Balanced Intervals of Two Sets of Points on a line or circle

Atsushi Kaneko ${ }^{\text {a }}$ and M. Kano ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Computer Science and Communication Engineering
Kogakuin University, Nishi-Shinjuku, Shinjuku-ku, Tokyo, 163-8677, Japan
${ }^{\text {b }}$ Department of Computer and Information Sciences
Ibaraki University, Hitachi, Ibaraki, 316-8511, Japan
kano@cis.ibaraki.ac.jp http://gorogoro.cis.ibaraki.ac.jp

Abstract

Let n, m, k, h be positive integers such that $1 \leq n \leq m, 1 \leq k \leq n$ and $1 \leq h \leq m$. Then we give a necessary and sufficient condition for every configuration with n red points and m blue points on a line or circle to have an interval containing precisely k red points and h blue points.

Key words: balanced interval, interval, two sets of points, line, circle

1. A balanced interval on a line

In this section we shall prove the following theorem.
Theorem 1 Let n, m, k, h be integers such that $1 \leq n \leq m, 1 \leq k \leq n$ and $1 \leq h \leq m$. Then for any n red points and m blue points on a line in general position (i.e., no two points lie on the same position.), there exists an interval that contains precisely k red points and h blue points if and only if

$$
\begin{equation*}
\left(\left\lfloor\frac{n}{k+1}\right\rfloor+1\right)(h-1)<m<\left(\left\lfloor\frac{n}{k-1}\right\rfloor\right)(h+1), \tag{1}
\end{equation*}
$$

where the rightmost term is an infinite number when $k=1$.
We begin with an example of our theorem. Consider a configuration consisting of 10 red points and 20 blue points on a line in general position. Then by the above theorem, we can easily show that if $k \in\{1,2,3,5,10\}$, then such a configuration has an interval containing exactly k red points and $2 k$ blue points; otherwise (i.e., $k \in\{4,6,7,8,9\}$) there exist a configuration that has no such an interval (Fig. 1). We call an interval that contains given number of red points and blue points a balanced interval.
(a)

(b): 00000000•०००००

$$
\begin{aligned}
& \text { Red points }=0 \\
& \text { Blue points }=0
\end{aligned}
$$

Fig. 1. (a): An interval containing 3 red points and 6 blue points; (b): A configuration that has no interval containing exactly 4 red points and 8 blue points.

Theorem 1 is an easy consequence of the following five lemmas.

For a configuration with red and blue points on a line, we denote by R and B the sets of red points and blue points, respectively. A configuration X with n red points and m blue points on the line is expressed as

$$
\left\{x_{1}\right\} \cup\left\{x_{2}\right\} \cup \cdots \cup\left\{x_{n+m}\right\}
$$

Seville, Spain (2004)

20th European Workshop on Computational Geometry

where each x_{i} denotes a red point or a blue point ordered from left to right. The configuration X is also expressed as

$$
R(1) \cup B(1) \cup \cdots \cup R(s) \cup B(s),
$$

where $R(i)$ and $B(i)$ denote disjoint subsets of R and B, respectively, and some of them may be empty sets. For a set Y, we denote by $|Y|$ the cardinality of Y.
Lemma 2 If

$$
\begin{equation*}
m \leq\left(\left\lfloor\frac{n}{k+1}\right\rfloor+1\right)(h-1) \tag{2}
\end{equation*}
$$

then there exists a configuration with n red points and m blue points that has no interval containing exactly k red points and h blue points.

PROOF. Let $t=\left\lfloor\frac{n}{k-1}\right\rfloor$. Then $n \leq(t+1)(k-1)$, and $m \geq t(h+1)$ by (4). Hence we can obtain the following configuration with n red points and m blue points:

$$
R(1) \cup B(1) \cup \cdots \cup R(t+1) \cup B(t+1)
$$

where $|R(i)| \leq k-1$ for every $1 \leq i \leq t+1, \mid R(1) \cup$ $\cdots \cup R(t+1)|=n,|B(i)|=h+1$ for every $1 \leq i \leq$ $t,|B(t+1)|=m-(h+1) t \geq 0$ and $\mid B(1) \cup \cdots \cup$ $B(t+1) \mid=m$. Then this configuration obviously has no interval containing exactly k red points and h blue points since every interval containing k red points must include $B(j)$ for some $1 \leq j \leq t$.

Lemma 3 If

$$
\begin{equation*}
m>\left(\left\lfloor\frac{n}{k+1}\right\rfloor+1\right)(h-1) \tag{3}
\end{equation*}
$$

then every configuration with n red points and m blue points on a line has an interval containing exactly k red points and at least h blue points.

PROOF. Let $t=\left\lfloor\frac{n}{k+1}\right\rfloor$. Let X be a configuration with n red points and m blue points. Suppose that X has no desired interval. Namely, we assume that every interval containing exactly k red points has at most $h-1$ blue points.
Let $r_{1}, r_{2}, \cdots, r_{n}$ be the red points of X ordered from left to right. For integers $1 \leq i<$ $j \leq n$, let $I(i, j)$ denote an open interval $\left(r_{i}, r_{j}\right)$, and let $B(i, j)$ denote the set of blue points contained in $I(i, j)$. Furthermore, $B(-\infty, i)$ denotes the set of blue points contained in the open interval $\left(-\infty, r_{i}\right)$, and $B(i, \infty)$ is defined analogously. Then
for any integer $1 \leq s \leq t-1, I(s(k+1),(s+1)(k+$ 1)) contains exactly k red points $\left\{r_{j} \mid s(k+1)+1 \leq\right.$ $j \leq(s+1)(k+1)-1)\}$, and thus $\mid B(s(k+1),(s+$ $1)(k+1)) \mid \leq h-1$ by our assumption. Similarly, an open interval $\left(-\infty, r_{k+1}\right)$ contains exactly k red points, and thus $|B(-\infty, k+1)| \leq h-1$. Moreover, since $n<(t+1)(k+1), I(t(k+1), \infty)$ has at most k red points, and thus $B(t(k+1), \infty) \leq h-1$. Therefore

$$
\begin{aligned}
|B| \leq & \mid B(-\infty, k+1) \cup B(k+1,2(k+1)) \cup \cdots \\
& \cup B(t(k+1), \infty) \mid \\
\leq & (t+1)(h-1) .
\end{aligned}
$$

This contradicts (3). Consequently the lemma is proved.

Lemma 4 If $2 \leq k$ and

$$
\begin{equation*}
m \geq\left\lfloor\frac{n}{k-1}\right\rfloor(h+1) \tag{4}
\end{equation*}
$$

then there exists a configuration with n red points and m blue points on a line that has no interval containing exactly k red points and h blue points.

PROOF. Let $t=\left\lfloor\frac{n}{k-1}\right\rfloor$. Then $n \leq(t+1)(k-1)$, and $m \geq t(h+1)$ by (4). Hence we can obtain the following configuration with n red points and m blue points:

$$
R(1) \cup B(1) \cup \cdots \cup R(t+1) \cup B(t+1)
$$

where $|R(i)| \leq k-1$ for every $1 \leq i \leq t+1, \mid R(1) \cup$ $\cdots \cup R(t+1)|=n,|B(i)|=h+1$ for every $1 \leq i \leq$ $t,|B(t+1)|=m-(h+1) t \geq 0$ and $\mid B(1) \cup \cdots \cup$ $B(t+1) \mid=m$. Then this configuration obviously has no interval containing exactly k red points and h blue points since every interval containing k red points must include $B(j)$ for some $1 \leq j \leq t$.

Lemma 5 If $2 \leq k$ and

$$
\begin{equation*}
m<\left\lfloor\frac{n}{k-1}\right\rfloor(h+1) \tag{5}
\end{equation*}
$$

then every configuration with n red points and m blue points on a line has an interval containing exactly k red points and at most h blue points.

PROOF. Let $t=\left\lfloor\frac{n}{k-1}\right\rfloor$. Let X be a configuration with n red points and m blue points. Suppose that X has no desired interval. Namely, we assume
that every interval containing exactly k red points has at least $h+1$ blue points.

Let $r_{1}, r_{2}, \cdots, r_{n}$ be the red points of X ordered from left to right. For integers $1 \leq i<j \leq n$, let $I[i, j]$, denote a closed interval $\left[r_{i}, r_{j}\right]$, and let $B^{\prime}(i, j)$ denote the set of blue points contained in $I[i, j]$.

Then for any integer $0 \leq s \leq t-2, I[k+s(k-$ 1), $k+(s+1)(k-1)]$ contains exatly k red points $\left.\left\{r_{j} \mid k+s(k-1) \leq j \leq k+(s+1)(k-1)\right)\right\}$, and thus $\left|B^{\prime}(k+s(k-1), k+(s+1)(k-1))\right| \geq h+1$ by our assumption. Similarly, we have $\left|B^{\prime}(1, k)\right| \geq$ $h+1$. Therefore

$$
\begin{aligned}
|B| \geq & \mid B^{\prime}(1, k) \cup B^{\prime}(k, k+(k-1)) \cup \cdots \\
& \cup B^{\prime}(k+(t-2)(k-1), k+(t-1)(k-1)) \mid \\
\geq & t(h+1) .
\end{aligned}
$$

This contradicts (5). Consequently the lemma is proved.

Lemma 6 Consider a configuration with n red points and m blue points on a line. Suppose that there exists two intervals I and J such that both I and J contain exactly k red points respectively, I contains at most h blue points, and that J contains at least h blue points. Then there exists an interval that contains exactly k red points and h blue points.

PROOF. If the sets of red points contained in I and J, respectively, are the same, then the lemma immediately follows. Thus we may assume that $I \cap$ $R \neq J \cap R$, where R denote the set of n red points. Without loss of generality, we may assume that the leftmost red point of I lies to the left of J.

We shall show that we can move I to J step by step in such a way that the number of red points is a constant k and the number of blue points changes ± 1 at each step. We first remove the blue points left to the leftmost red point of I one by one, and then add the consecutive blue points lying to the right of I one by one, and denote the resulting interval by I_{1} (Fig. 3). We next simultaneously remove the leftmost red point of I_{1} and add the red point lying to the right of I_{1}, and get an interval I_{2}, which also contains exactly k red points and whose blue points are the same as those in I_{1} (Fig. 3). By repeating this procedure, we can get an interval whose red point set is equal to that of J. Therefore, we can move I to J in the desired way. Con-
sequently, we can find the required interval, which contains exactly k red points and h blue points.

2. A balanced interval on a circle

(a)

(b)

$$
\begin{aligned}
& \text { Red points }=0 \\
& \text { Blue points }=0
\end{aligned}
$$

Fig. 2. (a): An interval containing 4 red points and 8 blue points; (b): A configuration that has no interval containing exactly 4 red points and 5 blue points.

In this section, we consider the following theorem, and give its example in Figure reffig:2
Theorem 7 Let n, m, k, h be integers such that $1 \leq n \leq m, 1 \leq k \leq n$ and $1 \leq h \leq m$. Then for any n red points and m blue points on a circle in general position (i.e., no two points lie on the same position.), there exists an interval that con-

20th European Workshop on Computational Geometry

tains precisely k red points and h blue points if and only if

$$
\begin{equation*}
\frac{n}{k+1}(h-1)<m<\frac{n}{k-1}(h+1), \tag{6}
\end{equation*}
$$

where the rightmost term is an infinite number when $k=1$.
Theorem 8 can be proved by showing similar lemmas as in the case of line. We conclude the paper by the next conjecture.
Conjecture 8 Let n, m, k, h be integers such that $1 \leq n \leq m, 1 \leq k \leq n$ and $1 \leq h \leq m$. Then for any n red points and m blue points in the plane in general position (i.e., no three points lie on the same.), there exists a wedge that contains precisely k red points and h blue points if and only if

$$
\begin{equation*}
\frac{n}{k+2}(h-1)<m<\frac{n}{k-2}(h+1), \tag{7}
\end{equation*}
$$

where the rightmost term is an infinite number when $k=1$.

(a)

(b)

Fig. 3. Wedges containing 4 red points and 8 blue points.

References

[1] Bárány, I., and Matoušek, J.; Simultaneous partitions of measures by k-fans, Discrete Comput. Geom. 25 (2001)317-334.
[2] Goodman, J. and O'Rourke, J.; Handbook of Discrete and Computational Geometry, CRC Press, (1997) .
[3] Kaneko, A. and Kano, M.; Discrete geometry on red and blue points in the plane - A survey, Discrete and Computational Geometry • The Goodman-Pollack Festschrift • With contributions by numerous experts (Springer) (2003) 551-570.

