turn.

Connet it to the three orners of �. This parti-

tions � into three triangles, eah of whih an be

triangulated reursively. This leads to the follow-

ing reursive relation:

t(3;m) � m� min

m

1

+m

2

+m

3

=m�1

ft(3;m

1

)�t(3;m

2

)�t(3;m

2

)g

Now we would like to set t(3;m) � 2

m�a

for

appropriate onstants a and  and use indution

based on the above reursive relation. The problem

now is to make sure that this indution has a good

base. For this purpose we onstrut using various

omputationalmethods expliit lower bounds b(m)

for t(3;m) for m from 0 to some N (we used N =

300). Then we hoose a and  so that 2

m�a

� b(m)

for allm � N and so that with t(3;m) � 2

m�a

the

above reursive relation is satis�ed for all m > N .

This amounts to the onstraint that 2

+2a

� N+1.

Values for  and a an then be found using lin-

ear programming, sine the onstraints for  and a

after taking logarithms are linear. By optimizing 

we then got that

t(3;m) � 0:093 � 2:63

m

:
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