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Abstrat

A method that automates hypotheses ompletion in 3D-Geometry is presented. It onsists of three proesses:

de�ning the geometri objets in the on�guration; determining the hypothesis onditions of the on�guration

(through a point-on-objet delaration method); and applying an algebrai automati theorem proving method

to obtain and prove the suÆieny of omplementary hypothesis onditions. To avoid as muh as possible the

appearane of rational expressions, projetive oordinates are used (although aÆne and Eulidean problems an

also be treated). A Maple implementation of the method has been used to extend to 3D lassi 2D geometri

theorems like Ceva's and Menelaus'.
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1. Brief Desription of the Method

Hypotheses ompletion was already treated by

Reio and V�elez [6℄. The method presented in this

paper automates hypotheses ompletion in 3D-

Geometry. Let us give a brief desription of its

three proesses.

1.1. De�ning the Geometri Objets in the

Con�guration

Among the geometri objets in a on�guration,

some an be de�ned diretly and others are de-

termined through geometri operations (see Table

1). Other usual geometri objets inluded in the

pakage (segment, midpoint, sphere, quadri,...)

are omitted for the sake of spae.

The desired on�guration an be onstruted

through the adequate onatenation of these el-

ementary ommands. Note that in this Geome-

�

Corresponding author

Email addresses: roanes�mat.um.es (E. Roanes-

Ma��as), eroanes�mat.um.es (E. Roanes-Lozano).

1

Partially supported by the researh projet TIC-2000-

1368-C03-03 (MCyT, Spain).

try not only the rule-and-ompass globally on-

strutible objets an be treated: those geomet-

ri objets suh that any of their points an be

onstruted with rule-and-ompass, an be treated

too.

Projetive oordinates are used. Command

intCoor allows to substitute oordinates where

rational expressions appear by the orresponding

integer quaternions.

1.2. Determining the hypothesis onditions of the

on�guration

Hypothesis onditions are delared as member-

ship relations between points and higher dimension

geometri objets. To delare P = [p
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as a point on the objet � (being the equations

of �: �
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) = 0 ; i = 1; :::; n) is equiv-

alent to impose that the hypothesis onditions
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) = 0 ; i = 1; :::; n are veri�ed.

Command pointOnObjet takes are of adding

these polynomials to a ertain list, denoted LREL,

where the hypothesis polynomials are stored, and

to add the orresponding variables to the list V AR.
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Objet Input Command Output

initial point four projetive point list of 4

(free point) oordinates parameters

plane three non-ollinear plane equation of

points the plane

line two di�erent line list of equations

points of the line

point on line AB two points (A;B) rateOnLine list of oords.

(

��!

PB = r �

�!

PA) and a real number r of point P

plane/line parallel one linear objet parallel equation(s) of

to a given plane/line and one point the plane/line

plane/line perpendiular one linear objet perpendiular equation(s) of

to a given line/plane and one point the plane/line

intersetion of two two already intersetion oords. of point(s)

objets (not de�ned objets or equation(s) of

neessarily linear) linear objets or

redued list of eqs.

(in GB sense)

Table 1

Geometri objets' de�nition

1.3. Obtaining and Proving the SuÆieny of

Complementary Hypothesis Conditions

In most on�guration geometri problems, the

thesis is (or an be redued to) a P 2 � member-

ship ondition (where P is a point and � is a geo-

metri objet) or to a geometri relation among ge-

ometri objets in the on�guration. In both ases

the thesis polynomial admits a �(P ) form.

In ase list LREL is empty, to hek that the

thesis holds is equivalent to hek that � vanishes

in P (i.e., that �(P ) = 0). Command isPlaed

applied to the pair (P; �) takes are of performing

all the orresponding omputations.

In ase list LREL is not empty, to hek that

the thesis holds it is suÆient to hek that � an

be expressed as an algebrai linear ombination

of the polynomials in list LREL, what an be ef-

fetively omputed using Wu's tehniques. A brief

desription of these automati proving tehniques

an be found in [1℄, meanwhile a detailed desrip-

tion an be found, e.g., in [2,9℄. These tehniques

were adapted to hypotheses ompletion in [5℄ and

to geometri loi determining in [7℄. The tehnique

desribed in this paper is essentially that of [7℄, but

has been adapted to the way hypothesis and thesis

onditions are usually delared.

This proess basially onsists of two steps:

{ to triangularize system LREL w.r.t. the vari-

ables in list V AR, to obtain system TRIP

{ to ompute, starting with �(P ), the suessive

pseudo-remainders of dividing by the polynomi-

als in TRIP w.r.t. the variables in V AR, until

the last pseudo-remainder (polynomial !) is ob-

tained.

That ! = 0 is a neessary ondition for the the-

sis to hold. Command newHypot of our pakage,

applied to (P; �), automatially omputes !.

But we would still have to hek that ! = 0 is a

suÆient ondition for the thesis �(P ) = 0 to hold.

If a parametrization of ! = 0 an be obtained,

then we substitute in �(x

0

; x

1

; x

2

; x

3

) the x

i

by

their orresponding parametri expressions. If the

resulting polynomial vanishes, then ondition ! =

0 is also suÆient. Command isPlaed an take

are of these omputations.

If a parametrization of ! = 0 an't be obtained,

then ! is be added to list LREL, and the new vari-

able appearing in ! but not in list V AR, is added

to list V AR. The same proess an be applied now,
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and, if the last pseudo-remainder is 0, then ondi-

tion ! = 0 is also suÆient. Command autProve

an take are of these omputations.

2. 3D-Extension of Ceva and Menelaus

Theorems

An appliation of the automati theorem prov-

ing method desribed above is inluded as illustra-

tion afterwards. The goal is to determine ondi-

tions that make four points, lying on onseutive

edge-lines of a tetrahedron, oplanary (see Figure

1). This problem was reently solved using syn-

theti tehniques by H. Davis [3℄.

Fig. 1. Extending to 3D Ceva and Menelaus theorems

We an assume that the verties areA(1; 0; 0; 0),

B(1; 1; 0; 0), C(1; 

1

; 

2

; 0), D(1; Æ

1

; Æ

2

; Æ

3

) with-

out any lak of generality (these points an be

de�ned using ommand point). Given m;n; p; q 2

R[f1g, letM;N;P;Q be the points lying on the

edge-lines AB;BC;CD;DA (respetively), and

satisfying

��!

MB = m �

��!

MA ;

��!

NC = n �

��!

NB

��!

PD = p �

��!

PC ;

�!

QA = q �

��!

QD

(they an be de�ned using ommand rateOnLine).

Then planeMNP an be de�ned (using ommand

plane).

As detailed above, applying ommand newHypot

to the pair (Q;MNP ), a neessary ondition for

Q to lie on plane MNP (i.e., forM;N;P;Q to be

oplanary): �

2

� Æ

3

� (�1 + m � n � p � q) = 0, is

obtained. As A;B;C;D are non-oplanary points,

and onsequently, 

2

6= 0 6= Æ

3

, what implies:m �n �

p � q = 1. To verify that is a suÆient ondition, Q

is partiularized for q = 1=(m �n � p), and applying

ommand isPlaed to the pair (Q;MNP ), 0 is

obtained, what on�rms that Q belongs to plane

MNP . This leads to the following:

Theorem 1 Points M;N;P;Q, lying on the ori-

ented onseutive edge-lines AB; BC; CD; DA of

tetrahedronABCD (respetively), are oplanary, if

and only if:

(MB=MA)�(NC=NB)�(PD=PC)�(QA=QD) = 1

Observe that the points M;N;P;Q do lie on the

onseutive oriented edge-lines AB; BC; CD; DA,

but they an lie outside the edge-segments, and

therefore this result doesn't only generalizes Ceva

theorem, but also Menelaus theorem.

3. Comparison with Other Methods

As the automati theorem proving tehnique

used in this work is based on Wu's algorithm, it

is of a lower omputational omplexity than those

tehniques based on the use of Groebner bases.

Comparing this method with others based on

Wu's tehniques, the main di�erene is the way

the geometri objets of the on�guration are de-

�ned and the way the hypotheses onditions are

delared. In the method presented here the geo-

metri objets and the hypotheses onditions are

obtained in a natural way, following the geomet-

ri algorithm that generates the on�guration, in-

stead of translating into algebrai expressions the

geometri relations that determine them (what is

usually the ase).

That happens, for instane, in Simson-Steiner-

Guzm�an theorem 3D-extension [4℄. The goal is to

determine the onditions so that the projetions

(in pre�xed diretions) of a point on the faes of a

tetrahedron are oplanary. This problem was de-

veloped in [7℄, translating into algebrai expres-

sions the geometri relations. Now it has been de-

veloped using the method detailed in setion 1, in

a more omfortable and faster way.
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Other advantage of the method proposed in Se-

tion 1 is the simple way in whih parameters and

variables are distinguished (what is not straight-

forward in other approahes). With this method

the parameters are the non-numeri oordinates of

the initial points (that are preserved along all sub-

sequent alulations), meanwhile the variables are

the oordinates of the point-on-objet objets de-

�ned using pointOnObjet ommand.

Another advantage of the method proposed in

Setion 1 is the possibility to develop the geomet-

ri algorithm of the on�guration using a Dynami

Geometry System, and to translate it to a Com-

puter Algebra System syntax (interpreting it using

the pakage onsidered here), as already done in

2D [8℄. We plan to implement it in the near future.

4. Conlusions

The hypotheses ompletion in 3D-Geometry

method desribed is onvenient and eÆient. It

allows the user to obtain automatially the equa-

tions in the on�guration, the hypothesis ondi-

tions obtained diretly in the on�guration and

the omplementary hypothesis onditions that

have to be added for the thesis ondition to hold.
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