
Verification of Partitions of 2d and 3d Objects

Leonidas Palios

Department of Computer Science, University of Ioannina, 45110 Ioannina, Greece

Abstract

We consider the problems of deciding whether a given collection of polygons (polyhedra resp.) forms (i) a partition
or (ii) a cell complex decomposition of a given polygon (polyhedron resp.). We describe simple O(n log n)-time
and O(n)-space algorithms for these problems, where n is the total description size of the input. If, in the input,
vertices are referenced by means of indices to an array of distinct vertices, then our cell complex decomposition
verification algorithms run in O(n) time.

1. Introduction

In recent years, there has been growing interest
in algorithms that enable us to check the output
of a program. This issue has been considered from
different viewpoints, and the research yielded re-
sults ranging from characterizations of problems
that are checkable [2] to special-purpose checkers.
In particular, in computational geometry, this is-
sue proves to be crucial as the newer and more ef-
ficient algorithms are more and more complicated.
Usually, the authors of an algorithm for computing
some geometric object describe properties of the
object which can be used to verify the correctness
of the computation (see e.g. [1] and [4] for 2d and
3d triangulations of point sets). Often, however,
more machinery is needed.

The first verification algorithms (“checkers”)
were provided by Mehlhorn et al. who defined the
properties that a checker should have (correct-
ness, simplicity, efficiency) and described check-
ers for convex polyhedra and convex hulls [5];
they have also studied checkers for trapezoidal
decompositions, planar point location structures
for trapezoidal decompositions, and Voronoi and
Delaunay diagrams. Devillers et al. extended the
notion of checkers and provided checkers for con-
vex polytopes in two and higher dimensions, and
for various types of planar subdivisions [3]. Their
algorithms run in linear time, assuming that the
input is a 2d or a 3d ordered geometric graph.

Email address: palios@cs.uoi.gr (Leonidas Palios).

In this paper, we present simple and efficient
verification algorithms for partitions and cell
complex decompositions of simple polygons and
polyhedra. The algorithms rely on appropriately
matching the edges of the 2d decompositions and
the facets of the 3d decompositions, and run in
O(n log n) time using O(n) space, where n is the
total size of the input. If, in the input, vertices are
referenced by means of indices to an array of dis-
tinct vertices, then our cell complex decomposition
verification algorithms run in optimal O(n) time.

Note: In the following, a polygon or a polyhedron
is understood to be a simple one.

2. The Two-dimensional Case

We assume that each polygon in the input is
described by the sequence of its vertices along its
boundary, where each vertex is given by its coor-
dinates.

2.1. Verification of a partition of a polygon

Lemma 1 Let P and C be a polygon and a collec-
tion of polygons respectively. Additionally, let EI =
{e− ∂P | e is an edge of a polygon in C} and EB =
{e∩∂P | e is an edge of a polygon in C}. Then, the
collection C forms a partition of P if and only if

(i) the set EI of (parts of) edges of the polygons in
C can be partitioned into sets S and S′ such that
•

⋃
s∈S

closure(s) =
⋃

s∈S′ closure(s),

20th EWCG Seville, Spain (2004)

20th European Workshop on Computational Geometry

• the closures of the segments in S and S′ define
a partition of

⋃
s∈S

closure(s), and
• for each (part of) edge e in S (resp. S′), if S′[e]

(resp. S[e]) is the set of segments of S′ (resp. S)
that are collinear with and intersect e, then,
locally around e, the interior of the polygon in
C with edge e and the interiors of the polygons
in C whose edges contributed the elements of
S′[e] (resp. S[e]) lie on opposite sides of the
line supporting e;

(ii) the closures of the segments in EB form a parti-
tion of the boundary ∂P of P , and for each (part
of) edge e in EB, locally around e, the interior of
the polygon in C with e as an edge and the inte-
rior of P lie on the same side with respect to the
line supporting e.

The partition verification algorithm applies
Lemma 1. It uses an (initially empty) array A

of size equal to the total number of edges of the
polygons in C and of the polygon P .

2d Partition Verification Algorithm
1. Orient the boundary of polygon P and the

boundaries of the polygons in C in a compat-
ible fashion (e.g., the boundary is traversed
in a ccw fashion).

2. For each polygon Q in C do
for each edge

−→

uv of Q do
if u is lex-smaller than v

then add the entry (u, v, +1) in A;
else add the entry (v, u,−1) in A;

3. For each edge
−→

uv of P do
if u is lex-smaller than v

then add the entry (u, v,−1) in A;
else add the entry (v, u, +1) in A;

4. Sort the entries (ui, vi,±1) of the array A by
slope of the line uivi and, in case of ties, lex-
icographically taking into account the coor-
dinates of the vertices ui and vi.

5. For each slope separately, traverse the related
entries of A verifying that those with “+1”
and those with “−1” partition the same set
of segments. If this terminates successfully,
then the collection C of polygons defines a
partition of the polygon P , otherwise it does
not.

Time complexity. Steps 1, 2, and 3 can be com-
pleted in time linear in the total description size n

of the input, while Step 4 takes O(n log n) time.
Step 5 takes O(n) time: for each slope, the sort-

ing of the entries implies that each new entry with
“+1” either is the extension of the latest entry with
“+1” or starts a new segment in the union of the
“+1”-entries (if not, C does not form a partition of
P), and similarly for the “−1”-entries. The algo-
rithm uses O(n) space.

2.2. Verification of a cell complex decomposition
of a polygon

Lemma 2 Let P and C be a polygon and a collec-
tion of polygons respectively. Then, the collection C
forms a cell complex decomposition of P if and only
if the set of edges of the polygons in C can be parti-
tioned into two sets EI and EB such that

(i) for each edge e in EI there exists exactly one
other edge, say d, in EI such that e = d and,
locally around e, the interiors of the polygons in
C with edges e and d lie on opposite sides of the
line supporting e;

(ii) the edges in EB form a partition of the bound-
ary ∂P of P and for each edge e in EB, locally
around e, the interior of the polygon in C with
edge e and the interior of P lie on the same side
with respect to the line supporting e.

The cell complex verification algorithm applies
Lemma 2; it too uses an (initially empty) array A

of size equal to the total number of edges of the
polygons in C.

2d Cell Complex Verification Algorithm
1. Collect all the vertices and assign to each one

of them a distinct positive integer id().
2. Orient the boundary of polygon P and the

boundaries of the polygons in C in a compa-
tible fashion.

3. For each polygon Q in C do
for each edge

−→

uv of Q do
if u is lex-smaller than v

then add (id(u), id(v), +1) in A;
else add (id(v), id(u),−1) in A;

4. Sort the array A lexicographically.
5. Traverse the sorted array A deleting match-

ing entries (i.e., (k, k′,−1) and (k, k′, +1)),
which now appear next to each other.

6. Collect the unmatched entries and by ap-
plying a depth-first traversal construct the
graph that these entries form. If this graph
is a closed path identical to the boundary of
the polygon P , then the collection C of poly-

March 25-26, 2004 Seville (Spain)

gons defines a cell complex decomposition of
P , otherwise it does not.

Time complexity. If n is the total description size
of the input, Step 1 can be executed in O(n log n)
time by means of a balanced binary search tree
to determine identical vertices. Steps 2 and 3 take
O(n) time; so does Step 4 (by using radix sorting),
and Steps 5 and 6. Thus, the algorithm takes a
total of O(n log n) time. The space required by the
algorithm is O(n).

Observe that all the steps of the above algorithm
but Step 1 take O(n) time. Moreover, if the input
consists of the list V of distinct vertices of the poly-
gon P and of the polygons in the collection C, fol-
lowed by the vertices of each polygon, where each
vertex is referenced by its index to the list V , then
we do not need to execute Step 1. Such a represen-
tation is commonly used, and is easily produced by
partitioning programs. Then, it can be determined
whether the collection C forms a cell complex de-
composition of P in O(n) time using O(n) space.

3. The Three-dimensional Case

We assume that each polyhedron in the input is
described by a list of its facets, each represented
by the sequence of its vertices along its boundary,
where each vertex is given by its coordinates.

Our verification algorithms rely on two lemmata
similar to Lemma 1 and Lemma 2.

3.1. Verification of a partition of a polyhedron

Lemma 3 Let P and C be a polyhedron and a col-
lection of polyhedra respectively. Additionally, let
FI = {f − ∂P | f is a facet of a polyhedron in C}
and FB = {f ∩ ∂P | f is a facet of a polyhedron in
C}. Then, the collection C forms a partition of P if
and only if

(i) the set FI of (parts of) facets of the polyhedra in
C can be partitioned into two sets S and S′ such
that the closures of the polygons in each of these
sets defines a partition of

⋃
s∈S

closure(s), and
for each (part of) facet f in S (S′ resp.), the
interior of the polyhedron of C with facet f and
the interiors of the polyhedra of C with facets the
polygons of S′ (S resp.) which intersect with f lie

(locally around f) on opposite sides of the plane
supporting f ;

(ii) the closures of the polygons in FB form a parti-
tion of the boundary ∂P of P , and for each (part
of) facet f in FB, locally around f , the interior
of the polyhedron of C with facet f and the inte-
rior of P lie on the same side with respect to the
plane supporting f .

In light of Lemma 3, we have:

3d Partition Verification Algorithm
1. Orient the facets of the polyhedron P and of

the polyhedra in C in a compatible fashion
(i.e., in counterclockwise order as seen from
outside the polyhedron).

2. For each polyhedron Q in C do
for each facet f of Q do

u← the lex-smallest vertex of f ;
if f ’s boundary forms a left turn at u

then add the entry (f, +1) in A;
else add the entry (f,−1) in A;

3. For each facet f of P do
u← the lex-smallest vertex of f ;
if f ’s boundary forms a left turn at u

then add the entry (f,−1) in A;
else add the entry (f, +1) in A;

4. Sort the entries (fi,±1) of the array A by
slope of the plane supporting fi and, in case
of ties, lexicographically on the second field
of the entry.

5. For each slope separately, verify that the re-
lated facet records with “+1” and those with
“−1” partition the same polygonal regions.
If this matching terminates successfully, then
the collection C defines a partition of the
polyhedron P , otherwise it does not.

Time complexity. Steps 1, 2, and 3 can be com-
pleted in time linear in the total description size n

of the input. Step 4 takes O(n log n) time. Step 5
can also be completed in O(n log n) time: for each
different plane slope, collect the entries with “+1”
as second field, and apply on the associated facets
Steps 2 and 4 of the 2d partition verification algo-
rithm (see Section 2.1); Step 5 of that algorithm
is applied next, except that the difference of the
union of the “+1” and the “−1” entries is com-
puted and used to form a graph; the same pro-
cedure is applied to the entries of the array A

with “−1” as second field; finally, the two resulting
graphs are checked to see whether they are identi-

20th European Workshop on Computational Geometry

cal. Thus, the algorithm takes a total of O(n log n)
time. The algorithm uses O(n) space.

3.2. Verification of a cell complex decomposition
of a polyhedron

Lemma 4 Let P and C be a polyhedron and a col-
lection of polyhedra respectively. Then, the collec-
tion C forms a cell complex decomposition of P if
and only if the set of facets of the polyhedra in C can
be partitioned into two sets FI and FB such that

(i) for each facet f in FI there exists exactly one
other facet, say f ′, in FI such that f = f ′ and,
locally around f , the interiors of the polyhedra in
C with edges f and f ′ lie on opposite sides of the
plane supporting f ;

(ii) the edges in FB form a partition of the bound-
ary ∂P of P and for each facet f in FB, locally
around f , the interior of the polyhedron of C with
facet f and the interior of P lie on the same side
with respect to the plane supporting f .

The cell complex verification algorithm applies
Lemma 4. It uses two auxiliary arrays A and B,
which are initially empty; it works as follows:

3d Cell Complex Verification Algorithm
1. Collect all the vertices and assign to each one

of them a distinct positive integer id().
2. Orient the facets of the polyhedron P and of

the polyhedra in C in a compatible fashion.
3. For each polyhedron Q in C do

for each facet f of Q do
a← the lex-smallest vertex of f ;
b← the lex-largest vertex of f ;
c← f ’s vertex farthest away from the

line ab (and lex-smallest, if ties);
if f ’s boundary is directed a c b

then add ((id(a), id(b), id(c)), +1) in A;
else add ((id(a), id(b), id(c)),−1) in A;

4. Sort the array A lexicographically.
5. Traverse the sorted array A, verify that

matched entries (which now appear next to
each other) correspond to matching facets
and delete them.

6. For each facet f whose entry in A has not
been matched do

for each edge
−→

uv of f do
if u is lex-smaller than v

then add (id(u), id(v), +1, f) in B;
else add (id(v), id(u),−1, f) in B;

7. Sort the array B lexicographically.
8. If the entries in B do not appear in matching

pairs (i.e., (k, k′,−1, f) and (k, k′, +1, f ′)),
then the collection C of polyhedra does not
define a cell complex decomposition of the
given polyhedron P .

9. For each matching pair (id(u), id(v),−1, f)
and (id(u), id(v), +1, f ′) in B do

if the two facets f, f ′ are not coplanar
then make u and v adjacent;

10. Apply a depth-first traversal and check that
the graph formed matches the edge skeleton
of the polyhedron P . If it does, then the col-
lection C of polyhedra defines a cell complex
decomposition of P , otherwise it does not.

Time complexity. Step 1 takes O(n log n) time,
as described in Section 2.2. Steps 2, 3, 5, and 6
take O(n) time. Steps 4 and 7 can be completed in
linear time as well by using radix sorting. Finally,
Steps 8, 9, and 10 also take linear time. Thus, the
algorithm requires a total of O(n log n) time. The
space required by the algorithm is O(n).

Similarly to the two-dimensional case, if the
polyhedron P and the polyhedra in the collection C
are represented by a list of facets, each described
by a sequence of indices to an array of distinct
vertices which indicates the order of the vertices
around the boundary of the facet, then it can be
determined whether the collection C forms a cell
complex decomposition of P in time and space
linear in the total description size of P and C.

References

[1] D. Avis and H. El Gindy, Triangulating point sets in
space, Discrete and Computational Geometry 2, 99–
111, 1987.

[2] M. Blum and S. Kannan, Designing programs that
check their work, Journal ACM 42(1), 269–291, 1995.

[3] O. Devillers, G. Liotta, F.P. Preparata, and
R. Tamassia, Checking the convexity of polytopes
and the planarity of subdivisions, Computational

Geometry: Theory and Applications 11(3-4), 187–208,
1998.

[4] H. Edelsbrunner, F. Preparata, and D. West,
Tetrahedralizing point sets in 3 dimensions, Journal

of Symbolic Computation, 10, 335–347, 1990.

[5] K. Mehlhorn, S. Näher, T. Schilz, S. Schirra, M. Seel,
R. Seidel, and C. Uhrig, Checking geometric programs
or Verification of geometric structures, Proc. 12th

Symp. on Computational Geometry, 159–165, 1996.

