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A Completion of Hypotheses Method for 3D-Geometry.

3D-Extensions of Ceva and Menelaus Theorems
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Abstract

A method that automates hypotheses completion in 3D-Geometry is presented. It consists of three processes:
defining the geometric objects in the configuration; determining the hypothesis conditions of the configuration
(through a point-on-object declaration method); and applying an algebraic automatic theorem proving method
to obtain and prove the sufficiency of complementary hypothesis conditions. To avoid as much as possible the
appearance of rational expressions, projective coordinates are used (although affine and Euclidean problems can
also be treated). A Maple implementation of the method has been used to extend to 3D classic 2D geometric

theorems like Ceva’s and Menelaus’.
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1. Brief Description of the Method

Hypotheses completion was already treated by
Recio and Vélez [6]. The method presented in this
paper automates hypotheses completion in 3D-
Geometry. Let us give a brief description of its
three processes.

1.1. Defining the Geometric Objects in the
Configuration

Among the geometric objects in a configuration,
some can be defined directly and others are de-
termined through geometric operations (see Table
1). Other usual geometric objects included in the
package (segment, midpoint, sphere, quadric,...)
are omitted for the sake of space.

The desired configuration can be constructed
through the adequate concatenation of these el-
ementary commands. Note that in this Geome-
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try not only the rule-and-compass globally con-
structible objects can be treated: those geomet-
ric objects such that any of their points can be
constructed with rule-and-compass, can be treated
too.

Projective coordinates are used. Command
intCoor allows to substitute coordinates where
rational expressions appear by the corresponding
integer quaternions.

1.2. Determining the hypothesis conditions of the
configuration

Hypothesis conditions are declared as member-
ship relations between points and higher dimension
geometric objects. To declare P = [pg, p1, D2, D3]
as a point on the object ¢ (being the equations
of ¢: ¢i(xo,x1,22,23) =0; i =1,...,n) is equiv-
alent to impose that the hypothesis conditions
¢i(P0,P1,P2,P3) =0 N 1 = 1, ...,n are verified.
Command pointOnObject takes care of adding
these polynomials to a certain list, denoted LREL,
where the hypothesis polynomials are stored, and
to add the corresponding variables to the list VAR.
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Object Input Command Output
initial point four projective point list of 4
(free point) coordinates parameters
plane three non-collinear plane equation of
points the plane
line two different line list of equations
points of the line
point on line AB two points (A, B) | rateOnLine list of coords.
(ﬁ =r- ﬁ) and a real number r of point P
plane/line parallel one linear object parallel equation(s) of
to a given plane/line and one point the plane/line
plane/line perpendicular| one linear object |perpendicular| equation(s) of
to a given line/plane and one point the plane/line
intersection of two two already intersection |coords. of point(s)
objects (not defined objects or equation(s) of
necessarily linear) linear objects or
reduced list of egs.
(in GB sense)

Table 1
Geometric objects’ definition

1.3. Obtaining and Proving the Sufficiency of
Complementary Hypothesis Conditions

In most configuration geometric problems, the
thesis is (or can be reduced to) a P € ¢ member-
ship condition (where P is a point and ¢ is a geo-
metric object) or to a geometric relation among ge-
ometric objects in the configuration. In both cases
the thesis polynomial admits a ¢(P) form.

In case list LREL is empty, to check that the
thesis holds is equivalent to check that ¢ vanishes
in P (i.e., that ¢(P) = 0). Command isPlaced
applied to the pair (P, ¢) takes care of performing
all the corresponding computations.

In case list LREL is not empty, to check that
the thesis holds it is sufficient to check that ¢ can
be expressed as an algebraic linear combination
of the polynomials in list LREL, what can be ef-
fectively computed using Wu’s techniques. A brief
description of these automatic proving techniques
can be found in [1], meanwhile a detailed descrip-
tion can be found, e.g., in [2,9]. These techniques
were adapted to hypotheses completion in [5] and
to geometric loci determining in [7]. The technique
described in this paper is essentially that of [7], but

has been adapted to the way hypothesis and thesis
conditions are usually declared.

This process basically consists of two steps:

— to triangularize system LREL w.r.t. the vari-
ables in list VAR, to obtain system T RIP

— to compute, starting with ¢(P), the successive
pseudo-remainders of dividing by the polynomi-
als in TRIP w.r.t. the variables in VAR, until
the last pseudo-remainder (polynomial w) is ob-
tained.

That w = 0 is a necessary condition for the the-
sis to hold. Command newHypot of our package,
applied to (P, ¢), automatically computes w.

But we would still have to check that w =0is a
sufficient condition for the thesis ¢(P) = 0 to hold.

If a parametrization of w = 0 can be obtained,
then we substitute in ¢(xg,x1,x2, x3) the x; by
their corresponding parametric expressions. If the
resulting polynomial vanishes, then condition w =
0 is also sufficient. Command isPlaced can take
care of these computations.

If a parametrization of w = 0 can’t be obtained,
then w is be added to list LRE L, and the new vari-
able appearing in w but not in list VAR, is added
to list VAR. The same process can be applied now,



March 25-26, 2004

and, if the last pseudo-remainder is 0, then condi-
tion w = 0 is also sufficient. Command autProve
can take care of these computations.

2. 3D-Extension of Ceva and Menelaus
Theorems

An application of the automatic theorem prov-
ing method described above is included as illustra-
tion afterwards. The goal is to determine condi-
tions that make four points, lying on consecutive
edge-lines of a tetrahedron, coplanary (see Figure
1). This problem was recently solved using syn-
thetic techniques by H. Davis [3].

D

Fig. 1. Extending to 3D Ceva and Menelaus theorems

We can assume that the vertices are A(1,0,0,0),
B(l, 1, O, 0), C(l,’}/l, Y2, 0), D(l, 61, (52, 63) with-
out any lack of generality (these points can be
defined using command point). Given m,n,p,q €
RU{oco}, let M, N, P, () be the points lying on the
edge-lines AB,BC,CD,DA (respectively), and
satisfying

VB —m ATH  NC =
ﬁ =p- ﬁ ;. QA=gq- @
(they can be defined using command rateOnLine).

Then plane M N P can be defined (using command
plane).
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As detailed above, applying command newHypot
to the pair (@, M N P), a necessary condition for
@ to lie on plane MNP (i.e., for M,N, P, Q) to be
coplanary): —y2 -3 - (=1 4+m - -n-p-q) =0, is
obtained. As A, B, C, D are non-coplanary points,
and consequently, vo # 0 # d3, what implies: m-n -
p-q = 1. To verify that is a sufficient condition, @)
is particularized for ¢ = 1/(m - n - p), and applying
command isPlaced to the pair (Q, MNP), 0 is
obtained, what confirms that ¢ belongs to plane
M NP. This leads to the following:

Theorem 1 Points M, N, P,Q, lying on the ori-
ented consecutive edge-lines AB, BC, CD, DA of
tetrahedron ABC D (respectively), are coplanary, if
and only if:

(MB/MA)-(NC/NB)-(PD/PC)-(QA/QD) = 1

Observe that the points M, N, P, do lie on the
consecutive oriented edge-lines AB, BC, CD, DA,
but they can lie outside the edge-segments, and
therefore this result doesn’t only generalizes Ceva
theorem, but also Menelaus theorem.

3. Comparison with Other Methods

As the automatic theorem proving technique
used in this work is based on Wu’s algorithm, it
is of a lower computational complexity than those
techniques based on the use of Groebner bases.

Comparing this method with others based on
Wu’s techniques, the main difference is the way
the geometric objects of the configuration are de-
fined and the way the hypotheses conditions are
declared. In the method presented here the geo-
metric objects and the hypotheses conditions are
obtained in a natural way, following the geomet-
ric algorithm that generates the configuration, in-
stead of translating into algebraic expressions the
geometric relations that determine them (what is
usually the case).

That happens, for instance, in Simson-Steiner-
Guzman theorem 3D-extension [4]. The goal is to
determine the conditions so that the projections
(in prefixed directions) of a point on the faces of a
tetrahedron are coplanary. This problem was de-
veloped in [7], translating into algebraic expres-
sions the geometric relations. Now it has been de-
veloped using the method detailed in section 1, in
a more comfortable and faster way.
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Other advantage of the method proposed in Sec-
tion 1 is the simple way in which parameters and
variables are distinguished (what is not straight-
forward in other approaches). With this method
the parameters are the non-numeric coordinates of
the initial points (that are preserved along all sub-
sequent calculations), meanwhile the variables are
the coordinates of the point-on-object objects de-
fined using pointOnObject command.

Another advantage of the method proposed in
Section 1 is the possibility to develop the geomet-
ric algorithm of the configuration using a Dynamic
Geometry System, and to translate it to a Com-
puter Algebra System syntax (interpreting it using
the package considered here), as already done in
2D [8]. We plan to implement it in the near future.

4. Conclusions

The hypotheses completion in 3D-Geometry
method described is convenient and efficient. It
allows the user to obtain automatically the equa-
tions in the configuration, the hypothesis condi-
tions obtained directly in the configuration and
the complementary hypothesis conditions that
have to be added for the thesis condition to hold.
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