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Abstract 

 

The purpose of this study was to evaluate the performance of Partial Least Squares under less-

than-ideal conditions selected to imitate real-world data. A simulation study with a 3×3×2×2 

design was conducted. The design and data features of interest were sample size (50, 300, 

1000), number of items per latent variable (3, 5, 7), degree of model misspecification 

(correctly specified, misspecified), and nature of the relationships between items and latent 

variables in the measurement models (reflective, formative). Bias of model parameter 

estimates, and bias and accuracy of standard error estimates were examined to evaluate the 

performance of PLS for each experimental condition.  
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1. Introduction 

 

In response to increasing expectations from funding agencies, trends in educational 

research require scientists to investigate increasingly complex phenomena with regard for the 

contexts in which they occur. These additional layers of exploration and understanding lead to 

increasingly complex hypotheses and require advanced statistical techniques. Structural 

equation modeling (SEM) is a common analytic approach for dealing with complex systems 

of information. Despite their flexibility (Zhu, Walter, Rosenbaum, Russell, & Raina, 2006), 

traditional SEM methods require large samples in general, and even larger samples for 

estimating complex models. For applied researchers, large samples are often difficult and 

sometimes impossible to obtain.  

The most common estimation method used with SEM is maximum likelihood (ML; 

Hoyle, 2000). ML has been studied across myriad contexts and data conditions, and its 

limitations are well documented. One context in which ML does not perform well is in the 

presence of small samples (Kline, 2011). Due to this limitation, it is imperative that 

researchers investigate the utility of alternative approaches to recovering parameter estimates 

(e.g., partial least squares (PLS), generalized structural components analysis (GSCA), Markov 

Chain Monte Carlo (MCMC)). If the strengths and weaknesses of each alternative method in 

the context of small sample research were more fully understood, researchers would be better 

equipped to make informed decisions with regard to selecting appropriate estimation methods 

and interpreting results. 
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2. Literature Review and Background 

 

As the field of methodology has advanced, alternative estimation methods have developed 

and include generalized least squares, weighted least squares, PLS, GSCA, and MCMC 

approaches. Unfortunately, the performance of these alternatives is not well understood, and 

their performance with real data is often difficult to predict (Henseler, 2012; Hwang, Ho, & 

Lee, 2010; Hwang Malhotra, Kim, Tomiuk, & Hong, 2010). Although estimation methods 

other than those described here have been developed for use with SEMs when the 

assumptions of ML are violated (e.g., robust ML, weighted least squares), it is not feasible to 

compare and evaluate the performance of all such alternatives in a single study. Thus, the 

present study will focus solely on the performance of PLS for addressing the problem of 

estimating SEMs with small samples. 

 

2.1. Sample size 

 

Inherent to traditional estimation methods (i.e., ML) is the expectation of large samples. 

Specifically, the parameter estimates produced by ML are based on asymptotic theory, which 

implies large samples (Tanaka, 1987). Therefore, as sample size decreases, methods such as 

ML do not perform as well (e.g., Lee & Song, 2004). Proponents of PLS often promote it as 

performing well in instances of small samples (e.g., Chin & Newsted, 1999), but the method 

has been found to perform inconsistently at times (e.g., Hwang, Malhotra, et al., 2010), which 

indicates that more work is needed to understand the interactions between sample size and 

other design features. 

 

2.2. Number of items 

 

Just as the performance of estimation methods is expected to improve with increased 

sample size, estimation methods are expected to produce more reliable parameter estimates as 

the number of items per latent factor increases (e.g., Boomsma, 1982; Velicer & Fava, 1998). 

As illustrated by Marsh, Hau, Balla, and Grayson (1998), however, increasing the number of 

items does not necessarily improve the ability of an estimation method to recover parameter 

estimates. The relationship between quality of parameter estimates and number of items per 

latent variable has not been studied at length in the context of PLS. 

 

3.3. Model misspecification 

 

In both substantive and methodological research endeavors that utilize SEM, inferences 

and conclusions are the result of the model used. Although it is difficult to know whether or 

not theoretical models are specified correctly in applied research, simulation-based research 

has illustrated the impact of misspecification on parameter recovery across estimation 

methods (e.g., Asparouhov & Muthén, 2010; Hwang, Malhotra, et al., 2010). The extent to 

which estimates are impacted by the misspecification of the model depends on design features 

such as sample size (e.g., Henseler, 2010; Tanaka, 1987) and overall complexity of the model 

(e.g., Tanaka, 1987). 

 

4.4. Nature of indicator-latent variable relationships 

 

Whether the relationships between observed variables and latent constructs are formative 

or reflective in nature is as important to methodological study as it is to theory-driven, applied 

research. In the context of SEM, latent variables can be modeled as the cause of those 
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observed values (reflective; Bollen & Lennox, 1991), or as a representation of the combined 

values of those observed values (formative; Curtis & Jackson, 1962). SEMs should be 

specified to reflect the correct theoretical relationships, but estimation methods sometimes 

vary in their performance depending on the type of relationship specified. Until recent years, 

it was held that SEMs including formative measurement models were inappropriate for 

traditional ML approaches altogether (Chin, 1998; Ringle, Götz, Wetzels, & Wilson, 2009). In 

contrast to ML, Ringle et al. found that PLS is likely to underestimate parameters in formative 

models and overestimate parameters in reflective models.  

 

2.5. Present study 

 

The purpose of the present study is to evaluate the performance of PLS under sub-ideal 

data conditions. The overarching goal of this study is to understand the effects of sample size, 

number of items per latent variable, model misspecification, and the nature of the latent 

variable-indicator relationships on the ability of PLS to recover measurement and structural 

model parameter estimates and their standard errors. No specific research questions were 

posed a priori. 

 

 

3. Method 

 

3.1. Simulation design 

 

The experimental conditions of interest in the present study as are follows: sample size (N 

= 50, 300, 1000), direction of relationship between items and factors (reflective, formative), 

number of items per latent variable (i = 3, 5, 7), and degree of model misspecification 

(correctly specified, misspecified). These experimental conditions were selected because they 

are representative of conditions common to both simulation-based research on structural 

equation modeling and researchers dealing with applied datasets. 

 

 
Note: Manifest variables and relationships indicated by gray lines are included in conditions that include more than 3 

items; dotted lines are included only in conditions that include 7 items. Dashed lines indicate cross-loading 

relationships included only in the generation of data for misspecification conditions. 

Figure 1: Population model for conditions including reflective indicators 
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The data for this study were simulated to reflect SEMs common to both applied and 

simulation-based research. The population model used for this study includes three latent 

variables, an equal number of items per latent variable, and no cross-loadings. This model was 

selected for its simplicity and similarity to population models employed by previous research 

(e.g., Henseler, 2012; Hwang, Malhotra, et al., 2010; Paxton, Curran, bollen, Kirby, & Chen, 

2001; Tomás, Hontangas, Oliver, 2000). The population model used for conditions featuring 

reflective indicator-latent variable relationships is identical to model used by Hwang, 

Malhotra, et al. (2010) and Paxton et al. (2001), and is displayed in Figure 1. 

As noted by Vinzi, Trinchera, and Amato (2010), the relationship between reflective and 

formative measurement models is essentially the same relationship that exists between factor 

models with high reliability among the indicators (reflective models with measurement model 

error) and factor models with low reliability among the indicators (formative models with 

essentially no measurement model error; e.g., Diamantopoulos, Riefler, & Roth, 2008). Thus, 

for experimental conditions under which formative indicator-latent variables are of interest in 

the present study, reflective models with low reliability among indicators was used for data 

generation (see Figure 2).  

 

 
Note: Manifest variables and relationships indicated by gray lines are included in conditions that include more than 3 

items; dotted lines are included only in conditions that include 7 items. Dashed lines indicate cross-loading 
relationships included only in the generation of data for misspecification conditions. 

Figure 2: Population model for conditions including formative indicators 
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in the same manner across all data sets regardless of population model (i.e., Mode A 

estimation was implemented for the PLS approach across all conditions). Ultimately, this 

allows for the differences in the performance of PLS across experimental conditions to be 

attributed to the nature of the indicator-latent variable relationships instead of to differences 

between Mode A and Mode B estimation. 

Mplus (version 6; Muthén & Muthén, 1998-2010) was used to simulate 150 replications of 

each unique condition. Several studies have been completed which rely on fewer replications 

and an ANOVA approach to analysis (e.g., 100 replications as reported in Kankaraš, 

Vermunt, & Moors, 2011; Lee, Song, & Lee, 2003; Lee & Xia, 2008; Lee & Zhu, 2002; Song 
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& Lee, 2002; Song, Lee, & Hser, 2008; and 200 replications as reported in Fan, Thompson, & 

Wang, 1999; Hu & Bentler, 1999; Jackson, 2003, 2007). The plsSEM package (Monecke & 

Leisch, 2012) developed for R (R Development Core Team, 2012) was used to obtain model 

parameter and standard error estimates. For each replication, the maximum number of 

iterations allowed was set to 1,000, and the number of bootstrap samples used to recover 

standard error estimates was set to 500.  

 

3.2. Outcomes of interest 

 

To evaluate the performance of each estimation approach for recovering parameter 

estimates under the varying experimental conditions, six characteristics of the recovered 

estimates were examined: average measurement model bias, average structural model bias, 

mean absolute differences of the measurement model standard error estimates, mean absolute 

differences of structural model standard error estimates, accuracy of standard error estimates 

for the measurement model, and accuracy of standard error estimates for the structural model. 

Standardized estimates were used in the calculation of all outcomes. 

 

3.2.1. Parameter estimate bias 

 

For this study, parameter estimate bias was defined as the proportion of the difference 

between the sample and population values, relative to the population values (Enders & 

Bandalos, 2001), and was calculated 

%𝐵𝐼𝐴𝑆 = [
|𝜃𝑖 − 𝜃𝐵|

𝜃𝐵
] × 100 

where 𝜃𝑖 is the recovered parameter estimate and 𝜃𝐵 is the known population parameter. 

Average bias was calculated separately for the measurement and structural models in each 

replication data set. 

 

3.2.2. Mean absolute difference of standard error estimates 

 

The mean absolute difference between standard error estimates and their corresponding 

empirical standard errors (MAD; Hwang, Malhotra, et al., 2010) were calculated as 

𝑀𝐴𝐷 =
∑ |SE(𝜃𝑗) − SE(𝜃𝑗)|𝑃

𝑗=1

𝑃
 

where SE(𝜃𝑗) is the recovered  standard error estimate, SE(𝜃𝑗) is the true value for that 

standard error, and P is the number of parameters. The true values for SE(𝜃𝑗) were obtained 

empirically via a Monte Carlo simulation (conducted in Mplus, version 6, Muthén & Muthén. 

1998-2010) which included 500 replications and 2,000 bootstrap resamples per replication for 

each experimental condition. True (empirical) standard errors were calculated as 

SE(𝜃𝑗) =
√∑ (𝜃𝑗 − 𝜃̅𝑗)

2
𝐵
𝑖=1

𝐵 − 1
 

where 𝜃𝑗  is the parameter estimate obtained for a single replication, and 𝜃̅𝑗  is the mean 

parameter estimate obtained for B replications (Hwang, Malhotra, et al., 2010; Sharma, 
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Durvasula, & Dillon, 1989; Srinivasan & Mason, 1986). MAD was calculated separately for 

the measurement and structural models in each replication data set. 

 

3.2.3. Accuracy of standard error estimates 

 

The ability of the estimation methods to produce standard errors was also evaluated by 

constructing a confidence interval around each parameter estimate and determining whether 

the corresponding population parameter falls within this confidence interval (i.e., accuracy of 

the standard error estimate; Gerbing & Anderson, 1985). For this purpose, the confidence 

interval was defined as ±1.96 standard errors around the parameter estimate, and the value of 

interest is the proportion of parameter estimates for which the population parameter falls 

within the appropriate confidence interval. This value was calculated for each replication to 

reflect the accuracy of the standard errors associated with the measurement and structural 

models separately. 

 

3.3. Analytic approach 

 

A multivariate analysis of variance (MANOVA) was calculated to evaluation the 

performance of the PLS across experimental conditions. The MANOVA analysis included the 

four design factors as independent variables (i.e., sample size, number of items per latent 

variable, degree of misspecification, type of latent variable-indicator relationships), and the 

six outcomes of interest as dependent variables (i.e., bias in measurement model estimates, 

bias in structural model estimates, MAD and accuracy measurement model standard error 

estimates, MAD and accuracy of structural model standard error estimates). All interaction 

effects were included in the MANOVA. Effect sizes (partial η
2
) were calculated for each 

direct and interaction effect. This method is consistent with recommendations and practices in 

this field (e.g., Hwang, Malhotra, et al., 2010; Paxton et al., 2001), and strengthens the 

connection between this and previous work. 

 

 

4. Results 

 

The four-factor MANOVA was computed as the first step toward understanding the effects of 

sample size, number of items per latent variable, degree of misspecification, and type of 

indicator-latent variable relationships within the present study. The results of the MANOVA 

are displayed in Table 1. It is important to note that the significant effects may be a reflection 

of the large number of observations included in the complete data set for this study (a total of 

3,600 observations representing 150 replications for each of experimental design condition). 

For this reason, only significant results for which the tests of between-subjects effects were 

characterized by a medium or large effect size (i.e., partial η
2 

≥ .06) are presented (Hwang, 

Malhotra, et al., 2010; Paxton et al., 2001). In instances where pairwise comparisons are 

made, only significant results for which the differences are characterized by a medium or 

large effect size (i.e., d ≥ .50) are presented (Cohen, 1988). Accordingly, direct and interaction 

effects are described as moderate or large and not as significant or not significant. Where 

relevant, p values are reported as a matter of standard practice, not for the purpose of 

interpreting effects. 
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Table 1: Multivariate effects 

Effect Wilks’ Λ df F 

Intercept 0.004 6 212972.42 
‡
 

Sample Size (n) 0.047 12 3221.96 
‡
 

Number of Items per Latent Variable (items) 0.080 12 2273.11 
‡
 

Degree of Misspecification (spec) 0.030 6 29383.39 
‡
 

Type of Measurement Model Relationships (iLV) 0.044 6 19441.61 
‡
 

n×items 0.178 24 499.29 
‡
 

n×spec 0.344 12 629.07 
‡
 

n×iLV 0.081 12 2239.75 
‡
 

items×spec 0.242 12 920.96 
‡
 

items×iLV 0.251 12 890.19 
‡
 

spec×iLV 0.032 6 26874.92 
‡
 

n×items×spec 0.311 24 310.08 
‡
 

n×items×iLV 0.191 24 473.17 
‡
 

n×spec×iLV 0.382 12 552.47 
‡
 

items×spec×iLV 0.146 12 1443.50 
‡
 

n×items×spec×iLV 0.331 24 290.58 
‡
 

Notes: all p < 0.001; 
‡
 partial η

2
 > 0.13 

 

 

4.1. Bias in measurement model parameter estimates 

 

Sample size (partial η
2
 = 0.13), number of items per latent variable (partial η

2
 = 0.89), 

specification (partial η
2
 = 0.95), and type of indicator-latent variable relationships included in 

the measurement portion of the model (partial η
2
 = 0.80) were all found to have a large effect 

on the bias of parameter estimates for the measurement portion of the models. The four-way 

(sample size × number of items per latent variable × specification × indicator-latent variable 

relationships) interaction was not found to have an effect on the bias of parameter estimates 

for the measurement portion of the models (p > 0.05; partial η
2
 = 0.00).  

Follow-up, pairwise comparisons indicate that PLS recovers measurement model 

parameter estimates with less bias for models with reflective indicators compared to models 

with formative indicators when the model is correctly specified (all d > 0.50). When the 

model is misspecified, PLS yields less biased measurement model parameter estimates for 

formative models (all d > 0.50) than reflective models. For correctly specified models that 

include formative indicator-latent variable relationships, the bias of measurement model 

parameter estimates increases as the number of items per latent variable increases (all d > 

0.50). The bias of recovered measurement model parameter estimates decreases as the number 

of items increases (all d > 0.50) for correctly specified models with reflective measurement 

structures as well as for misspecified models (regardless of the type of indicator-latent 

variable relationships included in the measurement model). 

 

4.2. Bias in structural model parameter estimates 

 

Sample size (partial η
2
 = 0.18) and number of items per latent variable (partial η

2
 = 0.25) 

were each found to have a large effect on the bias of parameter estimates for the structural 

portion of the models; neither degree of misspecification nor type of indicator-latent variable 

relationships included in the measurement portion of the model were found to effect the bias 

of structural model estimates. The four-way (sample size × number of items per latent 
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variable × specification × indicator-latent variable relationships) interaction was not found to 

be significant. 

Follow-up analyses indicated that PLS resulted in more biased structural model estimates 

for reflective models than formative models when the model was correctly specified; when the 

model was misspecified, PLS produced more biased structural model estimates for formative 

models than reflective models. Across all misspecified models and correctly specified models 

with reflective indicators, bias of structural model parameter estimates was found to decrease 

as the number of items per latent variable increased. No change in the bias of observed 

structural model estimates was observed as number of items increased for correctly specified, 

formative models. 

 

4.3. Mean absolute difference of measurement model standard error estimates 

 

Sample size (partial η
2
 = 0.87), number of items per latent variable (partial η

2
 = 0.72), 

specification (partial η
2
 = 0.59), and type of indicator-latent variable relationships included in 

the measurement portion of the model (partial η
2
 = 0.87) were found to have a large effects on 

the MAD of measurement model standard error estimates. The effect of the four-way (sample 

size × number of items per latent variable × specification × indicator-latent variable 

relationships) interaction was found to be large (partial η
2
 = 0.58). PLS was found to yield 

less biased standard error estimates for the measurement model for formative models than for 

reflective models. MAD of measurement model standard error estimates was found to 

decrease (improve) as the number of items per latent variable increased for misspecified 

models as well as for correctly specified, reflective models (all d > 0.50). 

 

4.4. Accuracy of measurement model standard error estimates 

 

Sample size (partial η
2
 = 0.70), number of items per latent variable (partial η

2
 = 0.27), and 

type of indicator-latent variable relationships included in the measurement portion of the 

model (partial η
2
 = 0.75) were found to have a large effects on the accuracy of standard error 

estimates for the measurement model parameters. The four-way (sample size × number of 

items per latent variable × specification × indicator-latent variable relationships) interaction 

was not found to be significant. Follow-up analyses indicated that PLS yielded more accurate 

estimates of measurement model standard errors for reflective models than formative models, 

regardless of degree of misspecification. Accuracy of standard error estimates for the 

measurement model was observed to increase and the number of items increased for reflective 

models regardless of degree of misspecification (all d > 0.50). No changes in accuracy of 

standard error estimates were observed for formative models as the number of items 

increased. 

 

4.5. Mean absolute difference of structural model standard error estimates 

 

Sample size (partial η
2
 = 0.84), number of items per latent variable (partial η

2
 = 0.25), 

degree of misspecification (partial η
2
 = 0.35), and type of indicator-latent variable 

relationships included in the structural portion of the model (partial η
2
 = 0.43) were found to 

have a large effects on the MAD of structural model standard error estimates. The four-way 

(sample size × number of items per latent variable × specification × indicator-latent variable 

relationships) interaction was not found to be significant. Follow-up analyses indicated that 

PLS yields more precise estimates of structural model standard errors for formative models 

than for reflective models, regardless of degree of misspecification. The MAD of structural 

model standard estimates was found to decrease and the number of items per latent variable 
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increased for misspecified models as well as for correctly specified models with reflective 

indicators (all d > 0.50). 

 

4.6. Accuracy of structural model standard error estimates 

 

Sample size (partial η
2
 = 0.35), number of items per latent variable (partial η

2
 = 0.08), and 

degree of misspecification (partial η
2
 = 0.15) were found to have a large effects on the 

accuracy of standard error estimates for the structural model parameters; no effect of type of 

indicator-latent variable relationships included in the measurement portion of the model 

(partial η
2
 = 0.01) was found. The four-way (sample size × number of items per latent variable 

× specification × indicator-latent variable relationships) interaction was not found to be 

significant. Follow-up analyses indicated that PLS yielded more accurate estimates of 

structural model standard errors for formative models than for reflective models when correct 

specification was used and the sample size was moderate or large (n = 300, 1000; all d > 

0.50); no difference in accuracy of structural model estimates between reflective and 

formative models was observed when applied to a small sample (n = 50). When applied to 

misspecified models, PLS yielded more accurate standard error estimates for the structural 

model with reflective indicators than formative indicators (all d > 0.50). The accuracy of 

structural model standard error estimates increased as the number of items per latent variable 

increased for misspecified, formative models as well as for correctly specified, reflective 

models. No change in accuracy was observed as number of items increased for misspecified, 

reflective models or correctly specified, formative models. 

 

 

5. Brief Discussion 

 

This study attempted to replicate and extend previous research by evaluating the 

performance of PLS under varying data conditions. Generally speaking, it was found that PLS 

does not perform consistently across experimental conditions. Not surprisingly, the 

performance of PLS was found to vary between reflective and formative models, as well as 

between correctly specified and misspecified models. Further, the performance of PLS for 

measurement model parameter recovery was not equivalent to the performance of PLS for 

structural model parameter recovery. Table 2 (omitted from this document due to length) 

indicates the conditions under which PLS produced the best estimates for each outcome of 

interest. 

 

5.1. Limitations and future research 

 

Part of the discrepancy in performance between correctly specified models and 

misspecified models may be a result of the methods used for data simulation and estimation. 

First, all data were generated for reflective models, with parameter values varied to simulate 

formative relationships for formative models. Second, all parameter estimates were recovered 

using PLS Mode A estimation. Future research should consider implications of a different 

method of data simulation, as well as the relative performance of PLS when models are 

estimated using the Mode B approach. Even though it is not expected that the sole use of 

Mode A negatively influenced the estimation process or recovered estimates, it is a question 

worth empirical investigation. 

A second limitation of the present study is the simplicity of the population and analytic 

models. The population models used for the present study were relatively simple compared to 

some models employed by substantive researchers. Specifically, all data were generated as 
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normally distributed representations of their respective variables, but typical data is rarely 

normally distributed. Both the population and analytic models used for the present study were 

relatively simple: each latent variable was related to an equal number of indicators in the 

measurement models, and the structural models included only a minimal number of latent 

variables and relationships between those latent variables. The simplicity of the models 

examined were appropriate for the investigatory nature of the present study. Future research, 

however, should examine the performance of PLS when applied to more complex models 

(e.g., cross-loadings as part of the analytic model, combination of reflective and formative 

indicators in the measurement model, misspecification in the structural portion of the model, 

multiple group analyses, etc.). 

 

5.2. Implications and conclusion 

 

The driving force behind the need for this type of research is to provide a more complete 

understanding of the performance of PLS under conditions common to applied research data. 

The findings presented herein are best interpreted as guidance for the development of 

additional methodological work to extend this research and delve deeper into the issues at 

hand. Applied researchers are cautioned to remember that these findings are contingent upon 

the characteristics of the data generated for this study (i.e., normally distributed variables 

throughout the measurement and structural models) - characteristics sometimes uncommon in 

substantive, "real-world" research endeavors. 
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