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Abstra
t

A method that automates hypotheses 
ompletion in 3D-Geometry is presented. It 
onsists of three pro
esses:

de�ning the geometri
 obje
ts in the 
on�guration; determining the hypothesis 
onditions of the 
on�guration

(through a point-on-obje
t de
laration method); and applying an algebrai
 automati
 theorem proving method

to obtain and prove the suÆ
ien
y of 
omplementary hypothesis 
onditions. To avoid as mu
h as possible the

appearan
e of rational expressions, proje
tive 
oordinates are used (although aÆne and Eu
lidean problems 
an

also be treated). A Maple implementation of the method has been used to extend to 3D 
lassi
 2D geometri


theorems like Ceva's and Menelaus'.
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1. Brief Des
ription of the Method

Hypotheses 
ompletion was already treated by

Re
io and V�elez [6℄. The method presented in this

paper automates hypotheses 
ompletion in 3D-

Geometry. Let us give a brief des
ription of its

three pro
esses.

1.1. De�ning the Geometri
 Obje
ts in the

Con�guration

Among the geometri
 obje
ts in a 
on�guration,

some 
an be de�ned dire
tly and others are de-

termined through geometri
 operations (see Table

1). Other usual geometri
 obje
ts in
luded in the

pa
kage (segment, midpoint, sphere, quadri
,...)

are omitted for the sake of spa
e.

The desired 
on�guration 
an be 
onstru
ted

through the adequate 
on
atenation of these el-

ementary 
ommands. Note that in this Geome-
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try not only the rule-and-
ompass globally 
on-

stru
tible obje
ts 
an be treated: those geomet-

ri
 obje
ts su
h that any of their points 
an be


onstru
ted with rule-and-
ompass, 
an be treated

too.

Proje
tive 
oordinates are used. Command

intCoor allows to substitute 
oordinates where

rational expressions appear by the 
orresponding

integer quaternions.

1.2. Determining the hypothesis 
onditions of the


on�guration

Hypothesis 
onditions are de
lared as member-

ship relations between points and higher dimension

geometri
 obje
ts. To de
lare P = [p

0

; p

1

; p

2

; p

3

℄

as a point on the obje
t � (being the equations

of �: �

i

(x

0

; x

1

; x

2

; x

3

) = 0 ; i = 1; :::; n) is equiv-

alent to impose that the hypothesis 
onditions

�

i

(P

0

; P

1

; P

2

; P

3

) = 0 ; i = 1; :::; n are veri�ed.

Command pointOnObje
t takes 
are of adding

these polynomials to a 
ertain list, denoted LREL,

where the hypothesis polynomials are stored, and

to add the 
orresponding variables to the list V AR.
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Obje
t Input Command Output

initial point four proje
tive point list of 4

(free point) 
oordinates parameters

plane three non-
ollinear plane equation of

points the plane

line two di�erent line list of equations

points of the line

point on line AB two points (A;B) rateOnLine list of 
oords.

(

��!

PB = r �

�!

PA) and a real number r of point P

plane/line parallel one linear obje
t parallel equation(s) of

to a given plane/line and one point the plane/line

plane/line perpendi
ular one linear obje
t perpendi
ular equation(s) of

to a given line/plane and one point the plane/line

interse
tion of two two already interse
tion 
oords. of point(s)

obje
ts (not de�ned obje
ts or equation(s) of

ne
essarily linear) linear obje
ts or

redu
ed list of eqs.

(in GB sense)

Table 1

Geometri
 obje
ts' de�nition

1.3. Obtaining and Proving the SuÆ
ien
y of

Complementary Hypothesis Conditions

In most 
on�guration geometri
 problems, the

thesis is (or 
an be redu
ed to) a P 2 � member-

ship 
ondition (where P is a point and � is a geo-

metri
 obje
t) or to a geometri
 relation among ge-

ometri
 obje
ts in the 
on�guration. In both 
ases

the thesis polynomial admits a �(P ) form.

In 
ase list LREL is empty, to 
he
k that the

thesis holds is equivalent to 
he
k that � vanishes

in P (i.e., that �(P ) = 0). Command isPla
ed

applied to the pair (P; �) takes 
are of performing

all the 
orresponding 
omputations.

In 
ase list LREL is not empty, to 
he
k that

the thesis holds it is suÆ
ient to 
he
k that � 
an

be expressed as an algebrai
 linear 
ombination

of the polynomials in list LREL, what 
an be ef-

fe
tively 
omputed using Wu's te
hniques. A brief

des
ription of these automati
 proving te
hniques


an be found in [1℄, meanwhile a detailed des
rip-

tion 
an be found, e.g., in [2,9℄. These te
hniques

were adapted to hypotheses 
ompletion in [5℄ and

to geometri
 lo
i determining in [7℄. The te
hnique

des
ribed in this paper is essentially that of [7℄, but

has been adapted to the way hypothesis and thesis


onditions are usually de
lared.

This pro
ess basi
ally 
onsists of two steps:

{ to triangularize system LREL w.r.t. the vari-

ables in list V AR, to obtain system TRIP

{ to 
ompute, starting with �(P ), the su

essive

pseudo-remainders of dividing by the polynomi-

als in TRIP w.r.t. the variables in V AR, until

the last pseudo-remainder (polynomial !) is ob-

tained.

That ! = 0 is a ne
essary 
ondition for the the-

sis to hold. Command newHypot of our pa
kage,

applied to (P; �), automati
ally 
omputes !.

But we would still have to 
he
k that ! = 0 is a

suÆ
ient 
ondition for the thesis �(P ) = 0 to hold.

If a parametrization of ! = 0 
an be obtained,

then we substitute in �(x

0

; x

1

; x

2

; x

3

) the x

i

by

their 
orresponding parametri
 expressions. If the

resulting polynomial vanishes, then 
ondition ! =

0 is also suÆ
ient. Command isPla
ed 
an take


are of these 
omputations.

If a parametrization of ! = 0 
an't be obtained,

then ! is be added to list LREL, and the new vari-

able appearing in ! but not in list V AR, is added

to list V AR. The same pro
ess 
an be applied now,
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and, if the last pseudo-remainder is 0, then 
ondi-

tion ! = 0 is also suÆ
ient. Command autProve


an take 
are of these 
omputations.

2. 3D-Extension of Ceva and Menelaus

Theorems

An appli
ation of the automati
 theorem prov-

ing method des
ribed above is in
luded as illustra-

tion afterwards. The goal is to determine 
ondi-

tions that make four points, lying on 
onse
utive

edge-lines of a tetrahedron, 
oplanary (see Figure

1). This problem was re
ently solved using syn-

theti
 te
hniques by H. Davis [3℄.

Fig. 1. Extending to 3D Ceva and Menelaus theorems

We 
an assume that the verti
es areA(1; 0; 0; 0),

B(1; 1; 0; 0), C(1; 


1

; 


2

; 0), D(1; Æ

1

; Æ

2

; Æ

3

) with-

out any la
k of generality (these points 
an be

de�ned using 
ommand point). Given m;n; p; q 2

R[f1g, letM;N;P;Q be the points lying on the

edge-lines AB;BC;CD;DA (respe
tively), and

satisfying

��!

MB = m �

��!

MA ;

��!

NC = n �

��!

NB

��!

PD = p �

��!

PC ;

�!

QA = q �

��!

QD

(they 
an be de�ned using 
ommand rateOnLine).

Then planeMNP 
an be de�ned (using 
ommand

plane).

As detailed above, applying 
ommand newHypot

to the pair (Q;MNP ), a ne
essary 
ondition for

Q to lie on plane MNP (i.e., forM;N;P;Q to be


oplanary): �


2

� Æ

3

� (�1 + m � n � p � q) = 0, is

obtained. As A;B;C;D are non-
oplanary points,

and 
onsequently, 


2

6= 0 6= Æ

3

, what implies:m �n �

p � q = 1. To verify that is a suÆ
ient 
ondition, Q

is parti
ularized for q = 1=(m �n � p), and applying


ommand isPla
ed to the pair (Q;MNP ), 0 is

obtained, what 
on�rms that Q belongs to plane

MNP . This leads to the following:

Theorem 1 Points M;N;P;Q, lying on the ori-

ented 
onse
utive edge-lines AB; BC; CD; DA of

tetrahedronABCD (respe
tively), are 
oplanary, if

and only if:

(MB=MA)�(NC=NB)�(PD=PC)�(QA=QD) = 1

Observe that the points M;N;P;Q do lie on the


onse
utive oriented edge-lines AB; BC; CD; DA,

but they 
an lie outside the edge-segments, and

therefore this result doesn't only generalizes Ceva

theorem, but also Menelaus theorem.

3. Comparison with Other Methods

As the automati
 theorem proving te
hnique

used in this work is based on Wu's algorithm, it

is of a lower 
omputational 
omplexity than those

te
hniques based on the use of Groebner bases.

Comparing this method with others based on

Wu's te
hniques, the main di�eren
e is the way

the geometri
 obje
ts of the 
on�guration are de-

�ned and the way the hypotheses 
onditions are

de
lared. In the method presented here the geo-

metri
 obje
ts and the hypotheses 
onditions are

obtained in a natural way, following the geomet-

ri
 algorithm that generates the 
on�guration, in-

stead of translating into algebrai
 expressions the

geometri
 relations that determine them (what is

usually the 
ase).

That happens, for instan
e, in Simson-Steiner-

Guzm�an theorem 3D-extension [4℄. The goal is to

determine the 
onditions so that the proje
tions

(in pre�xed dire
tions) of a point on the fa
es of a

tetrahedron are 
oplanary. This problem was de-

veloped in [7℄, translating into algebrai
 expres-

sions the geometri
 relations. Now it has been de-

veloped using the method detailed in se
tion 1, in

a more 
omfortable and faster way.
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Other advantage of the method proposed in Se
-

tion 1 is the simple way in whi
h parameters and

variables are distinguished (what is not straight-

forward in other approa
hes). With this method

the parameters are the non-numeri
 
oordinates of

the initial points (that are preserved along all sub-

sequent 
al
ulations), meanwhile the variables are

the 
oordinates of the point-on-obje
t obje
ts de-

�ned using pointOnObje
t 
ommand.

Another advantage of the method proposed in

Se
tion 1 is the possibility to develop the geomet-

ri
 algorithm of the 
on�guration using a Dynami


Geometry System, and to translate it to a Com-

puter Algebra System syntax (interpreting it using

the pa
kage 
onsidered here), as already done in

2D [8℄. We plan to implement it in the near future.

4. Con
lusions

The hypotheses 
ompletion in 3D-Geometry

method des
ribed is 
onvenient and eÆ
ient. It

allows the user to obtain automati
ally the equa-

tions in the 
on�guration, the hypothesis 
ondi-

tions obtained dire
tly in the 
on�guration and

the 
omplementary hypothesis 
onditions that

have to be added for the thesis 
ondition to hold.
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