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Abstract

We consider subdivisions of convex bodies G in two subsets E and G\E. We obtain several inequalities comparing
the relative volume 1) with the minimum relative diameter and 2) with the maximum relative diameter. In the
second case we obtain the best upper estimate only for subdivisions determined by straight lines in planar sets.
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1. Introduction

Relative geometric inequalities are inequalities
in which we compare relative geometric measures,
i.e., functionals that give geometric information of
the subsets (E and G\E) determined by the sub-
division of an original set G.

The first relative geometric inequalities that ap-
peared in the literature were the so called relative
isoperimetric inequalities. These inequalities com-
pare the relative area with the relative perimeter:

If G is an open convex set in the Euclidean plane
R

2 and E is a subset of G with non-empty interior
and rectificable boundary such that both E and its
complement G\E are connected, we define:

- the relative boundary of E as ∂E ∩ G.
- the relative perimeter of E, P (E,G), as the

length of the relative boundary, and
- the relative area of E as:

A(E,G) = min{A(E), A(G\E)}.

With the above assumptions we say that a rela-
tive isoperimetric inequality is an inequality of the
type:

A(E,G)

P (E,G)α
≤ C,

where C and α are positive numbers.
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Many results have been obtained about relative
isoperimetric inequalities (see for instance [2],[7]).

There are also results comparing the relative
perimeter with other geometric magnitudes diffe-
rent from the relative area. For results comparing
the relative perimeter with the relative diameter
and the relative inradius see [4].

In this paper we want to study relative isodia-

metric inequalities, in which we compare the rela-
tive volume with the relative diameters of a sub-
set of a convex body. First we need to define these
notions:

Let G ⊂ R
n be a convex body and E ⊂ G a

subset of G such that E as well as G \ E are con-
nected and have non–empty interior. Let D(.) be
the diameter functional.
(i) the relative volume is the minimum between the
volume of E and the volume of its complement,

V (E,G) = min{V (E), V (G \ E)},

(ii) the minimum relative diameter is the minimum
between the diameter of E and the diameter of its
complement,

dm(E,G) = min{D(E),D(G \ E)},

and
(iii) the maximum relative diameter is the maxi-
mum between the diameter of E and the diameter
of its complement,

dM (E,G) = max{D(E),D(G \ E)}.
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Relative isodiametric inequalities are those that
give either an upper or a lower estimate of the ra-
tios:

V (E,G)

dm(E,G)n
or

V (E,G)

dM (E,G)n
.

We compare the relative volume with the n-
power of the relative diameters (n is the dimension
of the ambient space) because as this ratio is in-
variant under dilatations, we obtain geometric in-
formation about the subdivision: the estimates do
not depend on the size of the bodies but only on
their shapes.

We are interested not only in obtaining relative
isodiametric inequalities, but also in determining
those sets (called maximizers or minimizers) for
which the equality sign is attained.

2. Relative isodiametric inequalities
concerning the relative area and the
minimum relative diameter of a subset of a
convex body

The aim of this section is to maximize and mini-
mize the ratio between the relative area and the n-
power of the minimum relative diameter of a sub-
set E of G.

We begin minimizing the given ratio, and in this
case we have to consider two different cases. First,
we are going to study general subdivisions of G and
later we are going to consider the special case in
which the subdivision is obtained by a hyperplane
cut.
Theorem 1 Let G be an open convex body and E
a subset of G such that E and G \E are connected.

Then,
V (E,G)

dm(E,G)n
≥ 0.

PROOF. For any convex body G we can consider
a sequence of hypersurfaces {Si}

∞

i=1
as close as we

want to the boundary of G, such that both ends
of the diameter of G belong to Si ∀i ∈ N, and the
regions Ei bounded by Si have volume decreasing
to zero. Then, we conclude that:

lim
i→∞

V (Ei, G)

dm(Ei, G)n
=

0

D(G)n
= 0.

�

Theorem 2 Let G be an open convex body and E
a subset of G obtained by a hyperplane cut. Then,

V (E,G)

dm(E,G)n
≥ 0. (1)

PROOF. We can distinguish two cases:
Case 1: G is strictly convex:

As G is a strictly convex body, we can choose a
hyperplane Π so that if E is a subset of G obtained
by the intersection with the half-space determined
by Π, in all the points of ∂E \(G∩∂E) there exists
a tangent hyperplane.

Let us consider a straight line t orthogonal to
the hyperplane Π; we can apply the Schwarz sym-
metrization with respect to t to the subset E and
we obtain a new set E′ of revolution which has
the same volume than E and such that the image
of the relative boundary of E under Schwarz sym-
metrization is a (n-1)-dimensional ball with radius
r. Moreover, this symmetrization does not increase
the diameter, so D(E) ≥ D(E′).

The body of revolution E′ is contained in a n-
dimensional cone C with vertex V , which obviously
has greater volume than E′.

.......................... ✲ ........................
✲✛

r
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Finally, we consider a sequence of parallel hy-
perplanes to Π so that V (E′) decreases to zero and
the half angle at the vertex V goes to π/2. Then,

lim
α→π/2

V (E,G)

dm(E,G)n
≤ lim

α→π/2

V (E′)

(2r)n
≤

lim
α→

π

2

π
(n−1)

2 cotan α

n2nΓ(n−1

2
+ 1)

= 0.

Consequently, the inequality (1) holds.

Case 2: G is not strictly convex:
If G is not strictly convex there exists a straight

line segment t in the boundary of G. We consider
a sequence of hyperplanes Πi parallel to t so that
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the volume of the subsets Ei determined by the
intersections with Πi decreases to zero. Then,

lim
i→∞

V (Ei, G)

dm(Ei, G)n
≤

0

(length(t))n
= 0.

�

The following proposition provides an upper
bound for the ratio between the relative area and
the n-power of the minimum relative diameter.

Theorem 3 Let G be an open convex body and E
a subset of G such that E and G \E are connected.

Then,

V (E,G)

dm(E,G)n
≤

πn/2

Γ(1 + n
2
)2n

PROOF. Let B(r)n be a ball with radius r such
that:

V (B(r)n) ≤
V (G)

2
⇐⇒ r ≤

(

V (G)

2ωn

)1/n

then, as a consequence of the isodiametric inequali-
ty (see [1]):

V (E,G)

dm(E,G)n
≤

πn/2

Γ(1 + n
2
)2n

.

�

3. Relative isodiametric inequalities
concerning the relative area and the
maximum relative diameter of a subset of a
convex body

The aim of this section is to maximize and mini-
mize the ratio between the relative area and the
n-power of the maximum relative diameter of a
subset E of G.

Theorem 4 Let G be an open bounded convex set

in R
n and E a subset of G such that E and G \ E

are connected. Then,

V (E,G)

dM (E,G)n
≥ 0.

PROOF. Let G be an open convex body in the
Euclidean space. We can suppose without lost of
generality that 0 ∈ G. Let us consider the sequence
{Ei}

∞

i=2
where each Ei = 1

i G.

If we compute the ratio between the relative vo-
lume and the n-power of the maximum relative
diameter, the limit of this ratio is 0 when i →
∞. In fact, the relative volume decreases to 0 and
dM (Ei, G) = D(G\Ei) is the diameter of G for all
i:

lim
i→∞

V (Ei, G)

dM (Ei, G)n
=

0

D(G)n
= 0.

�

Theorem 5 Let G be an open convex body and E
a subset of G obtained by a hyperplane cut. Then,

V (E,G)

dM (E,G)n
≥ 0.

It is easy to prove this theorem using the same
argument that in the proof of theorem 2 (when G
is not strictly convex), considering t = D(G).

The problem of maximizing the ratio between
the relative area and the maximum relative diame-
ter is attached to the so called ”fencing problems”.
Such problems consider dividing a region into two
parts of equal volume (area) by a fence. We are go-
ing to use some results about fencing problems for
proving the following theorem (see [5], [6]).

Theorem 6 Let G be a planar bounded convex set

and E a subset of G obtained by a straight line cut,

then:
A(E,G)

dM (E,G)2
≤ 1.2869...

The equality is attained for the optimal body
described in the following figure (see [5]).

dM

PROOF. Let l be the straight line dividing G into
two regions E and G\E, and suppose that A(E) ≤
A(G \ E). Let us consider two different cases:

1) dM (E,G) = D(G \ E) and 2) dM (E,G) =
D(E).
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1) If dM (E,G) = D(G\E) and A(E) < A(G\E),
we translate l till another line l′ determining a new
division of G into two other regions E′ and G\E′ in
such a way that one of the two following situations
hold:

1.1) A(E′) = A(G\E′) and dM (E′, G) = D(G\
E′).

Then A(E′, G) = A(E′) > A(E) = A(E,G)
and dM (E′, G) < dM (E,G) and E′ determines a
fencing problem. Hence,

A(E,G)

dM (E,G)2
≤

A(E′)

dM (E′, G)2
≤ 1.2869...,

(For the last inequality see [5] and [6])

1.2) A(E′) < A(G \ E′) and dM (E′, G) =
D(E′) = D(G \ E′).

In this case we have A(E,G) = A(E) ≤ A(E′) =
A(E′, G) and dM (E,G) ≥ dM (E′, G), so:

A(E,G)

dM (E,G)2
≤

A(E′)

D(E′)2
, (2)

and also,

A(E,G)

dM (E,G)2
≤

A(G \ E′)

D(G \ E′)2
. (3)

Now we consider the intersection points P and
Q of l′ with ∂G.

Let E′′ be either E′ or G \E′ where the suppor-
ting lines at P and Q make internal angles whose
sum is smaller or equal than π. Let us consider the
symmetric set of E′′ with respect to the middle
point O of the segment PQ. Let this set be E′′′.
E′′∪E′′′ is a centrally symmetric convex set where
the area is 2A(E′′). It is easy to see that:

D(E′′′) = D(E′′) = dM (E′, G) =

= D(E′) = D(G \ E′).

Then, from inequalities (2) and (3),

A(E,G)

dM (E,G)2
≤

A(E′′)

D(E′′)2
≤ 1.2869...,

(For the last inequality see [5]).

2) Suppose that dM (E,G) = D(E). Then,

A(E,G)

dM (E,G)2
=

A(E)

D(E)2
,

and also,

A(E,G)

dM (E,G)2
≤

A(G \ E)

D(G \ E)2
.

Let E′ be either E or G\E, where the supporting
lines at P and Q realize internal angles whose sum
is smaller or equal than π. By a similar argument
to that used in the case 1.2 we conclude that

A(E,G)

dM (E,G)2
≤

A(E′′)

D(E′′)2
≤ 1.2869...

�
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