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Abstract

We show that the convex hull of a collection of n pairwise disjoint disks in the plane is computable in O(n log n)
time using only the chirotope of the collection of disks. The method relies mainly on the development of an
(elementary) theory of convexity in the universal covering space of the punctured plane.

1. Introduction

1.1. Result of the paper.

Throughout the paper we consider a finite fam-
ily oi of n ≥ 2 pairwise disjoint bounded closed 2-
dimensional convex sets in the plane with regular
boundaries (disks for short) and we assume that
the disks are in general position in the sense that
there is no line tangent to three disks. A bitangent
is a closed line-segment tangent to two disks at its
endpoints. The chirotope of the family of disks is
defined as the map χ that associates with each or-
dered triplet (u, v, w) of bitangents tangent to a
same disk o the value +1 if walking counterclock-
wise around the boundary of o we encounter the bi-
tangents u, v, w in cyclic order u, v, w, u, v, . . .; the
value −1, otherwise. The main result of the paper
is the following.
Theorem 1 The convex hull of a collection of n

pairwise disjoint disks in the plane is computable
in O(n log n) time using only the chirotope of the
collection of disks. ✷

1.2. Previous work.

Several algorithms have been developed in the
past to address the convex hull problem for disks
in the plane : the set of hull-bitangents can be com-
puted as the set of breakpoints of the upper en-
velope of the support functions of the oi using a
divide-and-conquer algorithm [6, chap. 6] as de-
scribed in [5], running in O(n log n) time but mak-

ing use of the chirotope of the family of directions of
the set of bitangents of the set of disks augmented
with a point at infinity. More sophisticated tech-
niques – using even more involved predicates like
slicing the disks – have been developped to design
output sensitive convex hull algorithm [4]. (The re-
lated problem of computing the convex hull of a
simple curved polygon is adressed in [1].)

For point obstacles the situation is different :
Graham’s scan [2] and Knuth’s incremental algo-
rithm [3] both compute the convex hull of a set of
points using only its chirotope.

1.3. Motivations.

Applied motivations We have devised an al-
gorithm that computes a pseudo-triangulation
given the convex-hull. This algorithm also runs
in O(n log n) and uses only the chirotope. Now,
pseudotriangulations are useful data structures.

Implementation motivations The chirotope
shows fewer degenerate cases than the more in-
volved predicates used in previous algorithms,
and our algorithms use simpler data-structures.

Theoretical motivations The convex hull de-
pends only on the chirotope, not on the more
involved predicates used in existing algorithms.
Computing these objects by means of the most
basic predicates possible is interesting in its own
right. It can also lead to isolating a family of
axioms satisfied by the chirotopes, in the style
of Knuth’s CC-systems.
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2. Convexity in the universal covering
space of the punctured plane.

2.1. Definitions and notations

Let p : P̃ −→ P be a universal covering of the
punctured plane P = R

2 \ {(0, 0)}. The reader
might have in mind as a model of the map p the ver-
tical projection upon plane z = 0 of the screw sur-
face {(r cos θ, r sin θ, θ) ∈ R

3 | (θ, r) ∈ R × R
+∗}.

θ is called the angle-coordinate of point (θ, r) of
P̃ and r is called its distance-coordinate. As the
reader might suspect we use the geometric struc-
ture on P̃ inherited via the covering map from the
euclidean structure on the punctured plane. Thus
a line (half-line, line segment) of P̃ is a connected
component of the pre-image under the covering
map of a line (half-line, line-segment) of P. A line
will be regarded as oriented towards growing angle-
coordinate. Define the angle (denoted L̂) of a line
L, as the least upper bound of the angle coordi-
nate of its points. A line L is uniquely identified by
L̂ and the distance to the origin of its projection
onto P, denoted δ(L).

Points A and B in P̃ are said visible if there is a
line-segment in P̃ with endpoints A and B. A subset
X of P̃ is called convex if for any pair (A, B) of
visible points in X , line-segment [AB] is included
in X . An intersection of convex sets is a convex set,
which allows to define the convex hull of a set as
the smallest (for the inclusion relation) convex set
containing the set. An half-plane of P̃ is the closure
of a connected component of the complement of a
line of P̃. The projection of an half-plane under p

is either the whole punctured plane P or an half-
plane of P.

A s imple convex of P̃ is a connected component
of the pre-image under p of a closed bounded con-
vex subset of P. A long convex of P̃ is a closed con-
vex that contains a point (θ, r) for any θ and some
r depending on θ, and that is bounded in the r di-
rection for any θ. The pre-image under p of a closed
bounded convex subset of R

2 containing the origin
of the plane in its interior is an example of a long
convex.

A positive supporting line of convex is a directed
line containing boundary points such that the con-
vex lies on the left side of the directed line.

a long convex
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θ
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Fig. 1. A simple comvex and a long convex share 2 common
exterior tangents. The drawaing is done in the sheet of the
disk = the sheet of the point of the disk that realizes its
distance to the origin.

2.2. Some theorems

Theorem 2 The border of a long convex is a curve
θ → (θ, φ(θ)) that has a left-hand and a right-hand
tangent for every θ, such that if they differ, the
right-hand one has a larger angle than the left-hand
one, and the angle of the left- or right-hand tangent
increases with θ. The tangents to the border are
positive supporting lines (and vice-versa). ✷

Let U be a convex and let x be a point. A bound-
ary point y of U is said visible from x if line segment
[x, y) exists and U are disjoint. The set of bound-
ary points of U visible from y is a closed connected
set.
Theorem 3 Let U be a long convex, and V a sim-
ple convex, such that V ∩U = ∅ or V is not included
in U and ∂U intersects ∂V in exactly two points
that are not angular points of both ∂U and ∂V .
Then U and V share exactly two positive common
supporting lines, and the border of their convex hull
is made of two half-unbounded connected sub-arcs
−∞B and A+∞ of ∂U , a connected sub-arc CD of
∂V and two bitangent segments BC and CA to U

and V where BA (rep. DC) is the set of boundary
points of U (resp. V ) visible from V (resp. U). ✷

3. Our algorithm.

3.1. Notations.

Wlog, assume (0, 0) ∈ o1. Every oi (i > 1) has
infinitely many simple convex lift-up in P̃, while o1

has a single lift-up, õ1, a long convex. Choose one
lift-up of o2 and denote it o2,1. If I and J are lift-
up of oi and oj for some i and j, we define vǫIǫ′J

as the lift-up of vǫiǫ′j whose endpoints belong in
I and J , when such a lift-up actually exists (for
instance this is always the case between õ1 and any
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Fig. 2. In this example the disks oi′ is la-
belled i′, B(ℓ) = v1′2′v2′3′v3′5′v5′6′v6′2′v2′1′ ,
D(ℓ) = {1′, 2′, 3′, 4′, 5′, 6′}, and Q(ℓ) = [1, 2′, 6′, 5′].

lift-up of any oi with i > 1). Wlog, assume võ1o2,1

has angle 0. Denote oi,k the lift-up of oi such that
võ1oi,k

has angle in [2(k−1)π, 2kπ). Finally, denote
ℓi,k the half-line, supporting võ1oi,k

, with origin its
tangency point upon õ1.

We perform a rotational sweep, with a half-line
ℓ tangent to õ1 at its origin. The sweep starts at
position ℓ = ℓ1,1. During the sweep, we keep track
of a subset of the objects that intersect ℓ, therefore,
we will stop when ℓ reaches every ℓi,k when i > 1
(an “enter event”), and some ℓi,k when i < −1 (a
“leave event”). We define a total order on the set
of half-lines leaving õ1 by setting ℓ ≺ ℓ′ if and only
if ℓ̂ < ℓ̂′. Computationally, if i > 0 and j > 0,
then ℓi,k ≺ ℓj,l if and only if k < l or k = l and
χ(v12, v1i, v1j) (or i = 2), so that we can sort the
events (if, say i < 0 and χ(v1−i, v12, v1i), substitute
k+1 to k). Then for a position ℓ of the sweep half-
line, we define :

(i) the counterclockwise sequence B(ℓ) =
v1v2 . . . vk of bitangents of the convex hull
C(ℓ) of the set D(ℓ) of disks oj,k such that
ℓj,k � ℓ – by convention õ1 is an element
of D(ℓ) –, starting from v1 = võ1o2,1

; the arc
with source vi and sink vi+1 is denoted ai

and its supporting object o′i (a0 and ak are
half-unbounded loops around õ1). In fact,
we sometimes regard B as the list of arcs ai.

(ii) the arc a(ℓ) defined as the arc aj′ where j′

is the minimal element of the subset of in-
dexes j (1 ≤ j ≤ k) such that ℓ pierces the
supporting disks o′i of ai (j ≤ i ≤ k) in
the order o′k, o′k−1, . . . , o

′

j (o′k = o1). The list
o′ko′k−1 . . . o′j′ is denoted Q(ℓ).

See Figure 2 for an illustration. We write ℓ− for
any half-line of the open interval (ℓ′, ℓ) where ℓ′ is

the previous event.
During the sweep, we maintain B(ℓ), Q(ℓ) and

a(ℓ). Initially ℓ = ℓ2,1, D(ℓ) = {õ1, o2,1}, B(ℓ) =
[võ1o2,1

; vo2,1õ1
], a(ℓ) is the arc with source võ1o2,1

and sink vo2,1õ1
, and Q(ℓ) = õ1o2,1. We store Q in a

binary search tree. To that end, we need to be able
to decide given two objects oi,k and oj,l intersecting
ℓ which one is to the right of the other along ℓ. This
can be done with the procedure “if χ(v1j , v1i, v1−j)
then χ(vij , v1i, vi−j) else χ(v1j , vji, vj−i)”.
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Fig. 3. oi is included in the current convex hull.

3.2. Handling enter-events.

Assume we are to process the enter-event for
object o. Let r be the rightmost disk of Q(ℓ−), s

its predecessor along B(ℓ−), and t its successor (if
any, i.e., if r 6= õ1).
Theorem 4 l pierces either a(ℓ−), or vr(ℓ−)t(ℓ−)

or vs(ℓ−)r(ℓ−).
Theorem 5 Assume that o appears along ℓ at the
left of disk r, between, say, disks α and α′. Then
either o is included in C(ℓ−), or o intersects vα′α.
The latter case occurs if and only if p(o) intersects
bitangent vp(α′)p(α), and then the conditions of the-
orem 3 are satisfied. ✷

Theorem 6 Assume that o appears along ℓ at the
right of disk r. Then either arc a(ℓ−) contains a
point visible from o or o is included in C(ℓ−). The
latter case stands if and only if either (non exclusive
this time) p(o) is included in the convex hull of p(r)
and p(t) (in that case, ℓ pierces vsr or vrt), or p(o)
is included in the pseudotriangle bounded by the
bitangents vp(s)p(r) and vp(s),−p(r), and p(s) is not
above p(ℓ) and s + (2π, 0) has not been inserted yet
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(in that case l pierces through vs(ℓ)r(ℓ)). See Figure 3
for an illustration. Also, when o is not included in
C(ℓ−), the conditions of theorem 3 are satisfied. ✷

Now, we explain how to update B and Q. First
we locate o in Q.

Assume first that o is to the left of r. Let α and
α′ be its left-hand and right-hand neighbours in
Q(ℓ−). If p(o) does not intersect vp(α)p(α′) we just
ignore o : B(ℓ) = B(ℓ−), Q(ℓ) = Q(ℓ−), and a(ℓ) =
a(ℓ−). Otherwise we insert o into Q, and update
B : we split B at v, and we regard the two resulting
parts as stacks of arcs whose respective heads are
the arcs contributed by α and α′. Then we pop from
the left-hand stack until an arc β, say supported
by disk o′, is met such that o′ = õ1 or χ(u, v, w)
where u is the source of p(β), w is its sink, and
v = vp(o)p(o′). Similarly we pop from the right-hand
stack until an arc β′, say supported by disk o′′, is
met such that χ(u, v′, w) where u is the source of
p(β′), w is its sink, and v′′ = vp(o′′)p(o). Then, we
shorten β (respectively β′) : its source (respectively
sink) is replaced with voo′ ) (respectively vo′′o).
Then, to build B(ℓ), we concatenate what is left of
the two stacks, with the arc (denoted δ) of ∂o with
source vo′′o and sink voo′ in between. When an arc
that follows a(ℓ−) (included) in B(ℓ−) is popped,
its supporting disk is removed from Q. If a(ℓ−) is
removed from the right-hand stack, denoting u the
object supporting the predecessor of δ along B(ℓ),
we insert u into q if u + (2π, 0) has not undergone
an enter-event yet and p(u) intersects p(ℓ) at the
right of p(o), so that u becomes r(ℓ) instead of o.

Assume now that o is to the right of r. We dis-
card o when one of the two cases stated in theo-
rem 6 holds. Otherwise, we proceed as in the pre-
vious case, with three exceptions : we split B(ℓ−)
through arc a instead of bitangent vα′α (that is,
there is one copy of a at the head of both stacks);
the copy of a at the top of the left-hand stack is
popped if and only if χ(vro, vor, vrt); an object is
removed from Q if only if an arc it supports is
popped from the left-hand stack.

The predicates used to decide whether o should
be discarded can be implemented by means of χ,
we omit the details.

3.3. Handling leave events.

In fact, only leave events for r need to be pro-
cessed. The processing of those events simply con-

sists in removing r from Q.

3.4. Sketch of a proof of correction.

From theorems 5, 6 and 3, if follows that : (1-)
when o is included in C(ℓ−), B is not updated, so
that B(ℓ) is still the border of C(ℓ); (2-) when o is
not included in C(ℓ−), the border of C(ℓ) is made
of two connected arcs of the border of C(ℓ−), one
connected arc of the border of o and two bitan-
gents to o. What our algorithm does is a two-way
walk along the border of C(ℓ−), starting from a
point known to be in the arc of C(ℓ−) that is to be
discarded, until discovery of the two bitangents.

3.5. Extracting the planar convex hull.

We could prove that after only two rounds (that
is, at ℓ−2,3), p(B) contains the convex hull of o1, . . . ,
on as a factor. But we do not know how to identify
efficiently that factor based solely on the chirotope.
Hence the need for a third round. Denote B the
value of B obtained at the end of the third round.
Theorem 7 Let γ be the first arc of B (for
counter-clockwise orientation) supported by some
oi,2. Then γ indeed exists, the bitangent b′ =
b + (2π, 0) appears in B (it is created during the
third round), and the projection of the factor γMb′

of B is the convex hull of the oi. ✷
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