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Abstract

In this work, some type of optimal control problems with equality constraints
given by Partial Differential Equations (PDE) and convex inequality constraints
are considered, obtaining their corresponding first order necessary optimality
conditions by means of Dubovitskii-Milyutin (DM) method.

Firstly, we consider problems with one objective functional (or scalar prob-
lems) but non-well posed equality constraints, where existence and uniqueness of
state in function on control is not true (either one has existence but not unique-
ness of state, or one has not existence of state for any control). In both cases, the
classical Lions argument (re-writing the problem as an optimal control problem
for the control without equality constraints, see for instance [14]) can not be
applied.

Afterwards, we consider multiobjective problems (or vectorial problems), con-
sidering three different concepts of solution: Pareto, Nash and Stackelberg.

In all cases, an adequate abstract DM method is developed followed by an
example.

1 Introduction

We consider an abstract problem of optimal control (uni-objective or multi-objective),
with equality constraints given by PDE and inequality constraints (convex with nonempty
interior). Our objective is to provide necessary optimality conditions, by means of DM
formalism, that we will apply for some examples, where different particularities appear.

With respect to uni-objective problems, we are going to study two types of equality
constraints:

• non-well posed problems, in the sense that it does not have existence of associated
state to any control, as in the backward heat PDE with homogenous Dirichlet
boundary condition and distributed control in all the domain

• problems with lack of uniqueness of state with respect to the control, as it is
the case of the weak solutions of the three-dimensional Navier-Stokes system (or
stationary Navier-Stokes with not small Reynolds number) and ”partial” control,
either distributed in a part of the domain, or boundary located in one (small)
part of the boundary.
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The DM formalism ([7]) turns out to be an operational writing of the separation
of convex sets in Banach spaces, hence for instance an abstract formulation of the
Lagrange multiplier theorem can be obtained. We thought that this formalism has
been very little used in optimal control problems with constraints given by PDE. The
first works that, to our knowledge, apply the DM formalism in this context is given
by A. Papageorgiou and N. S. Papageorgiou [19]. In the works of U.Ledzewicz [13], Y.
Censor [3], W. Kotarski [12] and S. Walczak [28] can be seen some extensions of this
DM formalism.

Other more classic arguments and references in optimal control problems with PDE
constraints are the following ones:

1. the equality constraint is re-written in function of the control and derivation
respect to the control; J.L.Lions [14],

2. method of regular perturbations, respect to a scalar parameter; E. Casas [2]

3. penalty method for unstable or non-well posed problems; P.H. Rivera [24, 23]

4. lagrangian function and 3D Navier-Stokes system; M.D. Gunzburger et al. [8, 9]

5. Using abstract results of Lagrange multiplier of Ioffe-Tykhomirov type; A.V.
Fursikov [5]

With respect to the vectorial or multiobjective problems, we will consider by sim-
plicity the case of two objectives and two controls. Because it is not usual to have
existence of a simultaneously (in all functionals) optimal point, several concepts of
solution have been introduced in the literature. Here, we will consider three different
concepts of solution (with their respective examples):

1. Nash (non-cooperative) equilibrium solutions,

2. Stackelberg (hierarchy and cooperative) solutions,

3. Pareto (strong) solutions,

Although the Pareto concept ([20]) was the first solution introduced in the literature
and is based on a vectorial argument, it is often difficult to analyze it mathematically.
For that reason, the other two concepts based on scalar optimization problems (asso-
ciating each control with an objective functional) have been also considered ([18, 26]).

Some previous works about these concepts of solution in (vectorial) optimal control
with PDE constraints are the following. The papers of J.L. Lions ([15], [16], [17]) study
Pareto and Stackelberg solutions (using a Pareto solution related with a continuous
of objective functionals, and not a finite number of functionals as we will consider
in our work). Diaz and Lions [4] give some results for Stackelberg-Nash strategies
with linear parabolic PDE constraints. Ramos, Glowinski and Periaux studied, from
the mathematical and numerical point of view, the Nash equilibrium for constraints
given by, either linear parabolic PDE in [21] or the Burgers equations in [22]. In all



these previous papers, the classical Lions argument eliminating equality constraints
re-writting in function on controls (see for instance [14]) is used.

In this work, we will use again the DM method now for vectorial optimization,
in order to obtain necessary optimality conditions. In the Nash and Pareto cases,
considering constraints of the NS type with partially distributed controls and objec-
tives ([11]), whereas in the Stackelberg case, we will consider linear parabolic PDE
constraints with leader criterion to lead the system near a final state (a functional of
controllability type), and secondary criterion on distributed type plus the cost of the
control (as in [17]).

Two important references where some extensions to the DM method applied to
Pareto solutions are: Censor [3] for finite dimension constraints, and Kotarski [12] for
the infinite dimension case.

2 Uniobjetive control problem

2.1 Abstract problem

Let X,Y, Z be Banach spaces (X : state, Y : control) and

• J : X × Y → IR (objective functional)

• F : D(F ) ⊂ X × Y → Z (equality constraints),

• C ⊂ X × Y a convex closed set, with int C 6= ∅ (inequality constraints)

Optimal control problem:

(P ) min J(x, y) subject to F (x, y) = 0 and (x, y) ∈ C
Several general situations

1. X,Y, Z of finite dimension for the mathematical programming,

2. F (x, y) = 0 is related to ordinary differential equations ODE, for Optimal control
with ODE,

3. We consider F (x, y) = 0 related to PDE.

In this work, we consider the case of functional J and operator F are differentiable (for
instance, in the Flett book [6] appears all different notions of differentiable operators
between Banach spaces that we will consider in this work).

Two main cases to study

1. Non uniqueness of state:

∀ y ∈ Y, ∃x ∈ X : F (x, y) = 0

but, x is not unique in general



2. No well-posedness problem:

∃ y ∈ Y s.t. 6 ∃ x ∈ X : F (x, y) = 0

In both cases, there is not possible to write x = x(y), hence the following “Lions
argument” [14] can not be applied; defining J̃(y) := J(x(y), y), optimality conditions
are

J̃ ′(ȳ) = 0 (if C = X × Y ) or 〈J̃ ′(ȳ), y − ȳ〉 ≥ 0 (if C = X × G)

Always, we will assume the so-called Nontrivial hypothesis:

Uad := {(x, y) ∈ X × Y : F (x, y) = 0, (x, y) ∈ C, J(x, y) < +∞} 6= ∅

2.2 The Dubovitskii-Milyutin method

Now, we explain the DM method in order to obtain necessary optimality systems of
problem (P). Let (x̄, ȳ) ∈ D(F ) ∩ C, we will denote by

• DC(x̄, ȳ) : descent cone in (x̄, ȳ) related to J

• TC(x̄, ȳ) : tangent cone in (x̄, ȳ) related to F

• FC(x̄, ȳ) : feasible cone in (x̄, ȳ) related to C
(see [7] for these definitions). If C is a cone of X × Y , its dual cone is defined by

C∗ = {f ∈ (X × Y )′ : 〈f, (x, y)〉 ≥ 0 ∀ (x, y) ∈ C}

Theorem 1 (Dubovitskii-Milyutin) [6, 7] Assume that (x̄, ȳ) is a (local) minimum
of (P). If J , equality and inequality restrictions are “regular”, in the sense that the
descent, tangent and feasible cones are convex sets, then

∃ f0 ∈ DC(x̄, ȳ)∗, f1 ∈ TC(x̄, ȳ)∗, f2 ∈ FC(x̄, ȳ)∗ with (f0, f1, f2) 6= 0 s.t.

f0 + f1 + f2 = 0 in (X × Y )′.

Remarks: Some specifications of Theorem 1 are the followings:

• Two (or more) inequality constraints yields to the corresponding feasible cones
FC1, FC2 which are open cones, then ([7])

(FC1 ∩ FC2)
∗ = FC∗

1 + FC∗
2 (1)

• Two equality constraints, i.e. F = (F1, F2) : X × Y → Z1 × Z2 yields to the cor-
responding tangent cones TC1, TC2 which are closed cones, but now an equality
as (1) is not true in general. Normally, an additional condition is necessary to
obtain (TC1 ∩ TC2)

∗ = TC∗
1 + TC∗

2 . For instance:

1. (Walczak’84 [28]) TC1, TC2 have both “same sense” or “opposite sense”.



2. (Ledzewicz’86 [13]) F = (F1, F2) : X × Y → Z1×Z2, strongly differentiable
in (x̄, ȳ) with

(a) either, Im (Fi) = Zi (i = 1, 2) and Im (F ) is closed in Z1 × Z2,

(b) or, Im (F ) is a closed subspace in Z1 × Z2. Moreover, in this case,

TC∗
i = {(F ′

i (x̄, ȳ))∗λ : λ ∈ Z∗
i } (i = 1, 2)

This last equality is based in the relation N(F ′
i (x̄, ȳ))⊥ = R(F ′

i (x̄, ȳ)∗)

Cones and dual cones ([7])

• If J is differentiable in (x̄, ȳ), then DC(x̄, ȳ) = {(x, y) : 〈J ′(x̄, ȳ), (x, y)〉 < 0}.
In particular, DC(x̄, ȳ) is an open convex set. Furthemore,

DC(x̄, ȳ)∗ = {−λJ ′(x̄, ȳ) : λ ≥ 0}

• Theorem 2 (Lyusternik) If F is strongly differentiable in (x̄, ȳ) and ImF ′(x̄, ȳ) =
Z (regularity condition), then

TC(x̄, ȳ) = {(x, y) ∈ D(F ) : 〈F ′(x̄, ȳ), (x, y)〉 = 0}.

In particular, TC(x̄, ȳ) is a vectorial subspace of X × Y . Therefore,

TC(x̄, ȳ)∗ = {f ∈ (X × Y )′ : 〈f, (x, y)〉 = 0 ∀ (x, y) ∈ TC(x̄, ȳ)}.

• Since C is convex in X × Y and int C 6= ∅, then

FC(x̄, ȳ) = {λ(x− x̄, y − ȳ) : (x, y) ∈ int C, λ > 0}.
In particular, FC(x̄, ȳ) is an open convex set in X × Y . Furthemore,

FC(x̄, ȳ)∗ = {f ∈ (X × Y )′ : 〈f, (x− x̄, y − ȳ)〉 ≥ 0 ∀ (x, y) ∈ C}.

2.3 Example 1: Point-wise backward heat equation with ini-
tial data and total distributed control

X = Y = L2(Q) (Q = (0, T )× Ω)

J(u, v) =
1

2

∫ T

0

∫

Ω
|u− ud|2 +

N

2

∫ T

0

∫

Ω
|v − vd|2 (N > 0, (ud, vd) ∈ X × Y )

D(F ) = {u : u and ut + ∆u ∈ L2(Q), u|Σ = 0} × Y,

Z = L2(Q)× L2(Ω)

C = X × G (G is a convex closed set in Y )

(i.e., there is not inequality constraints on state).
Let (f, u0) ∈ Z be a fixed data. For each (u, v) ∈ D(F ) one defines F (u, v) =

(f̃ , ũ0) ∈ Z as follows

(S)





ut + ∆u− f − v = f̃ in Q,

u(0)− u0 = ũ0 in Ω



Lemma 1 ([5, 24])

• D(F ) is a Banach space, where trace operator and integration by parts have a
sense.

• ∃D dense in Y such that ∀ v ∈ D, ∃ u ∈ X solution of F (u, v) = 0.

The previous optimal control problem has been studied in [5], where an optimality
system is obtained by means of a Lagrange principle. Also optimal control problem
under non-well posed constraints are studied in the works of Rivera ([24]) and Rivera
and Vasconcellos ([25]) (see also [23] for unstable constraints). These works are based
in the penalization method, obtaining the optimality system passing to the limit in the
optimality system associated to a sequence of penalized optimal control problems.

Using DM method, it is possible to arrive (in a more systematic form) to an op-
erational equality, which can be seen as a first optimality system. Afterwards, the
difficulty will be to prove existence of the adjoint problem (S)∗, since (S)∗ will be
again a non-well posed problem ([10]). Indeed, assume that (ū, v̄) is a (local) solution
of (P), then DM formalism yields

f0 + f1 + f2 = 0 with f0 ∈ DC∗, f1 ∈ TC∗, f2 ∈ FC∗.

More concretely,

• f0 = −λJ ′(ū, v̄) for some λ ≥ 0.

• 〈f1, (u, v)〉 = 0 ∀ (u, v) verifying (S)′




ut + ∆u = v,

u|Σ = 0, u(0) = 0.

• f2 ∈ Y ∗ such that 〈f2, v − v̄〉 ≥ 0 ∀ v ∈ G.

One can prove that λ 6= 0 (hence λ = 1 can be taken), thanks to an absurd argument
and to the density of controls v solving (S)′ ([10]). Then, the following optimality
conditions hold:

〈f2, v〉 = 〈Ju(ū, v̄), u〉+ 〈Jv(ū, v̄), v〉 ∀ (u, v) verifying (S)′ (2)

〈f2, v − v̄〉 ≥ 0 ∀ v ∈ G (3)

Now, the adjoint problem is introduced, in order to simplify (2)

• Step 1: Assuming that ũ is a solution of the adjoint problem

(P )∗



−ũt + ∆ũ = Ju(ū, v̄)(= ū− ud) in Q,

ũ|Σ = 0, ũ(T ) = 0 in Ω,

then, integrating by parts in (2), the following variational formulation respect to
control functions hold

〈f2, v〉 = (ũ, v)Q + 〈Jv(ū, v̄), v〉 ∀ v ∈ D (dense in Y )

Then f2 = ũ + Jv(ū, v̄)(= ũ + N(v̄ − vd)), hence from (3), one arrives at the
so-called Euler-Lagrange conditions: (ũ + N(v̄ − vd), v − v̄)Q ≥ 0 ∀ v ∈ G.



• Step 2 (Existence of solution of (P )∗): Since f2 ∈ L2(Q)′, there exists ũ ∈ L2(Q)
such that 〈f2, v〉 = (ũ, v)Q + 〈Jv(ū, v̄), v〉 for any v ∈ Y . Then, from (2) one
deduces (ũ, v)Q = 〈Ju(ū, v̄), u〉 for any (u, v) verifying (S)′. Using that v = ut+∆u
and integrating by parts (which it is possible thanks to Lemma 2), it is not difficult
to obtain ([10]) that ũ is a solution of (P )∗

Accordingly, we arrive at the following first order necessary optimality conditions:

Theorem 3 If (ū, v̄) ∈ X × Y is a (local) minimum of (P ), then

• (ū, v̄) verify (S) with (f̃ , ũ0) = (0, 0) : state problem

• ũ verifies (P )∗ : adjoint problem

• (ũ + N(v̄ − vd), v − v̄)Q ≥ 0 ∀ v ∈ G : Euler-Lagrange conditions.

Sufficient condition: Since J is strictly convex, if (ū, v̄) verifies previous optimality
conditions, then one can proves that (ū, v̄) is the (unique) global minimum of (P).

The following open problems are being studied in this moment, and the correspond-
ing results will be appear in [10]:

1. The case intG = ∅; for instance the case of point-wise constraints for the controls:

G = {v ∈ Y : a ≤ v(t, x) ≤ b a.e (t, x) ∈ Q} (a, b ∈ IR, a < b)

2. The case with partially distributed control, i.e. Y = L2(0, T ; L2(ω)) and in
definition of J appears N

2

∫ T
0

∫
ω |v − vd|2, for some vd ∈ L2(0, T ; L2(ω)).

2.4 Example 2: Weak solutions of the 3D NAVIER-STOKES
Equations (NS), with “partial” control (either distributed
in ω ⊂⊂ Ω, or boundary on γ ⊂⊂ ∂Ω)

X = L2(Q), Y = L2(0, T ; L2(ω)), (Q = (0, T )× Ω)

J(u, v) =
1

2

∫ T

0

∫

Ω
|u− ud|2 +

N

2

∫ T

0

∫

ω
|v − vd|2 (N > 0, ud ∈ X, vd ∈ Y )

D(F ) = (L2(0, T ; V ) ∩ L∞(0, T ; H))× Y,

Z = H−1(Q)×H

where H = {u ∈ L2(Ω) : ∇ · u = 0, u · n|∂Ω = 0} and V = H1
0 (Ω) ∩H are the standard

L2 and H1 spaces in the NS framework.

C = X × G where G is a convex closed set in Y



Let (f, u0) ∈ Z be a fixed data. For each (u, v) ∈ D(F ) one defines F (u, v) =
(f̃ , ũ0) ∈ Z as follows

(S)





d

dt

∫

Ω
uϕ−

∫

Ω
u · ∇ϕu +

∫

Ω
∇u∇ϕ−

∫

Ω
fϕ

−
∫

ω
vϕ =

∫

Ω
f̃ϕ ∀ϕ ∈ H1

0 (Q) s.t. ∇ · ϕ = 0

u(0)− u0 = ũ0 in Ω

In the case of boundary control acting on γ ⊂ ∂Ω, one changes Y = L2(0, T ; L2(ω)) by
Y = L2(0, T ; L2(γ)) and in the objective functional

∫ T
0

∫
ω |v−vd|2 dx by

∫ T
0

∫
γ |v−vd|2 dσ

with vd ∈ L2(0, T ; γ) a data.

Lemma 2 (see for instance [27]) For each v ∈ Y , there exists at least a weak solution
u of (S). But uniqueness of weak solution is an open problem.

In [9], with Lagrange multiplier technique and considering state and control variables
independently, a necessary optimality system of problem (P) is obtained.

Using DM method, one also can arrive at the following optimality system ([11]):

Theorem 4 If (ū, v̄) is a (local) solution of (P), then there exists ũ ∈ L2(0, T ; V ) ∩
L∞(0, T ; H) and λ > 0 (in this case could be taken λ = 1) such that:

(ū, v̄) verify (S), with (f̃ , ũ0) = (0, 0)

(P )∗





− d

dt

∫

Ω
ũϕ−

∫

Ω
ū · ∇ϕũ−

∫

Ω
ũ · ∇ϕū +

∫

Ω
∇ũ∇ϕ

= λJ ′u(ū, v̄)(ϕ) = λ(ū− ud, ϕ)Q ∀ϕ ∈ H1
0 (Q) such that ∇ · ϕ = 0

ũ(T ) = 0 in Ω

(ũ + λJ ′v(ū, v̄), v̄ − v)(0,T )×ω = (ũ + λN(v̄ − vd), v̄ − v)(0,T )×ω ≥ 0 ∀ v ∈ G.

3 Multi-objective Optimal Control

For simplicity, we consider two objectives J = (J1, J2) : X ×Y → IR2 and two controls
acting y = (y1, y2) ∈ Y = Y1 × Y2

Several strategies, that can be cooperative or noncooperative, can be taken in order
to define a solution.

3.1 Abstract problem

Let X,Y = Y1 × Y2, Z be Banach spaces (X : state, Y1, Y2 : two controls) and

• J : X × Y → IR2 ; two objective functionals



• F : D(F ) ⊂ X × Y → Z ; equality constraints

• C ⊂ X × Y1 × Y2 is a convex closed set, with int C 6= ∅ ; inequality constraints.

Optimal control problem:

(P ) min J(x, y1, y2) subject to F (x, y1, y2) = 0 and (x, y1, y2) ∈ C
The following nontrivial hypothesis must be imposed:

Uad := {(x, y) ∈ X × Y : F (x, y) = 0, (x, y) ∈ C, Ji(x, y) < +∞ (i = 1, 2)} 6= ∅

3.2 Nash Equilibrium

The definition of Nash solution appears in the noncooperative game theory [18].
In the general case when the state x is not well defined in function of the controls,

and convex restrictions are introduced for the controls (y1, y2) ∈ G = G1 × G2 a closed
convex of Y1 × Y2, then one has the following:

Definition 1 (x̄, ȳ1, ȳ2) is a Nash solution if

1. Fixed ȳ2, then (x̄, ȳ1) ∈ X × Y1 is a solution of

(P )1 min
(x,y1)∈X×G1:F (x,y1,ȳ2)=0

J1(x, y1, ȳ2)

2. Fixed ȳ1, then (x̄, ȳ2) ∈ X × Y2 is a solution of

(P )2 min
(x,y2)∈X×G2:F (x,ȳ1,y2)=0

J2(x, ȳ1, y2)

If we do not assume inequality constraints, i.e. C = X×Y1×Y2 and assume well-posed
equality constraints, i.e. state x is uniquely defined in function of controls (y1, y2)
solving F (x(y1, y2), y1, y2) = 0, one has the following necessary optimality condition:

Theorem 5 If (x̄, ȳ1, ȳ2) ∈ Uad is a Nash solution, then:

∂J̃1

∂y1

(ȳ1, ȳ2) = 0 =
∂J̃2

∂y2

(ȳ1, ȳ2)

being J̃i(y1, y2) = Ji(x(y1, y2), y1, y2) (i = 1, 2).

This optimality condition for a Nash solution, can be interpreted as a fixed point for
the following operators:

R1 : y1 ∈ Y1 → ȳ2 ∈ Y2 :
∂J̃2

∂y2

(y1, ȳ2) = 0 → ȳ1 ∈ Y1 :
∂J̃1

∂y1

(ȳ1, ȳ2) = 0

or

R2 : y2 ∈ Y2 → ȳ1 ∈ Y1 :
∂J̃1

∂y1

(ȳ1, y2) = 0 → ȳ2 ∈ Y2 :
∂J̃2

∂y2

(ȳ1, ȳ2) = 0.

Also in the general case of Definition 1, the Nash solution can be interpreted as a fixed
point for a multivalued operator.



3.3 Example 3: Weak solutions of NS with two partially dis-
tributed controls and convex constraints for the controls

We use the notations of example 2. In addition, let Ω ⊂ IR3 be the total domain
occupied by the fluid, ωi,d ⊂ Ω the “observability” domains and ωi ⊂ Ω with ω1∩ω2 = ∅
the “control” domains.

X = L2(0, T ; L2(Ω)), Yi = L2(0, T ; L2(ωi)) (i = 1, 2)

Ji(u, vi) =
1

2

∫ T

0

∫

ωi,d

|u− ui,d|2 +
Ni

2

∫ T

0

∫

ωi

|vi|2

where Ni > 0 and ui,d ∈ L2(0, T ; L2(ωi,d)).

D(F ) = L2(0, T ; V ) ∩ L∞(0, T ; H)× Y1 × Y2,

Z = H−1(Q)×H

C = X × G1 × G2 (Gi is a convex closed set in Yi)

Let (f, u0) ∈ Z a fixed data. For each (u, v1, v2) ∈ D(F ) one defines F (u, v1, v2) =
(f̃ , ũ0) ∈ Z as follows

(S)





d

dt

∫

Ω
uϕ−

∫

Ω
u · ∇ϕu +

∫

Ω
∇u∇ϕ−

∫

Ω
fϕ

−
∫

ω1,d

v1ϕ−
∫

ω2,d

v2ϕ =
∫

Ω
f̃ϕ ∀ϕ ∈ H1

0 (Q) s.t. ∇ · ϕ = 0

u(0)− u0 = ũ0 in Ω

Taking into account the optimality system in the uni-objective problem (see Example
2 in a previous Section), the following optimality system can be obtained [11]:

Theorem 6 If (ū, v̄1, v̄2) is a Nash solution, then there exists λ1 ≥ 0, λ2 ≥ 0 with
(λ1, λ2) 6= 0 and ũ1, ũ2 ∈ L2(0, T ; V ) ∩ L∞(0, T ; H) such that

(ū, v̄1, v̄2) verify (S), with (f̃ , ũ0) = (0, 0)

(P )∗1





− d

dt

∫

Ω
ũ1ϕ−

∫

Ω
ū · ∇ϕũ1 −

∫

Ω
ũ1 · ∇ϕū +

∫

Ω
∇ũ1∇ϕ

= λ1(J1)
′
u(ū, v̄1)(ϕ) = λ1(ū− u1,d, ϕ)(0,T )×ω1,d

∀ϕ ∈ H1
0 (Q) s.t. ∇ · ϕ = 0

ũ1(T ) = 0 in Ω

(ũ1+λ1(J1)
′
v1

(ū, v̄1), v̄1−v1)(0,T )×ω1 = (ũ1+λ1N1(v̄1−v1,d), v̄1−v1)(0,T )×ω1 ≥ 0 ∀ v1 ∈ G1.

(P )∗2





− d

dt

∫

Ω
ũ2ϕ−

∫

Ω
ū · ∇ϕũ2 −

∫

Ω
ũ2 · ∇ϕū +

∫

Ω
∇ũ2∇ϕ

= λ1(J2)
′
u(ū, v̄2)(ϕ) = λ2(ū− u2,d, ϕ)(0,T )×ω2,d

∀ϕ ∈ H1
0 (Q) s.t. ∇ · ϕ = 0

ũ2(T ) = 0 in Ω

(ũ2+λ1(J2)
′
v2

(ū, v̄2), v̄2−v2)(0,T )×ω2 = (ũ2+λ2N2(v̄2−v2,d), v̄2−v2)(0,T )×ω2 ≥ 0 ∀ v2 ∈ G2.

Some results about existence of this optimality system can be obtained ([11]), im-
posing G1 and G2 bounded in Y1 and Y2 respectively.



3.4 Stackelberg (hierarchical-cooperative) solution

Assume two controls y = (y1, y2), where y1 is the “leader” and y2 the “follower”, the
equality restrictions F : D(F ) ⊂ X × Y1 × Y2 → Z and two objective functionals
J = (J1, J2) : X × Y1 × Y2 → IR2, being J1 the main objective and J2 the secondary
one. Inequality constraints are not considered, i.e. C = X × Y1 × Y2.

First of all, assume that state x is well defined in function of (y1, y2) solving
F (x(y1, y2), y1, y2) = 0. Then, definition of a Stackelberg solution follows two steps:

1. (Follower step) Given y1 ∈ Y1, we assume that there exists an (unique) solution
y2 = S(J2, y1) of the (uniobjective) optimization problem related to J2:

min
y2

J2(x(y1, y2), y1, y2)

2. (Leader step) To find y1 as a solution of the (uniobjective) optimization problem
related to J1 and the previous solution y2 = S(J2, y1):

min
y1

J1(x(y1, S(y1)), y1, S(y1))

Then, if the state x is not well defined in function of the controls, one can define the
Stackelberg solutions as follows:

Definition 2 (x̄, ȳ1, ȳ2) is a (global) Stackelberg solution if (x̄, ȳ2) ∈ S(J2, ȳ1) and

J1(x̄, ȳ1, ȳ2) ≤ J1(x, y1, y2) ∀ y1 ∀ (x, y2) ∈ S(J2, y1),

where S(J2, y1) is the set of solutions of the minimum problem

min
(x,y2):F (x,y1,y2)=0

J2(x, y1, y2)

3.5 Example 4: strong solution of a parabolic linear PDE
([17])

Let Ω be the total domain, with ω1 ⊂ Ω the leader “control” domain and ω2 ⊂ Ω the
follower one.

X = C0([0, T ]; L2(Ω)), Yi = L2(0, T ; L2(ωi)) (i = 1, 2)

J1(u, v1) = ψK(u(T )) +
N1

2

∫ T

0

∫

ω1

|v1|2

where ψK(g) =
{

0 if g ∈ K
+∞ otherwise

, K = BL2(Ω)(uT ; ε), with uT ∈ L2(Ω) and ε > 0.

J2(u, v2) =
1

2

∫ T

0

∫

Ω
|u− ud|2 +

N2

2

∫ T

0

∫

ω2

|v2|2 (ud ∈ L2(Q))

D(F ) = {u ∈ L2(0, T ; H2(Ω)) ∩ C0([0, T ]; H1(Ω)) : ut ∈ L2(0, T ; L2(Ω))} × Y1 × Y2,



Z = L2(Q)× L2(Ω)

C = X × G1 × G2 (Gi is a convex closed set in Yi)

Notice that J1 is an objective of controllability type plus a part for the cost of control,
whereas J2 is a classical distributed objective.

Let (f, u0) ∈ Z a fixed data. For (u, v1, v2) ∈ D(F ) one defines F (u, v1, v2) =
(f̃ , ũ0) ∈ Z as follows

(S)





ut + Au− f − v1χϕω1 − v2χϕω2 = f̃ in Q

u(0)− u0 = ũ0 in Ω, u|Σ = 0,

where A is a linear strictly elliptic operator of second order.

We can think of u as being the concentration of some chemical product in, say, a
lake Ω, and think of ω ⊂ Ω as the place where we can apply a control v. We have
divided ω into two parts ω1, ω2. The main objective is to have at final time T , u(T )
“very close” of an optimal concentration uT acting the leader control v1 in (0, T )×ω1,
but we want to achieve this without, in the course of the action, going “too far” from
a function ud, and this is the work of the follower control v2 acting in (0, T )× ω2.

In [17] this problem is studied. First, the nontrivial condition is proved by means
of an approximate controllability technique (for a linear system), using the optimality
system for the follower. Finally, optimality system for the leader is obtained using
Fenchel and Rockafeller’s duality.

We think that DM method must also work in this ploblem.

3.6 Pareto (cooperative) solution

In the Pareto context, one only a control y ∈ Y will be considered.

Definition 3 (x̄, ȳ) ∈ Uad is a global (respectively local) Pareto solution if there not
exists (x, y) ∈ Uad (respectively E(x̄, ȳ)) verifying:

J1(x, y) ≤ J1(x̄, ȳ) and J2(x, y) ≤ J2(x̄, ȳ),

with strictly inequality for at least one Ji.

We enounce the following result, which is an extension of the DM method to multiob-
jective case, proved by Censor [3] for one equality constraint and by Kotarski [12] for
more equality constraints.

Theorem 7 If (x̄, ȳ) is a (local) Pareto solution, and multiobjective functionals, equal-
ity and inequality constraints are “regular”, in the sense that the corresponding descent
and noncreasing, tangent and feasible cones are convex sets, then there exists

f i
1 ∈ DC(Ji)

∗, f i
2 ∈ NC(Ji)

∗, f i
3 ∈ TC∗, f i

4 ∈ FC∗ (i = 1, 2)

such that
f 1

1 + f 2
2 + f 1

3 + f 1
4 = 0 and f 2

1 + f 1
2 + f 2

3 + f 2
4 = 0.



Therefore, if DC(Ji)
∗ = NC(Ji)

∗ for each i = 1, 2, two previous operational equalities
remains only in the equality:

f1 + f2 + f3 + f4 = 0, f1 ∈ DC(Ji)
∗(i = 1, 2), f3 ∈ TC∗, f4 ∈ FC∗.

A sufficient condition that imply DC(Ji)
∗ = NC(Ji)

∗ is that Ji is a Ponstein convex
functional (see [3]). For instance, an strictly convex functional has in particular the
Ponstein convexity property.

3.7 Example 5: Weak solutions of NS with two partially dis-
tributed controls and convex constraints for the controls

Example 3 will be considered. The following optimality conditions can be obtained
([11]):

Theorem 8 If (ū, v̄1, v̄2) is a (local) Pareto solution, then there exists λ1 ≥ 0, λ2 ≥ 0
with (λ1, λ2) 6= 0 and ũ ∈ L2(0, T ; V ) ∩ L∞(0, T ; H) such that:

(ū, v̄1, v̄2) verifying (S), with (f̃ , ũ0) = (0, 0)

(P )∗



− d

dt

∫

Ω
ũϕ−

∫

Ω
ū · ∇ϕũ−

∫

Ω
ũ · ∇ϕū +

∫

Ω
∇ũ∇ϕ

= λ1(J1)
′
u(ū, v̄1)(ϕ) + λ2(J2)

′
u(ū, v̄2)(ϕ)

= λ1(ū− u1,d, ϕ)(0,T )×ω1,d
+ λ2(ū− u2,d, ϕ)(0,T )×ω2,d

∀ϕ ∈ H1
0 (Q) s.t. ∇ · ϕ = 0

ũ1(T ) = 0 in Ω

(ũ+λ1(J1)
′
v1

(ū, v̄1), v̄1−v1)(0,T )×ω1 = (ũ+λ1N1(v̄1−v1,d), v̄1−v1)(0,T )×ω1 ≥ 0 ∀ v1 ∈ G1.

(ũ+λ2(J2)
′
v2

(ū, v̄2), v̄2−v2)(0,T )×ω2 = (ũ+λ2N2(v̄2−v2,d), v̄2−v2)(0,T )×ω2 ≥ 0 ∀ v2 ∈ G2.

Some results about existence of this optimality system can be obtained ([11]), im-
posing G1 and G2 bounded in Y1 and Y2 respectively.

Acknowledgements

First, second and fourth authors have been partially supported by the proyect BFM2003-
06446-CO-01, Spain. Third author has been supported by PICD-CAPES, Brazil.
Fourth author has been partially supported by the proyect 301354/03-0 CNPq-Brazil.

References

[1] Alexeév, V.; Fomine, S., Tykhomirov, V. – Commande Optimale, Mir,
Moscou 1982.



[2] Casas, E. – An Optimal Control problem governed by the evolution Navier-Stokes
equations Optimal Control of Viscous Flow (Ed. by S.S. Sritharan) Siam 1998,
79-96.

[3] Censor, Y. – Pareto Optimality in Multiobjective Problems Applied Math. Optim.
4, (1977) 41-59.

[4] Diaz, J. I., Lions, J. L. – On the Approximate Controllability of Stalckelberg
- Nash Strategies, Ocean Circulation and pollution control, a mathematical and
numerical investigation (Madrid 1997) 17-27, Springer 2004.

[5] Fursikov, A.V. – Optimal control of distributed systems. Theory and applica-
tions. American Mathematical Society, Providence, Rhode Island, 1999.

[6] Flett, T.M. – Differential Analysis. Differentiation, differential equations and
differential inequalities Cambrigde University Press, 1980.

[7] Girsanov, I. V. – Lectures on Mathematical Theory of Extremum Problems
Springer, New York 1972. (Lectures notes in economics and mathematical systems,
67).

[8] Gunzburger, M.D., Hou, L., Svobodny, T.P. – Analysis and finite element
approximation of optimal control problems for the stationary Navier-Stokes equa-
tions with Dirichlet controls. Mathematical modelling and numerical analysis , Vol.
25, No. 6, (1991) 711-748.

[9] Gunzburger, M.D., Hou, L., Svobodny, T.P. – Boundary velocity control of
incompressible flow with an application to viscous drag reduction. SIAM J. Control
and Optimization, Vol. 30, No. 1, (1992) 167-181.
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