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Abstract

Let n,m, k, h be positive integers such that 1 ≤ n ≤ m, 1 ≤ k ≤ n and 1 ≤ h ≤ m. Then we give a necessary

and sufficient condition for every configuration with n red points and m blue points on a line or circle to have an

interval containing precisely k red points and h blue points.
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1. A balanced interval on a line

In this section we shall prove the following the-
orem.
Theorem 1 Let n, m, k, h be integers such that
1 ≤ n ≤ m, 1 ≤ k ≤ n and 1 ≤ h ≤ m. Then
for any n red points and m blue points on a line
in general position (i.e., no two points lie on the
same position.), there exists an interval that con-
tains precisely k red points and h blue points if and
only if

(⌊ n

k + 1

⌋

+ 1
)

(h − 1) < m <
(⌊ n

k − 1

⌋)

(h + 1),

(1)

where the rightmost term is an infinite number
when k = 1.

We begin with an example of our theorem. Con-
sider a configuration consisting of 10 red points and
20 blue points on a line in general position. Then
by the above theorem, we can easily show that if
k ∈ {1, 2, 3, 5, 10}, then such a configuration has
an interval containing exactly k red points and 2k
blue points; otherwise (i.e., k ∈ {4, 6, 7, 8, 9}) there
exist a configuration that has no such an interval
(Fig. 1). We call an interval that contains given
number of red points and blue points a balanced
interval.

(a): 

(b): 

Red points =

Blue points =

Fig. 1. (a): An interval containing 3 red points and 6 blue
points; (b): A configuration that has no interval containing
exactly 4 red points and 8 blue points.

Theorem 1 is an easy consequence of the follow-
ing five lemmas.

For a configuration with red and blue points on
a line, we denote by R and B the sets of red points
and blue points, respectively. A configuration X

with n red points and m blue points on the line is
expressed as

{x1} ∪ {x2} ∪ · · · ∪ {xn+m},
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where each xi denotes a red point or a blue point
ordered from left to right. The configuration X is
also expressed as

R(1) ∪ B(1) ∪ · · · ∪ R(s) ∪ B(s),

where R(i) and B(i) denote disjoint subsets of R

and B, respectively, and some of them may be
empty sets. For a set Y , we denote by |Y | the car-
dinality of Y .
Lemma 2 If

m ≤
(⌊ n

k + 1

⌋

+ 1
)

(h − 1), (2)

then there exists a configuration with n red points
and m blue points that has no interval containing
exactly k red points and h blue points.

PROOF. Let t = ⌊ n
k−1

⌋. Then n ≤ (t+1)(k−1),
and m ≥ t(h + 1) by (4). Hence we can obtain the
following configuration with n red points and m

blue points:

R(1) ∪ B(1) ∪ · · · ∪ R(t + 1) ∪ B(t + 1),

where |R(i)| ≤ k−1 for every 1 ≤ i ≤ t+1, |R(1)∪
· · ·∪R(t+1)| = n, |B(i)| = h+1 for every 1 ≤ i ≤
t, |B(t + 1)| = m − (h + 1)t ≥ 0 and |B(1) ∪ · · · ∪
B(t + 1)| = m. Then this configuration obviously
has no interval containing exactly k red points and
h blue points since every interval containing k red
points must include B(j) for some 1 ≤ j ≤ t.

Lemma 3 If

m >
(⌊ n

k + 1

⌋

+ 1
)

(h − 1), (3)

then every configuration with n red points and m

blue points on a line has an interval containing ex-
actly k red points and at least h blue points.

PROOF. Let t = ⌊ n
k+1

⌋. Let X be a configuration
with n red points and m blue points. Suppose that
X has no desired interval. Namely, we assume that
every interval containing exactly k red points has
at most h − 1 blue points.

Let r1, r2, · · · , rn be the red points of X or-
dered from left to right. For integers 1 ≤ i <

j ≤ n, let I(i, j) denote an open interval (ri, rj),
and let B(i, j) denote the set of blue points con-
tained in I(i, j). Furthermore, B(−∞, i) denotes
the set of blue points contained in the open interval
(−∞, ri), and B(i,∞) is defined analogously. Then

for any integer 1 ≤ s ≤ t−1, I(s(k+1), (s+1)(k+
1)) contains exactly k red points {rj | s(k+1)+1 ≤
j ≤ (s+1)(k +1)−1)}, and thus |B(s(k +1), (s+
1)(k + 1))| ≤ h − 1 by our assumption. Similarly,
an open interval (−∞, rk+1) contains exactly k red
points, and thus |B(−∞, k + 1)| ≤ h − 1. More-
over, since n < (t+1)(k+1), I(t(k +1),∞) has at
most k red points, and thus B(t(k+1),∞) ≤ h−1.
Therefore

|B| ≤ |B(−∞, k + 1) ∪ B(k + 1, 2(k + 1)) ∪ · · ·

∪B(t(k + 1),∞)|

≤ (t + 1)(h − 1).

This contradicts (3). Consequently the lemma is
proved.

Lemma 4 If 2 ≤ k and

m ≥
⌊ n

k − 1

⌋

(h + 1), (4)

then there exists a configuration with n red points
and m blue points on a line that has no interval
containing exactly k red points and h blue points.

PROOF. Let t = ⌊ n
k−1

⌋. Then n ≤ (t+1)(k−1),
and m ≥ t(h + 1) by (4). Hence we can obtain the
following configuration with n red points and m

blue points:

R(1) ∪ B(1) ∪ · · · ∪ R(t + 1) ∪ B(t + 1),

where |R(i)| ≤ k−1 for every 1 ≤ i ≤ t+1, |R(1)∪
· · ·∪R(t+1)| = n, |B(i)| = h+1 for every 1 ≤ i ≤
t, |B(t + 1)| = m − (h + 1)t ≥ 0 and |B(1) ∪ · · · ∪
B(t + 1)| = m. Then this configuration obviously
has no interval containing exactly k red points and
h blue points since every interval containing k red
points must include B(j) for some 1 ≤ j ≤ t.

Lemma 5 If 2 ≤ k and

m <
⌊ n

k − 1

⌋

(h + 1), (5)

then every configuration with n red points and m

blue points on a line has an interval containing ex-
actly k red points and at most h blue points.

PROOF. Let t = ⌊ n
k−1

⌋. Let X be a configura-
tion with n red points and m blue points. Suppose
that X has no desired interval. Namely, we assume
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that every interval containing exactly k red points
has at least h + 1 blue points.

Let r1, r2, · · · , rn be the red points of X ordered
from left to right. For integers 1 ≤ i < j ≤ n,
let I[i, j], denote a closed interval [ri, rj ], and let
B′(i, j) denote the set of blue points contained in
I[i, j].

Then for any integer 0 ≤ s ≤ t − 2, I[k + s(k −
1), k + (s + 1)(k − 1)] contains exatly k red points
{rj | k + s(k − 1) ≤ j ≤ k + (s + 1)(k − 1))}, and
thus |B′(k + s(k − 1), k + (s + 1)(k − 1))| ≥ h + 1
by our assumption. Similarly, we have |B′(1, k)| ≥
h + 1. Therefore

|B| ≥ |B′(1, k) ∪ B′(k, k + (k − 1)) ∪ · · ·

∪B′(k + (t − 2)(k − 1), k + (t − 1)(k − 1))|

≥ t(h + 1).

This contradicts (5). Consequently the lemma is
proved.

Lemma 6 Consider a configuration with n red
points and m blue points on a line. Suppose that
there exists two intervals I and J such that both I

and J contain exactly k red points respectively, I

contains at most h blue points, and that J contains
at least h blue points. Then there exists an interval
that contains exactly k red points and h blue points.

PROOF. If the sets of red points contained in I

and J , respectively, are the same, then the lemma
immediately follows. Thus we may assume that I∩
R 6= J ∩R, where R denote the set of n red points.
Without loss of generality, we may assume that the
leftmost red point of I lies to the left of J .

We shall show that we can move I to J step by
step in such a way that the number of red points is
a constant k and the number of blue points changes
±1 at each step. We first remove the blue points
left to the leftmost red point of I one by one, and
then add the consecutive blue points lying to the
right of I one by one, and denote the resulting in-
terval by I1 (Fig. 3). We next simultaneously re-
move the leftmost red point of I1 and add the red
point lying to the right of I1, and get an interval I2,
which also contains exactly k red points and whose
blue points are the same as those in I1 (Fig. 3). By
repeating this procedure, we can get an interval
whose red point set is equal to that of J . There-
fore, we can move I to J in the desired way. Con-

sequently, we can find the required interval, which
contains exactly k red points and h blue points.

2. A balanced interval on a circle

(a)

(b)

Red points =

Blue points =

Fig. 2. (a): An interval containing 4 red points and 8 blue
points; (b): A configuration that has no interval containing
exactly 4 red points and 5 blue points.

In this section, we consider the following theo-
rem, and give its example in Figure reffig:2
Theorem 7 Let n, m, k, h be integers such that
1 ≤ n ≤ m, 1 ≤ k ≤ n and 1 ≤ h ≤ m. Then
for any n red points and m blue points on a circle
in general position (i.e., no two points lie on the
same position.), there exists an interval that con-
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tains precisely k red points and h blue points if and
only if

n

k + 1
(h − 1) < m <

n

k − 1
(h + 1), (6)

where the rightmost term is an infinite number
when k = 1.

Theorem 8 can be proved by showing similar
lemmas as in the case of line. We conclude the
paper by the next conjecture.
Conjecture 8 Let n, m, k, h be integers such that
1 ≤ n ≤ m, 1 ≤ k ≤ n and 1 ≤ h ≤ m. Then
for any n red points and m blue points in the plane
in general position (i.e., no three points lie on the
same.), there exists a wedge that contains precisely
k red points and h blue points if and only if

n

k + 2
(h − 1) < m <

n

k − 2
(h + 1), (7)

where the rightmost term is an infinite number
when k = 1.

Pr1

r2

P

(a)

(b)

r1

r2

Fig. 3. Wedges containing 4 red points and 8 blue points.
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