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a b s t r a c t

Currently, the lifestyle of elderly people is regularly monitored in order to establish
guidelines for rehabilitation processes or ensure the welfare of this segment of the
population. In this sense, activity recognition is essential to detect an objective set of
behaviors throughout the day. This paper describes an accurate, comfortable and efficient
system, which monitors the physical activity carried out by the user. An extension to an
awarded activity recognition system that participated in the EvAAL 2012 and EvAAL 2013
competitions is presented. This approach uses data retrieved from accelerometer sensors
to generate discrete variables and it is tested in a non-controlled environment. In order
to achieve the goal, the core of the algorithm Ameva is used to develop an innovative
selection, discretization and classification technique for activity recognition. Moreover,
with the purpose of reducing the cost and increasing user acceptance and usability, the
entire system uses only a smartphone to recover all the information required.

1. Introduction

According to Taipale [1], in 2014, there were more than 800 million people 60 years of age and over and the global number 
is increasing. The United Nations [2] indicated that 64 countries are expected to have an elderly population of more than 
30% by 2050. Also, the Global Age Watch Index [3] shows that the number of people living alone is increasing and older 
people emerge as a growing market for consumption.

One of the aims of gerontechnology [4] is to extend the time during which elderly people can live independently in 
their preferred environment with the support of information and communication technologies [5], thus maximizing their 
vital and productive years and reducing the cost of care in later life. To achieve this goal, activity recognition is one of the 
main facilities of gerontechnology: real-time monitoring of human activities represents a useful tool for many purposes 
and applications such as daily activities assistance, health, and activity monitoring or safety and security enhancement [6]. 
Although activities of daily living (ADL) are useful to analyze user behavior, falls are the most important events that need 
to be detected. According to the World Health Organization [7], more than 28% of people aged 65 and over fall each year, 
increasing to more than 32% for those over 70 years. If preventive measures are not taken in the near future, the number of 
injuries caused by falls is projected to double by 2030. In this environment, assistive devices that contribute to reduce the
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incidence of this kind of events are a social need. The automatic and unobtrusive identification of user’s activities, including
falls, is one of the challenging goals of context-aware computing [8,9] and it is a fast-growing field in ubiquitous computing
domain. Indeed, it is expected that activity recognition systems will be a practical solution to monitor elderly people in the
coming years. Although there are many mobile activity recognition systems, most of them lack battery draining [10], and in
the last fewyears, developers have focused their efforts to tackle this problem. Liang [11] used a low sampling frequencywith
a hierarchical scheme methodology in order to improve the battery consumption. Weng [12] described a similar approach
but the hierarchical support vector machine is supported by an additional strategy that reduces the sensor data sampling
rates. This addition allowed the authors to reduce the computational complexity. On the other hand, Rault [13] proposed
a new decision metric in order to evaluate these systems. It takes into account latency, accuracy, and energy consumption
requirements in order to select the best execution configuration.

As an addition, some of the developed systems include automatic customization of the mobile device’s behavior. For
example, Kozina’s system [14] sends calls directly to voicemail if a user is jogging and generates a daily/weekly activity
profile to determine if a user is performing a healthy amount of exercise. Lu [15] implemented two simple proof-of-concept
applications using a continuous sensing engine, JigMe, that automatically records a user’s daily diary and, GreenSaw, that
gives users awareness of their daily calorie expenditure and carbon footprint. These add-ons increase the value of the
research and evidence that they could be used out of the laboratory by common users.

In this paper, we present a low-consuming battery system using the core of the Ameva algorithm [16] validated in
the activity recognition track of EvAAL competition1 in the editions of 2012 and 2013. The proposed system supports the
inclusion of new activities once the training stage is completed, a feature that makes the system feasible for rehabilitation
exercises recommended to elderly people by physicians. Furthermore, these new activities are automatically detected,
inviting the user to perform a more exhaustive training on them if necessary. This last feature is especially interesting
for unsupervised systems where users are free to perform any kind of activity, and not only for the elderly, whose set of
activities tend to be more limited.

The remainder of this paper is structured as follows. Section 2 presents a review of activity recognition systems targeting
elderly people. Section 3 introduces the EvAAL Activity Recognition competition and the results of our system. Section 4
presents the AMEVA recognition system and its evolution. A comparative analysis is described in Section 5. Finally, Section 6
concludes the paper and discusses future extensions.

2. Activity recognition systems for elders

Activity recognition systems (AR systems) have experienced an increase in both number and quality, mainly due to the
growing interest in monitoring elderly people with dementia or people in rehabilitation. AR systems are classified into two
categories: external sensor-based and wearable sensor-based. In external sensor-based systems, the devices are fixed in
predetermined places. In wearable sensor based systems, the devices are attached to the user. Smart-home projects [17–19]
include all kinds of sensors (temperature, smoke, humidity, presence, light and bed presence, NFC or RFID labels, etc.) but
these systems have a pervasiveness issue: the only place where the activity is recognized is in the user’s home or where
the sensors are located. Another kind of research venue focuses on the usage of cameras for the recognition of gestures
[20–22]. This is especially suitable for security (e.g. intrusion detection), but privacy issues [23] make this option unfeasible
to recognize ADL. On the other hand, these systems can only be used in controlled environments. Robots are another kind of
external sensor [24,25] that can assist the elderly, but the cost of deployment andmaintenance of these systems is currently
a big disadvantage. Furthermore, this kind of system presents a common drawback: people are not always monitored and
hence some activities and events like falls could be unnoticed.

Wearable sensors are the preferred option for the latest generation of AR systems. Most solutions in this area employ
various sensors placed in the body. Accelerometers are themost suitable option to detectmovement, but accuracy improves
when gyroscopes, magnetometers, and barometers are included in the system [26,27]. Smartphones, which embed all
these sensors, can be considered a type of wearable due to their pervasiveness. Furthermore, the low adoption barrier on
healthcare applications [28] through application markets such as Google Play or AppStore makes them the best option to
target themassmarket. Some of themare focused on fall detection [29,30], but normally do not cover both ADL and falls [31],
so a classification system must be designed to consider them.

In general, themost important problemwith classificationmodels is that a good training process is needed to get the best
results. Therefore, in AR systems, it is important to detect correctly the lifestyle of elderly people, but the difficulty is that
theywill waste their time training a device. This aspectmakes the aged population a singular group for AR systems. Abdallah
[32] developed a framework that incorporates incremental and active learning for real-time recognition and adaptation in
streaming settings. However, the majority of existing solutions detect only a few activities. A major step forward would be
the possibility for the system to recognize additional activities after the initial training [33,34].

All common learning processes have a test phase that normally is carried out in a laboratory setting. In AR, this stage
is performed in a controlled environment, throughout public generated datasets and also by the developed team of the
system itself. The presented approach differs from the traditional system because it has been proved effective also in a
non-controlled environment as it is described in Section 3.

1 Available from: http://evaal.aaloa.org.

http://evaal.aaloa.org
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Fig. 1. Map from CIAmI Living Lab and pictures of garden and living room.

3. EvAAL activity recognition competition

The competition EvAAL (Evaluation of Ambient Assisted Living Systems through Competitive Benchmarking)was created
with the idea of comparing and validating AAL solutions and platforms. It is an annual international contest that helps to
measure the state of the art of AAL solutions by assessing the participants, level of autonomy, independent living, and quality
of life they deliver to elders.

The developed algorithmwas presented in the Activity Recognition track, which has as main objective the measurement
of hardware and software performance through the established set of benchmarks and evaluation metrics. In order to
participate in the AR track, the system must be capable of detecting the following activities: lie, sit, stand, walk, bend, fall
(any kind of fall) and cycle (using a stationary bike). There is no limitation to the number of devices that can be used and
competing solutions can be based on a variety of sensors and technologies.

The two editions of the track took place at the CIAmI Living Lab [35] in Valencia (Spain). Fig. 1 shows the CIAmI Living
Lab.

3.1. Benchmark description

Once the participant team installs the solution, an actor (an evaluation committee member) performs a predefined
physical activity trip across the smart home wearing an elderly simulation kit (Fig. 2). Álvarez-García [36] explains the
complete process.

3.2. Evaluation criteria

The evaluation of the competing systems is carried out using five-evaluation criteria:

• Accuracy. Represents the confidence of the system under evaluation recognizing the activities performed by the actor.
Accuracy is computed from the recognized activity instances using F-measure. 2∗precision∗recall

precision+recall .
• User acceptance. Expresses how much the system is invasive in the user’s daily life and hence the perceived impact.

This parameter is estimated with a questionnaire that considers aspects of usability like the invasiveness, visibility of the
installation within the environment and the complexity of maintenance procedures.

• Recognition delay. Measures the elapsed time between the instant when the user begins an activity and the time the
system recognizes it.

• Installation complexity. It measures the effort required to install the recognition system in a home. It is measured as a
function of the person-minutes of work needed to complete the installation.

• Interoperability. Measures how easy is to integrate the system with other systems. Interoperability is measured with a
questionnaire that takes into account aspects like the availability of APIs and documentation, the licensing scheme, the
presence of testing tools and the portability among different operating systems.



Fig. 2. Elderly simulation kit where elements 7, 8 and 9 were used to simulate the elderly’s movements.

Table 1
Best performance results 2012.

Team Accuracy Delay Installation User acceptance Interoperability Final score

USSa 4.33 9.00 10.00 7.47 7.63 7.39
CMUUb 7.17 9.00 0.00 7.93 6.15 6.50
CUJc 1.44 5.00 0.00 5.60 5.09 3.52
a University of Seville from Spain.
b Carnegie Mellon and Utah Universities from USA.
c Chiba University from Japan.

Table 2
Best performance results 2013.

Team Accuracy Delay Installation User acceptance Interoperability Final score

JSISa 6.94 10.00 10.00 8.55 7.20 8.36
CNRIb 4.04 10.00 10.00 7.04 6.15 6.94
USS 4.68 9.00 10.00 6.99 5.54 6.89
a Jožef Stefan Institute from Slovenia.
b Consiglio Nazionale delle Ricerche from Italy.

3.3. Results

After peer review, only four competitors participated in the challenge in both editions where University of Seville from
Spain and Chiba University from Japan teams repeated with improved versions of their solutions in 2013.

Table 1 shows the scores of the top three marked teams on the scale of 0–10 for the 2012 edition and Table 2 the ones
for 2013 edition.

The winner team of 2012 edition (USS team) [37], composed of three of the authors of this paper, obtained acceptable
results in accuracy (it was below that of the CMUU team), but its simplicity (although it usesmultiplemathematicalmethods
it only relies on accelerometers) and interoperability allowed it to achieve good marks in all the evaluated criteria.

The winner of the 2013 edition (JSIS team) [14,38] obtained very good results in all the evaluated criteria. The poor
performance of the USS system in the 2013 edition is related to the lower priority associated to the activity ‘‘bend’’, penalized
to give higher importance to ADL and fall. In addition, the Androidmobile devicewas not properly secured on the right hip of
the actor and it fell to the ground during the cycling activity penalizing the final result. In order to avoid this problem, which
could be present in a daily use of this approach, next generations of the AR system will be installed into smart-watches.
These devices allow to run the application and extract information about accelerometry and at the same time, increase the
user acceptance and reduce the risk of forgetting. In the next section, the AR system and its improvements will be described.



Fig. 3. Common steps for training and recognition process.

Fig. 4. Overall process of data analysis and interval determination.

4. The activity recognition algorithm

The initial steps of the activity recognition and fall detection system (from now on activity recognition) are depicted in
Fig. 3. These steps are common in training and classification processes, and they are always executed before the recognition
stage.

The process startswith collecting data from the accelerometer of themobile device at an average frequency of 25Hz. Time
windows of fixed duration are used to get training data (and later to get recognition data). Each time window is composed
of a set of accelerometer readings from which it is possible to calculate a variety of features. After performance and system
accuracy analysis, it has been determined in an empirical way that the optimum length for these windows is five seconds.

Based on these time windows the module of the signal has been chosen in order to reduce the computational cost of
the new solution and solve some problems related to the device’s orientation. Using it, the accelerometer module measures
acceleration values in three spatial directions (x, y, z) in the form ai = (axi, ayi, azi). The norm of the vector is computed as
follows.

|ai| =


(axi)2 + (ayi)2 + (azi)2.

Finally, arithmetic mean, minimum, maximum, median, standard deviation, geometric mean and measures from frequency
domain are generated. An important feature of the system is that the user can decide what activities must be recognized.
This feature is critical for the application of the system to a specific scenario of interest. In our case the classes of the activities
we wanted to recognize were immobile, walk, run, fall, drive, walk-upstairs, walk-downstairs and ride a bicycle.

Once the activities are defined, the training phase is required in order to recognize them. To get a training set, the user
wears the smartphone doing repetitions for each activity to get personal information and training data. The number of
examples for each activity must be balanced in order to avoid over training. All the activities are trained by the research
team but in order to adapt the system to the user they must be trained again by said user.

Falls constitute an exception to this process and their training is performedvia simulated falls.Walking, running,walking-
upstairs and downstairs require only 20 s of training. Driving is an activity in which accelerations do not occur at a specific
frequency so a small trip of 15 min is necessary to train the system. Finally riding a bicycle can be trained in three minutes.

Once the training set is prepared, the statistic process can be carried out using data analysis and interval determination.
Fig. 4 shows the steps.

The first step of this process is the discretization of each variable in order to reduce the computational cost of the
algorithm. This discretization process is based on the Ameva algorithm [16]. The aim of it is to maximize the dependency



Fig. 5. Overall recognition process from data sensors.

relationship between the class labels C and the continuous attribute L(k). Furthermore, the lower the number of discrete
intervals k, the faster the classification will be.

The application of the algorithm to each statistical value of the system allows obtaining a set of intervals associated with
a particular C tag. Thus, after processing all system statistics, a matrix denoted by Dm{C, L, S} is produced as output.

The dimensions of the matrix are in the order:

1. the label C = {C1, C2, . . . , Cl}, l ≥ 2 of the activity;
2. the interval L = {L1, L2, . . . , Lk} where Li = (Llowi , Lupi ], i = 0, 1, . . . , k defining lower Llowi and upper limit Lupi of the

range;
3. the statistics measurement of the data (arithmetic mean, minimum, maximum, etc.).

After the data collection X, the probability associated with the statistical data for each activity is computed. In order to
carry out this process, a matrix denoted by Cm{x, Li, S} is defined as follows:

Cmx,i,s = |x ∈ X|, x ≥ Llowi ∧ x < Lupi ∧ xC = Cs.

It means that each entry of the matrix Cm contains the number of instances x ∈ X belongs to a specific interval of the range
of a statistical S.

After Cm is computed, the relative probability matrix is carried out. This matrix is denoted by AIm{x, Li, S} and it
determines the likelihood that a given value x associated to an S statistic corresponds to a specific Ci activity. This ratio
is based on the quality of the discretization performed by Ameva. The contents of the array AIm are defined as follows

AImc,i,s =
Cmc,i,s

totalc,s
·

1
l − 1

l
j=1,j≠c


1 −

Cmj,i,s

totalj,s


where totalc,s is the total number of time windows of the training process labeled with the c activity for the S statistic.

Finally, Fig. 5 shows the overall process described on this section for recognition process from matrix AIm where it is
based on a majority voting system.

This process starts from the matrix AIm and uses a set of data x ∈ X for each of the statistics belonging to the set S.
The process consists of finding an activitympa ∈ C such that the likelihood is maximized. The above rule is included in the
expression

mpa(X) = max
s

s=1

AImc,i,s|xs ∈ (Llowi , Lupi ]. (1)

The expression shows that the weight of each statistical metric to the calculation of the probability is equal. This can be
carried out under the assumption that all statistics provide the same amount of information to the system, and that there
is no correlation between them. Thus, the mpa represents those activities whose data is more fitted to the AIm set values
using a majority voting system.

The final systemwith an innovative algorithm is developed and deployed in a smartphone to get the necessary data from
the accelerometer and to identify the activity that user is doing.

4.1. Improvements of the system

Themain advantage of the approach is the reduced battery consumption caused by the usage of discrete variables instead
of continuous ones. Also, the dependencies between them are eliminated from the system to get only the information and
to reduce the noise.

After the 2013 edition when the system achieved third position, several improvements over the original algorithm have
been applied. The discretization process performed in the original algorithm needed to evaluate the cuts criterion using
an iterative algorithm. Hence, its goal was to find the cut, which minimizes the variance of the class labels belonging to
instances of each interval. The application of the algorithm to a multivariate dataset with a high amount of samples caused
the time complexity of Ameva to explode and, therefore, the low performances.

The optimization introduced allowed significant simplification. The main advantage consists in the need to compute the
sample variance of the class label associated with each instance only once. This optimization generates a higher number



Table 3
Comparison between Ameva original and Ameva optimized algorithms.

# of Ameva original Ameva optimized Ameva original Ameva optimized
statistics time (s) time (s) # of intervals # of intervals

1 0.53 0.13 6 12
5 2.80 0.75 36 63

10 4.31 1.22 60 101
20 7.77 2.56 120 195
50 22.13 6.30 300 555

100 43.08 12.69 600 1097
200 90.13 25.13 1200 2168
400 167.84 50.00 2400 4074

of intervals than the original algorithm. Moreover, the intervals generated by the original algorithm are a subset of those
generated by the optimization, which ensures that the results of the classification process are theoretically a superset of the
ones carried out by the originals, but in practice are really close to them. In terms of runtime duration, a significant reduction
was expected by the application of the improvement described. These expectations were met in the testing process, where
execution time was reduced by 70%. Table 3 shows the comparison between both algorithm (Ameva original and Ameva
optimized) in terms of execution time and it has obtained from a dataset of 10,299 instances and 561 statistical.

4.2. Definition of the used datasets

The gathering data process was carried out with a group of 30 volunteers within an age bracket of 19–48 years wearing
a smartphone on the waist and was randomly partitioned into two sets, where 70% of the volunteers were selected for
generating the training data and 30% the test data [39]. Also, there were other datasets that were tested in the system:

• USC-HAD [40]: the data was collected from a set of human subjects that have a mean of 30.1 years old, 170 cm height
and 64.6 kg weight, doing 12 activities. To overcome the limitations of the existing datasets, thus serving as a standard
benchmark for researchers in the ubiquitous computing community to compare performance of their human activity
recognition algorithms.

• WISDM [41]: it contains data from36 users and six activities. Test datawas collected from an extensive variety of Android
smartphones (1.3–2.1 version), like the system presented here.

• Shoaib [42]: this dataset contains smartphone sensor data for six physical activities collected using four participants. It
was useful because the data was collected from four smartphones on four body positions, allowing for comparison to
approaches using only one smartphone.

Furthermore, the validation of results was not only tested on these datasets by cross-validation, but competition data
were used to check their suitability for a real environment with elderly people.

4.3. Learning process

Another problem in AR systems is the learning process for new activities. There are some scenarios, such as inexperienced
users or elderly people usage, in which training is not performed in an accurate way, so learning process is reduced or non-
existing. The learning process is thus reduced or non-existent. Although there are expert systems that do not require learning
processes, they suffer from low accuracy and reduced user adaptation. This was the reason why the accuracy values during
the competition were lower than those obtained during the validation. On the other hand, the lack of training causes the set
of recognized activities to be the same for every user, taking out the customization options of the system. This is the case of
most commercial applications such as Moves [43] or Fitbit [44] among others.

The presented approach allows not just the training phase, critical for getting an acceptable accuracy and high
customization capabilities, but also the recognition of new activities without user supervision. Thanks to the far distance
activities detector (this is thenamegiven to themodulewithin the recognition system), the algorithm is able to automatically
recognize new activities based on the total score of the current time window obtained by the recognition process.

The learning is performed for each particular user, so it is adapted to the way in which the user carries out the activities.
For elderly, it is also personalized, but the classification of the accelerometric profile and all statistics generated are fitted to
the user.

In this stage, the system obtains the probability that a value belongs to each of the recognized activities maximizing the
value computed in (1). However, if the value of thempa is too low, it would be an indicator that the activity is not taken into
accountwhen conducting the training. This fact allows the far distance activities detector to generate an alert of new activity
detected. The threshold value is set empirically, although experiments had determined that the value, whichmaximized the
accuracy of the system, is equal to the number of statistics divided by four. This entails that, overall, the joint probability
that a given time window is classified correctly as the activity is below 25%.

Falls are considered a special kind of activity. This characterization is because the training of the system under these
circumstances is not possible. Although there are studies that identify these events dynamically [45], the learning process is



Table 4
AIm matrix for standard deviation with six discretization intervals and six activities.

Interval Activity
Walking Upstairs Downstairs Sitting Standing Lying

Lp,1 0.00 0.00 0.00 0.42 0.48 0.10
Lp,2 0.00 0.00 0.00 0.35 0.31 0.34
Lp,3 0.00 0.00 0.00 0.25 0.24 0.51
Lp,4 0.61 0.36 0.02 0.00 0.00 0.01
Lp,5 0.30 0.49 0.21 0.00 0.00 0.00
Lp,6 0.02 0.07 0.92 0.00 0.00 0.00

Table 5
Confusion matrix of the complete set of activities (percentage).

Predicted class
Walk Fall Stop Run Up Down Cycle Drive

Walk 93.50 0.54 0.54 0.54 0.72 0.36 0.72 3.07
Fall 0.20 98.00 0.00 0.40 0.20 0.80 0.20 0.20
Stop 0.00 0.00 96.60 0.00 0.00 0.54 0.72 2.15

Actual Run 0.43 1.28 0.00 96.36 0.86 0.21 0.43 0.43
class Up 0.21 0.21 1.05 0.21 96.00 1.47 0.63 0.21

Down 0.98 0.73 1.22 0.73 2.20 91.95 0.24 1.95
Cycle 0.23 0.23 0.00 0.23 0.46 0.23 97.91 0.70
Drive 0.47 0.24 4.25 0.24 0.47 0.24 0.47 93.63

usually performed on a synthetic dataset, due to the great handicap of generating data of real falls. Therefore, in this paper
the problem of falling is addressed in parallel, defining an accelerometric profile criteria and a period of no accelerations. By
this method, the system detects a fall when the accelerometry profile shows acceleration peaks followed by a long period
of inactivity. During the execution, this period was set to five seconds.

Table 4 shows a set of different values obtained for each of the positions of the AImmatrix.
In order to show the quality of the systemwith the considered set of activities, a confusion matrix with the complete set

of activities is presented in Table 5. These data have been collected from a test casewhere a 31 year old researcher simulated
the movements and two falls (forward and backward) of an elderly person during 15 min.

These scores were obtained during the training phase from the datasets described above and mean that the likelihood
for a given value x associated to an S statistic corresponds to the right activity Ci; i.e. this indicator reflects the probability
that a given configuration of the input parameters belongs to the activity Ci based on the intervals Li generated from the AIm
matrix for all variables obtained in the dataset using the maximum likelihood method.

5. Comparison with other systems

As mentioned in Section 1, the number of research studies and applications of the activity recognition has increased in
several contexts in recent years. The insightful practical implications include elderly care, quality of self-care estimation and
monitoring daily live activities among others.

Lara [8] studied a deep evaluation of some existing activity recognition systems taking into account the type of sensors
and the measured attributes, the integration device, the level of obtrusiveness, the type of data collection protocol, the level
of energy consumption, the classifier flexibility level, the feature extraction method(s), the learning algorithm(s) and the
overall accuracy for all activities. Also, they were divided into online and supervised offline systems.

Shoaib [46] used five positions using a fourmotion sensors smartphone collecting data in some statistics in order to detect
sevenphysical activities through a timewindowapproach. The study consists inwhich are the best places for the smartphone
using a combination of them and analyzing the accuracy obtained by the most widely used classification algorithms.

Based on their evaluations, they show that both the accelerometer and the gyroscope are capable of taking the lead roles
in the activity recognition process, depending on the type of activity being recognized, the body position, the classification
method and the feature set being used. However, the authors do not offer a new approach, but a general analysis.

Plasqui’s main goal [47] was to review all recent validation studies of accelerometers against doubly labeled water in
order to guide researchers in their selection of an appropriate accelerometer for a specified research goal.

They concluded that the best-wearing position for an accelerometer to assess daily life physical activity is as close as
possible to the center of mass, hence the lower back or hip. Only the differentiation between standing and sitting could not
be achieved with a single accelerometer at this position.

Finally, Ellis [48] used two accelerometers (right hip andnon-dominantwrist) and aGPS in order tomonitor four activities
of 40 overweight and obese breast cancer survivors. They use a two-step process to determine the activity. The first step
is performed by a low-level classifier using a random forest classifier over the combination of GPS and accelerometer
features. The output of each decision tree in the forest is combined using majority voting to obtain a prediction. The second



Table 6
Comparison with other activity recognition systems. ND (not determined). (*) This value of battery life has been obtained directly from the author’s paper
assertions.

Method Number of Average # of Execution Battery
activities accuracy (%) sensors environment life (h) (*)

Our proposal (2015) 9 (extensible) 95 1 general Smartphone 18.0 (measured)
Antos et al. [10] (2014) 5 88 1 general Smartphone ND
Liang et al. [11] (2014) 11 85 1 general Smartphone 3.2 (measured)
Weng et al. [12] (2014) 4 98 1 general Smartphone ND
Kozina et al. [14] (2013) 7 ND 2 general Smartphone ND
Shoaib et al. [46] (2014) 7 ND 5 general Smartphone ND
Ellis et al. [48] (2014) 4 85 2 general ND ND
Sasank Reddy [52] (2010) 5 93 8 general Phone 8.2 (measured)
Hong Lu [15] (2010) 5 94 1 general Smartphone 14.0 (experimental)
Vijay Srinivasan [53] (2012) 6 91 1 general Smartphone 12.5 (measured)
Yi Wang [54] (2012) 2 90 1 general Phone 150.0 (experimental)
Jia [55] (2013) 7 98 2 specific Smartphone 7.0 (measured)

level classifier is a Hidden Markov model. Each hidden state belongs to one of the activities. The results of their activity
classification system used leave-one-subject-out cross validation and the overall accuracywas 85.6%. Although the accuracy
is very close to the approach presented here, it uses two devices and only detects four activities.

For the online systems (which are the focus of our approach), three of them get a high accuracy (over 94%) but have some
disadvantages. Ermes [49] only applied a subject-dependent evaluation. Besides, their data were collected from only three
subjects, which inhibits flexibility to support new users. eWatch [50], which embeds four sensors and a microcontroller
within a device that can be worn as a watch for sport uses, is very energy efficient. The execution time for the feature
extraction and the classification stage is lower than 0.3 ms. However, data was collected under controlled conditions,
i.e., a lead experimenter supervised and gave specific guidelines to the subjects on how to perform the activities. Kao [51]
presented a triaxial accelerometer placed on the user’s dominant wrist, sampling at 100 Hz. The system reports an average
response time of less than 10 ms. However, given the nature of the recognized activities, the excess of granularity causes
confusion, among others, between swinging, knocking and running.

Table 6 shows different relatedworks in the field of activity recognition. In this comparison, five features were evaluated.
Number of activities shows the total amount of physical activities recognized by the system. The average accuracy indicates
the performance of recognition in terms of activities properly classified compared with total instances. The number of
devices (smartphones, sensors, motes, etc.) used during the recognition and training process is collected in # of sensors.
Hardware configuration where the system is executed is presented under the execution environments feature. Finally,
battery life shows the total time during which the execution environment is working until it runs out of battery.

It should be noted that the studies analyzed are minimal when compared to the amount of research found on activity
recognition. This is because we only want to take into account studies that have been tested or have the computational
requirements to be tested in mobile devices.

6. Conclusions and future work

Efficiency and accuracy are two elements that must be taken into account when any AR system is implemented on a
mobile device and, more importantly, when this mobile device is a smartphone. In this work, a recognition system based on
discrete variables is presented whereby the discretization algorithm Ameva and a new classification system are used. It has
a low complexity and both the runtime and energy consumption have been reduced in comparison to other related works.
The system has been validated in an international competition (1st and 3rd positions). Although the accuracy was not very
good in the 2012 and the 2013 EvAAL competitions, the system is very usable and easy to introduce in lifestyle of elderly
people. Several improvements have been carried out and described in this paper.

The classification algorithm has been developed for multi-class datasets and it obtains a good accuracy when there is
approximately the same number of examples for each class in the training phase. It is also fast because it is based on the
discretization algorithm Ameva and a majority voting system which both have a very low processing time. This makes it
possible to embed the system into tiny pervasive hardware such as smartwatches or specific devices attached to the user’s
clothing or body. Furthermore, although it will be tested with other datasets, the core of this algorithm remains free of
dependence on the features of any recognition activity dataset and is, therefore, applicable to any dataset that contains
activities with different behavior patterns (for example, walk and stand).

The advantages of the system are the high accuracy rate and the reduced computational cost as has been demonstrated
in the experimental results. Regarding the success rate, it has been possible to achieve an average accuracy of 95% in the
recognition of eight different types of activities with a group of 30 volunteers. On the other hand, the complexity associated
with the data processing during the recognition process has been optimized due to the inclusion of discrete variables and
24 h of continuous monitoring have been reached without recharging the device.

Based on the results obtained during the process of experimentation, the most likely system confusions occur when the
acceleration associated with the activity is high. In the case of falls, it could give false positives if the device is thrown on a



surface or when the user performs actions involving high accelerations followed by an inactivity period (let yourself fall on
a chair or a sofa). This approach is not really bad because it reduces the number of the false negatives especially when the
most critical activity is the falling [56,57].

Finally, the case of picking something up or similar activities, would not be a problem for the system. These activities
could lead to a high acceleration during its performance (not as great as those generated during a fall, although similar), but
there is no inactivity period after its execution.

As for interference caused by the frequency of carrying out the activities, their consequences are mild. In the case of
walking at a high enough rate, the system could interpret the user is running. Or if you jump fast enough and with a not
too high altitude, you might consider running is the most likely activity. However, even looking directly at the user, these
activities can lead to confusion because of their similarity.

This system is currently focused on ADL activities and fall detection of elderly people. Due to that, the application
developed to execute this AR system can transmit an alarm signal to the relatives and/or medical center. Besides this,
relatives and medical staff can examine the activities performed by the elderly under their monitoring along the day in
a website, improving the system functionality beyond an alarm system. It complements existing telecare services, such as
those as offered by the Andalusian Regional Ministry of Equality, Health and Social Policy among others.

Finally, in order to improve the accuracy and to track rehabilitation process bymeans of a fine-grainedAR system, theMyo
device2 that is a gesture control armband will be included in the solution. It detects the hand and wrist motions throughout
high sensitivity electromyogram sensors, and it could help caregivers to obtain more information about the lifestyle of their
patients. For instance, it could be possible to retrieve information about the use of the walking stick in daily life or during
rehabilitation process. This hardware will also allow the detection of important aspects such as dyskinesia (for Parkinson’s
patients), fatigue or other muscular pathologies.
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