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Abstract

We study the minimum number of different distances defined by a finite number of points in the following cases:
a) we consider metrics different from the euclidean distance in the plane, b) we consider the euclidean distance
but restricted to subsets of the plane of special interest, c) we consider other topological surfaces: the cylinder
and the flat torus. All these results extend those obtained by Erdös and other mathematicians for the euclidean
distance in the plane.
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1. Introduction

In 1946 [4] Erdös posed the following problem:
let f(n) denote the minimum number of distinct

distances that can occur among the n(n−1)
2 dis-

tances between n distinct points in the plane; what
can we know about f(n)?

For small values of n it is easy to compute f(n)
and many times the number f(n) is attained for
different configurations. Let us see the first exam-
ples.
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Erdös obtained asymptotic estimates for f(n).
The first asymptotic estimate was

cn1/2 < f(n) < c
n

(lnn)1/2
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Erdös conjectured that f(n) > cn1−ε for each
ε > 0 and offered 500$ for a proof or a disproof.

Erdös conjecture is still open. The last improve-
ment was made by Szemerédi (1992) who proved
that f(n) > cn4/5 ([2]).

f(n) can be investigated in dimension R
d

with d > 2. For d = 3 the best bounds are
cn4/3 log log n < f(n) ([5]) and f(n) < n3/2+o(1)

([3]).

Recently Braß([1]) determined f(n) exactly in
dimension d = 4.

There are also bounds for general dimensions.

The aim of this communication is to extend
Erdös problem to other ambient spaces.

a) First we consider metrics different from the
euclidean distance in the plane.

b) Then we consider also the euclidean distance
but restricted to subsets of the plane of spe-
cial interest (points of the integer lattice and
points of rational coordinates).

c) Finally we consider Erdös problem in other
topological spaces.
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2. Erdös problem considering arbitrary
distances in the plane

In the plane we can define many distances. Let
us recall that a distance in the plane is a map

d : R
2 × R

2 → R

such that
i) d(x, y) ≥ 0, d(x, y) = 0 iff x = y
ii) d(x, y) = d(y, x)
iii) d(x, z) ≤ d(x, y) + d(y, z)

An interesting way to define a metric in the plane
is as follows.

Let us define the gauge function g(K,x) of a
closed, convex set K relative to an origin 0 as

g(K,x) = inf{λ : x ∈ λK, λ > 0}

It is easy to prove that if K is a proper con-
vex body and 0 ∈ intK, the function m(x, y) =
g(K,x− y) almost defines a distance in the plane.
The condition that is violated is the symmetry con-
dition m(x, y) = m(y, x) that holds only if K is
centrally symmetric.

So a closed, centrally symmetric, convex set K
with 0 ∈ intK defines a metric ([7]).

All these metrics generate the euclidean topol-
ogy.

In the particular case that the set K that
induce this metric is a square of the type
〈(p, 0), (0, p), (−p, 0), (0,−p)〉, then we obtain the
famous taxi-cab metric which is also known as
the Manhattan metric. This metric is particularly
relevant for our analysis.

The taxi-cab metric can also be defined as

dT ((x1, y1), (x2, y2)) = |x2 − x1| + |y2 − y1|

We are going first to estimate the minimum num-
ber of distinct distances with the taxi-cab metric.

We begin showing in table 1 that the taxi-cab
metric provides different values for f(n) than those
values attained with the euclidean metric.

f(n) Euclidean metric Taxi-cab metric

3 1 1

4 2 1

5 2 2

6 3 2

7 3 2

Table 1
Some values of f(n) with the taxi-cab metric
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Now we are going to estimate precisely f(n).

Lemma 1 Considering the taxi-cab metric

f(n) ≤ ⌈
√

n⌉ − 1

PROOF. Let L be the lattice generated by the
vectors (1,1) and (1,-1). Let p be an integer number
and let Kp be the point set determined by Kp =
L∩〈(0, 0), (p−1,−(p−1)), (2(p−1), 0), (p−1, p−
1)〉.

Consider K⌈√n⌉. This set contains at least n

points since ⌈√n⌉ · ⌈√n⌉ ≥ √
n · √n = n, so we

can always choose n points in K⌈√n⌉. As the points

in K⌈√n⌉ determine ⌈√n⌉ − 1 different distances

among them, f(n) ≤ ⌈√n⌉ − 1
�

This estimate is not only an upper bound but a
precise determination of the minimum number of
distinct distances:

Lemma 2 Considering the taxi-cab metric

f(n) ≥ ⌈
√

n⌉ − 1

PROOF. We are going to give a sketch of the
proof:

We consider the “metric circumferences”, which
in our case are square-shaped, as the locus of the
points that are at distance r from a point p ∈ R

2:

S(p, r) = {x ∈ R
2 : dT (p, x) = r}

Now we are going to locate the maximum num-
ber of points who define at most m distances among
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them. As we are always dealing with a finite num-
ber of points, there would be at least two points
a, b such that the distance between them is the
maximum possible. All the others points should
be located in the intersection of m “metric cir-
cumferences” centered at a and m “metric circum-
ferences” centered at b. If we do not want to in-
crease the number of different distances, the radius

of these “metric circumferences” are {id(a,b)
m }m

i=1.
There are two possible situations:

i) All the “metrics circumferences” intersect
properly. In this case as they have the pseudodisc
property (there are at most two proper intersec-
tions for each pair of pseudodiscs), then we obtain
that the maximum number of possible points is
given by (m + 1)2 and they are distributed in a
translated of the square Km+1. From this config-
uration we obtain our lower bound.

ii) There are some pairs of “metric circumfer-
ences” that do not intersect properly but are tan-
gent. In this case they are tangent along a straight
line segment. Considering the ends of this straight
line segment and taking the “metric circumfer-
ences” centered at these ends we conclude that
there are no more than (m+1)2 possible locations.
So we also reach the same lower estimate.

�

It is easy to see that the argument in the proof
of lemma 2 holds for all metrics generated by the
gauge function of a centrally symmetric, convex
set; as the equality sign is attained in the case that
the body which generates the metric is a square,
we can conclude the following corollary:

Corollary 3 Among all metrics generated by a

closed, centrally symmetric, convex set K, the met-

rics that give the smallest values for f(n) are those

in which the metric is generated by the gauge func-

tion corresponding to a square.

For instance the taxi-cab metric or the maximum

metric defined as

d((x1, y1)(x2, y2)) = max{|x2 − x1|, |y2 − y1|}

Corollary 3 does not hold for general metrics. For
example, let us consider the so called post office
metric

d((x1, y1)(x2, y2)) = d2((x1, y1), (0, 0))

+d2((0, 0), (x2, y2))

where d2 stands for the euclidean distance in the
plane. In this case it is easy to see that we can
arrange infinite points so that each pair of them is
at distance one; so f(n) = 1 for all n.

(0, 0)

3. The minimum number of distinct
distances problem with the euclidean
distance in the integer lattice

If we consider Erdös problem restricted to the
integer lattice we obtained different values for f(n)
as the following table shows:

f(n) Plane Integer lattice

3 1 2

4 2 2

5 2 3

6 3 4

7 3 4

Table 2
Some values of f(n) in the integer lattice

In general, we have the following upper bound:
Lemma 4 In the integer lattice

f(n) ≤ (⌈√n⌉ − 2)(⌈√n⌉ + 1)

2

PROOF. Let L be the integer lattice and let
Pn be the point set Pn = L ∩ 〈(0, 0), (0, ⌈√n⌉ −
1), (⌈√n⌉ − 1, 0), (⌈√n⌉ − 1, ⌈√n⌉ − 1)〉. Pn con-
tains at least n points.We can compute the number
of distinct distances by considering only the dis-
tances between (0, 0) and the the rest of the points
below the diagonal of the square. Then we have at
most 2 + 3 + ... + (⌈√n⌉ − 1) distinct distances,
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that is the sum of the terms of an arithmetic pro-
gression, so f(n) ≥ 2 + 3 + ... + (⌈√n⌉ − 1) =
⌈√n⌉(⌈√n⌉−1)

2 − 1 = (⌈√n⌉−2)(⌈√n⌉+1)
2

(0, 0)

�

The values of f(n) if we restrict to the integer
lattice are the same that if we restrict to the points
with rational coordinates because a finite number
of points with rational coordinates are included in
an integer lattice generated by the vectors (q, 0)
,(0, q) where q is the least common denominator of
the coordinates of the points that we are consider-
ing.

This estimate of f(n) can be applied to com-
puters, because the computer screen can be repre-
sented as a finite number of points with rational
coordinates.

4. Erdös problem for other topological
spaces

The first mathematicians to consider this prob-
lem in other topological spaces were Erdös, Hick-
erson and Pach ([6]) who studied the case of the
sphere.

We are going to consider two other particular
topological surfaces: the cylinder and the flat torus.

As we can see in table 3, for small values of n we
obtain the same values for f(n) in both topological
surfaces, but this do not occur for greater values
of n.

f(n) Plane Cylinder Flat torus

3 1 1 1

4 2 1 1

5 2 2 2

6 3 2 2

Table 3

Some values of f(n) in different topological surfaces

Now, we can give upper bounds for both topo-
logical surfaces.

Lemma 5 In the flat torus

f(n) ≤ (⌊⌈√n⌉/2 + 1⌋ + 2)(⌊⌈√n⌉/2 + 1⌋ − 1)

2

Lemma 6 In the cylinder

f(n) ≤ (⌊⌈√n⌉/2 + 1⌋ + 2)(⌊⌈√n⌉/2 + 1⌋ − 1)

2

+(⌊⌈
√

n⌉/2 + 1⌋)(⌈
√

n⌉ − ⌊⌈
√

n⌉/2 + 1⌋)

We omit the proofs because they are similar to
the proof of lemma 3. We have to consider a par-
ticular lattice and intersect it with the topological
surfaces, as the figure shows. Then, by some arith-
metic computations, we obtain the bounds.

Flat Torus Cylinder
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